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FF-LINS: A Consistent Frame-to-Frame 
Solid-State-LiDAR-Inertial State Estimator 

 
Hailiang Tang, Tisheng Zhang, Xiaoji Niu, Liqiang Wang, Linfu Wei, and Jingnan Liu 

 Abstract—Most of the existing LiDAR-inertial navigation 
systems are based on frame-to-map registrations, leading to 
inconsistency in state estimation. The newest solid-state LiDAR 
with a non-repetitive scanning pattern makes it possible to achieve 
a consistent LiDAR-inertial estimator by employing a frame-to-
frame data association. In this letter, we propose a robust and 
consistent frame-to-frame LiDAR-inertial navigation system (FF-
LINS) for solid-state LiDARs. With the INS-centric LiDAR frame 
processing, the keyframe point-cloud map is built using the 
accumulated point clouds to construct the frame-to-frame data 
association. The LiDAR frame-to-frame and the inertial 
measurement unit (IMU) preintegration measurements are tightly 
integrated using the factor graph optimization, with online 
calibration of the LiDAR-IMU extrinsic and time-delay 
parameters. The experiments on the public and private datasets 
demonstrate that the proposed FF-LINS achieves superior 
accuracy and robustness than the state-of-the-art systems. Besides, 
the LiDAR-IMU extrinsic and time-delay parameters are 
estimated effectively, and the online calibration notably improves 
the pose accuracy. The proposed FF-LINS and the employed 
datasets are open-sourced on GitHub (https://github.com/i2Nav-
WHU/FF-LINS). 
 

Index Terms—LiDAR-inertial navigation, state estimation, 
factor graph optimization, multi-sensor fusion navigation. 

I. INTRODUCTION 
ight detection and ranging (LiDAR) navigation system has 
been widely used in navigation and mapping in this century. 

Conventionally, the iteration closest point (ICP)-based methods 
[1], [2] and the normal distributions transform (NDT)-based 
methods [3], [4] have been adopted for pose estimation, but 
they are mainly for dense point-cloud registration. The LiDAR 
sensors employed in autonomous vehicles and robots are 
commonly low-cost, and we can only obtain sparse point clouds 
from a LiDAR frame. Besides, initial pose estimation is also 
required to achieve successful iterations [5]. In addition, these 
methods are computationally intensive and may cost many 
computational resources. Due to these shortcomings, ICP-based 
and NDT-based methods are usually unsuitable for real-time 
navigation applications. 

The real-time LiDAR odometry and mapping (LOAM) [6] is 
proposed without using the ICP or NDT. The edge and plane 
feature points are first extracted from a LiDAR frame by 
judging the smoothness of the local surface [6]. The LiDAR 
odometry is achieved by employing a frame-to-frame 
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correspondence. The LiDAR frame is registered to the global 
feature map using the non-linear optimization method [7]. The 
feature-point detection and the frame-to-frame methods in 
LOAM [6] are mainly designed for the rotated 2-dimensional 
(2D) and 3-dimensional (3D) spinning LiDARs. LeGO-LOAM 
[8] further segments the ground plane points and adopts a two-
step optimization, yielding higher computational performance.  

The frame-to-map method may be meaningful in LiDAR 
mapping, as it can build a consistent map. However, without a 
prebuilt map, the LiDAR navigation system should be a dead-
reckoning (DR) system, which may drift over time [9]. In 
contrast, the frame-to-map method constructs an absolute 
constraint between the current frame and the self-built map, 
resulting in inconsistency in pose estimation [10]. This problem 
may be more significant in multi-sensor fusion navigation with 
a tightly-coupled formulation, as it is impossible to incorporate 
absolute-positioning sensors, such as the global navigation 
satellite system (GNSS) [11]. 

The LiDAR point clouds are usually sampled at different 
times, which results in motion distortion. Hence, the micro-
electro-mechanical system (MEMS) inertial measurement unit 
(IMU) can be employed to correct the distortion and construct 
a LiDAR-inertial navigation system. LOAM utilizes the 
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Fig. 1. Attitude standard deviation (STD) estimation comparison between 
FAST-LIO2 and FF-LINS on Robot-campus dataset. The yaw angle is 
unobservable for a LiDAR-inertial odometry, and thus the yaw STD will grow 
over time. FAST-LIO2 indicates inconsistent estimation, as the yaw STD does 
not grow. In contrast, FF-LINS exhibits great consistency in state estimation, 
because the yaw STD grows over time, while the roll and pitch STDs converge 
due to their observability. 
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orientation and acceleration from an IMU to remove motion 
distortion, exhibiting improved accuracy [6]. In LIO-SAM, the 
IMU is applied in a LiDAR-inertial state estimator [12] within 
the framework of factor graph optimization (FGO) [13]. 
However, LIO-SAM [12] is a loosely-coupled system, as the 
LiDAR odometry is adopted in the state estimator rather than 
the raw LiDAR measurements. Besides, the LiDAR odometry 
in LIO-SAM is implemented by building a local point-cloud 
map, which is also inconsistent in state estimation. Hence, LIO-
SAM has to employ a pose graph optimization [13] to fuse the 
LiDAR odometry and other absolute positioning sources, 
including the GNSS and the loop-closure constraint [12]. 

LINS [14] and FAST-LIO [15] are two similar tightly-
coupled LiDAR-inertial odometry using the iterated extended 
Kalman filter (IEKF) [7]. The state estimation in [14], [15] is 
achieved by registering the extracted feature points in a LiDAR 
frame to the global feature-point map, which may result in 
inconsistency in the LiDAR-inertial state estimator. 
Specifically, the unobservable terms for a DR system, including 
the global yaw and the global position [10], can be wrongly 
observable by using the frame-to-map method, as depicted in 
Fig. 1. Moreover, the misalignment when registering the 
LiDAR frame to the global map may leading to inconsistent 
pose estimation relative to the IMU measurements. As a 
consequence, a wrong IMU biases estimation may occur and 
thus ruin the accuracy of the inertial navigation system (INS) 
[16]. In addition, the LiDAR-IMU extrinsic parameters cannot 
be effectively estimated with such a frame-to-map method. 
According to our experiments, the reason is that the system 
needs the extrinsic parameters to build the initial map; thus, the 
follow-up frame-to-map matching will prevent extrinsic 
parameters from being changed. 

Recently, the newly solid-state LiDAR with a non-repetitive 
scanning pattern has been widely used for navigation and 
mapping [17]–[20]. LOAM-Livox employs the LOAM method 
for the solid-state LiDAR, Livox Mid-40, by adopting a new 
feature-extraction method [17]. For another solid-state LiDAR, 
Livox Horizon, with a different scanning pattern, LiLi-OM [18] 
proposes an applicable feature-extraction method. Besides, this 
method is integrated into a LiDAR-inertial scheme using a 
sliding-window optimization [18]. However, the frame-to-map 
method is employed in [18], and thus the inconsistent problem 
still exists. FAST-LIO2 [19] extends the work in FAST-LIO 
[15] by incorporating a direct registration method without 
feature extraction. Similarly, Faster-LIO [20] uses incremental 
voxels as the point-cloud spatial data structure rather than the 
incremental k-d tree in FAST-LIO2 [19]. Nevertheless, FAST-
LIO2 and Faster-LIO adopt the same inconsistent state 
estimator. 

As mentioned above, the LiDAR-inertial navigation system 
should be a DR system [9]. Hence, the LiDAR system should 
construct a relative constraint to achieve a consistent state 
estimation. LIPS designs a LiDAR-Inertial 3D Plane 
simultaneous-localization-and-mapping (SLAM) system with a 
robust relative plane anchor factor in graph-based optimization 
for indoor applications [21]. However, the planes should be 
segmented offline using the Point Cloud Library (PCL) [22], 

which cannot run in real-time. LIC-Fusion 2.0 [23] proposes a 
sliding-window plane-feature tracking method, which is then 
integrated into a multi-state constraint Kalman filter (MSCKF) 
[10]. As the relative constraints are constructed in LIPS and 
LIC-Fusion 2.0, the inconsistent problem in the state estimation 
should be solved. However, these methods are mainly designed 
for the 3D spinning LiDARs, and they are not applicable for 
solid-state LiDARs, such as Livox LiDARs with a non-
repetitive scanning pattern. Besides, complex plane-extraction 
or plane-association algorithms should be employed to 
construct the relative constraints, and thus the computational 
complexity may significantly increase. 

In this letter, we aim to construct a consistent solid-state-
LiDAR-inertial navigation system (FF-LINS). We follow the 
INS-centric architecture in [11] to process the LiDAR data. A 
direct frame-to-frame data association algorithm is presented 
without explicitly extracting plane features. With the frame-to-
frame association, a LiDAR frame-to-frame factor is proposed 
to construct a tightly-coupled LiDAR-inertial state estimator 
under the framework of FGO. The main contributions of our 
work are as follows: 

● We propose a consistent solid-state-LiDAR-inertial state 
estimator that tightly integrates the LiDAR and IMU 
measurements within the FGO framework. The LiDAR-IMU 
extrinsic and time-delay parameters are all estimated and 
calibrated online to further improve the accuracy. 

● A novel solid-state LiDAR frame-to-frame data association 
algorithm is presented. We build a direct keyframe point-cloud 
map with accumulated LiDAR frames with the prior INS poses. 
The data association is achieved by finding the nearest points in 
the keyframe point-cloud maps within the sliding window. 

● A LiDAR frame-to-frame measurement model is proposed 
to achieve consistent state estimation in FGO. The LiDAR 
frame-to-frame measurement residuals, together with the 
Jacobians for the IMU poses and the LiDAR-IMU extrinsic 
parameters, are all analytically expressed. 

● The proposed FF-LINS is comprehensively evaluated on 
both public and private datasets. The experiment results 
demonstrate that FF-LINS with the proposed consistent state 
estimator yields improved accuracy and robustness. 

The remainder of this paper is organized as follows. We give 
an overview of the system pipeline in section II. The proposed 
frame-to-frame solid-state-LiDAR-inertial state estimator is 
presented in section III. The experiments and results are 
discussed in section IV for quantitative evaluation. Finally, we 
conclude the proposed FF-LINS. 

II. SYSTEM OVERVIEW 
The system overview of the proposed FF-LINS is depicted in 

Fig. 2. The system pipeline is in an INS-centric architecture, 
and the proposed FGO is a sliding-window optimizer [11]. The 
INS is initialized firstly with zero position and zero yaw angle, 
while the roll and pitch angles are determined from the 
accelerometer measurements [16]. We can also obtain a rough 
gyroscope biases estimation [11] if zero-velocity conditions are 
detected. Once the system is initialized, the INS mechanization 
is conducted to provide prior poses for LiDAR frame 
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processing. With the prior INS poses, the LiDAR frame is 
processed, and the LiDAR keyframe is selected. Then, we build 
the keyframe point-cloud map with accumulated LiDAR frames. 
Thus, the frame-to-frame data association can be conducted by 
finding the nearest points in all keyframe point-cloud maps 
within the sliding window. Finally, the LiDAR frame-to-frame 
factor can be constructed between the LiDAR keyframes. The 
LiDAR and IMU measurements are tightly coupled within the 
FGO framework to perform the maximum-a-posterior 
estimation [7]. 

III. METHODOLOGY 
The proposed frame-to-frame solid-state-LiDAR-inertial 

navigation system is presented in this section. We will first 
introduce the INS-centric LiDAR frame processing. Then, the 
direct frame-to-frame data association algorithm is proposed. 
Finally, we present the consistent state estimator with the 
analytical form of the frame-to-frame measurement residuals 
and Jacobians. 

A. INS-Centric LiDAR Frame Processing 
We follow the INS-centric processing architecture [11] to 

process the LiDAR frame. The high-frequency INS poses will 
be employed to assist the LiDAR frame processing, including 
the motion-distortion compensation, the keyframe selection, 
and the keyframe point-cloud map building. 
1) INS Mechanization 

Once the INS is initialized, the INS mechanization is 
conducted. We adopt a reduced INS kinematic model [24] in 
the proposed FF-LINS, and it can be written as 
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where w
wbp  and w

wbv  are the position and velocity of the IMU 
frame (b-frame) in the world frame (w-frame), respectively; the 
quaternion w

bq  and the rotation matrix w
bR  denote the rotation 

of the b-frame with respect to the w-frame; wg  is the gravity 
vector in the w-frame; bw  and bf  are the compensated 
angular velocity and acceleration from the IMU, respectively; 
  denotes the quaternion product. The IMU frame is defined 
as the IMU body frame, i.e. the front-right-down frame. The w-

frame is defined at the initial point with zero position and zero 
yaw angle, while the roll and pitch angle are gravity-aligned 
[16]. The INS mechanization can be formulated by adopting the 
kinematic model in (1) to obtain high-frequency INS poses. 
2) LiDAR Frame Preprocessing 

A keyframe-based LiDAR frame processing is employed in 
the proposed FF-LINS. When a new LiDAR frame is valid, we 
preprocess the LiDAR frame with the prior INS pose. 
Specifically, the interpolated INS poses are adopted to retrieve 
undistorted point clouds [25]. The direct point-cloud processing 
method has been proven to be more robust than the feature-
based methods while achieving the same accuracy [19]. Hence, 
the direct-based method is employed without explicitly 
extracting plane features. The undistorted point clouds of a 
LiDAR frame are directly downsampled using a voxel grid 
filter [22], and the leaf size is set to 0.5 m [19]. 

In the proposed INS-centric architecture, the state-estimation 
update will only be conducted when a new LiDAR keyframe is 
selected, and the INS can output continuous poses during the 
period [11], as depicted in Fig. 2. In other words, only the 
LiDAR keyframe will be adopted to perform state estimation. 
The proposed INS-centric processing can significantly save 
computational costs and thus improve real-time performance 
without decreasing accuracy. 

To fully use the short-time accuracy of the INS, the LiDAR 
keyframe should be selected within a short interval. Besides, we 
should also consider LiDAR's motions to build up valid frame-
to-frame LiDAR data association. If the translation or the 
rotation change exceeds thresholds [12], e.g. 0.4 m and 10 , a 
new LiDAR keyframe will be selected. Here, the translation and 
the rotation are derived from the prior INS poses. If the motion 
of the LiDAR is small for a long interval, e.g. 0.5 s, we will also 
pick up a keyframe. When a new LiDAR keyframe is selected, 
the frame-to-frame data association can be conducted to 
perform the consistent state estimation. Nevertheless, the 
LiDAR non-keyframes will be reserved to build the point-cloud 
map corresponding to the new LiDAR keyframe. 
3) Point-Cloud Map Building 

The point clouds of a single solid-state-LiDAR are sparse 
[17], which is inconducive for the frame-to-frame data 
association. Relatively dense point clouds can be obtained by 
accumulating several LiDAR frames due to the non-repetitive 
scanning pattern of the solid-state LiDAR [25]. Hence, it is 
convenient to construct the frame-to-frame data association 
with such dense point clouds. As we can obtain high-accuracy 
poses from the INS in a short time, the LiDAR frames can be 
further accumulated with the prior INS poses. Specifically, all 
LiDAR frames since the previous keyframe, including the non-
keyframes and the new keyframe, will be employed together to 
build the point-cloud map corresponding to the new keyframe. 
As depicted in Fig. 3, the point clouds in LiDAR non-keyframes 
will be projected to the corresponding time of the LiDAR 
keyframe with the prior poses from the INS. Finally, we obtain 
the LiDAR keyframe point-cloud map M , which will be 
adopted for the frame-to-frame data association. The keyframe 
point-cloud map is also downsampled using the voxel grid filter 
in section III.A.2. 

 
Fig. 2. System overview of the proposed FF-LINS. 
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B. Frame-to-Frame Data Association 
The frame-to-frame data association can be carried on with 

the keyframe point-cloud map in section III.A.3. As mentioned 
above, only the LiDAR keyframe will be adopted for state 
estimation. Specifically, only the point clouds in the LiDAR 
keyframe will be employed to construct the frame-to-frame data 
association. In other words, the keyframe point-cloud map M  
covers much more fields of view than the LiDAR keyframe 
point cloud F . That is the reason that we can build up valid 
frame-to-frame data associations. 

An illustration of the frame-to-frame data association is 
depicted in Fig. 4. Considering that we have 1n   LiDAR 
keyframes in the sliding window, we will associate the latest 
keyframe point cloud nF  with the keyframe point-cloud maps 

 , 0, 1i i n M . For a point rnp  in nF , where r  denotes the 
LiDAR frame (r-frame), it can be projected to the keyframe 
point-cloud maps with the prior LiDAR pose  w w

wr r,
n n
qp  from 

the INS and the estimated LiDAR pose  w w
wr r,
i i
qp . As shown 

in Fig. 4, the projection of the point rnp  in iM  can be written 
as 

  r w w r w w
r r wr wr( ).

in n

i n

i

T
  R Rp p pp  (2) 

In the proposed FF-LINS, the frame-to-frame association is 
equal to the direct plane-point registration [19], and we treat all 
point clouds as plane-point candidates. With the projected point 
rip  (the red points in Fig. 4), we find its five nearest points 

 , 1,5e e p  (the green points in Fig. 4) in the keyframe point-

cloud map iM . An overdetermined linear equation [25] can be 
constructed using the five nearest points to solve the following 
plane equation as 
 0,T d n p  (3) 
where p  is a point on the plane; n  is the normalized normal 
vector of the plane; d  is a distance that satisfies the equation 
(3). The fitted local plane is checked by calculating the point-
to-plane distance as 
  dis , 1,5 .

e

T
e d e  p n p  (4) 

If dis 0.1
e

mp  for all the five points [25], the fitted plane will 
be used for the following processing. Otherwise, the frame-to-
frame association for the point rnp  in iM  is failed. A similar 

method in [6], [19] is used to check the r
rdis i

i

T d 
p

n p  to 

validate the frame-to-frame association. 
Finally, we obtain the frame-to-frame associations between 

the latest LiDAR keyframe and other keyframes in the sliding 
window. The fitted plane parameters  ,dn  for each frame-to-
frame association will be employed to construct a LiDAR 
frame-to-frame measurement in FGO. Hence, we can build 
relative measurements between the latest LiDAR keyframe and 
other keyframes to achieve a consistent state estimation. 

C. Factor Graph Optimization 
The INS information is fully utilized in the INS-centric 

LiDAR frame processing, and thus we obtain the undistorted 
LiDAR keyframe and the keyframe point-cloud map. The 
frame-to-frame data association is achieved by constructing 
plane measurements between the latest LiDAR keyframe and 
the keyframe point-cloud maps. Hence, the consistent LiDAR-
inertial state estimator is achieved by tightly integrating the 
LiDAR frame-to-frame and IMU preintegration measurements 
within the FGO framework. 
1) Formulation 

The proposed consistent state estimator is a sliding-window 
optimizer. The state vector X  in FF-LINS can be defined as 
follows 
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where kx  is the IMU state at each time node, including the 
position, the attitude quaternion, and the velocity in the w-frame, 
and the gyroscope biases gb  and the accelerometer biases ab ;
n  is the size of the sliding window, i.e. the number of the IMU 
preintegration factors; b

rx  is the LiDAR-IMU extrinsic 
parameters; dt  denotes the time delay between the LiDAR and 
the IMU data. 

The state estimation is conducted by solving the following 
non-linear least squares problems of the form 
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Fig. 4. An illustration of the frame-to-frame data association.  

Fig. 3. An illustration of the LiDAR keyframe and keyframe point-cloud map. 
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where Rr  are the residuals for the LiDAR frame-to-frame 
measurements, which construct relative pose constraints 
between the latest LiDAR keyframe and other keyframes in the 
sliding window; m  denotes the total number of the LiDAR 
measurements; Prer  are the residuals for the IMU preintegration 
measurements [24]; { },p pr H  denote the prior information 
from the marginalization [7]. We adopt the Levenberg-
Marquardt algorithm in Ceres solver [26] to solve the non-linear 
least squares problem in (6). 
2) Frame-to-Frame Measurement Residuals 

The LiDAR frame-to-frame measurement residual is equal to 
the point-to-plane distance [18]. Nevertheless, the proposed 
frame-to-frame measurement model is consistent, while the 
frame-to-map measurement model in the existing works is 
inconsistent, such as [12], [14], [18]–[20]. The LiDAR-inertial 
extrinsic parameters  b b

br r,qp  and the time delay dt  are all 

incorporated into the frame-to-frame measurement model for 
online estimation and calibration. For convenience, the time 
delay dt  will be omitted in the following parts, and we can refer 
to [23] for further details. 

Suppose the raw point ,rn hp  in nF  is associated in the 
keyframe point-cloud map iM . Then, we have the associated 

plane parameters  ,h hdn  . The residual of the LiDAR frame-

to-frame measurement h  is the function of the IMU poses 
 w w

wb b,
n n
qp  and  w w

wb b,
i i
qp , and the LiDAR-IMU extrinsic 

parameters  b b
br r,qp . Consequently, the LiDAR frame-to-

frame measurement residual can be written as 
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where ,ri hp  is the projection of the raw point ,rn hp  in the r-frame 
of the keyframe i ; whp  denotes the projection in the w-frame; 

,bi hp  and ,bn hp  denote the projections in the b-frame 
corresponding to the LiDAR keyframe i  and n . The LiDAR 
frame-to-frame measurement model in (7) is similar to the 
visual reprojection model in visual navigation [11], and they are 
all relative-pose measurement models. In other words, the 
proposed LiDAR frame-to-frame measurement model is 
consistent in terms of state estimation. 

As the direct method without explicitly extracting the plane 
feature is adopted, the covariance R

h  may be difficult to be 
determined. Thanks to the frame-to-frame association method 
in FF-LINS, the covariance R

h  can be obtained offline by 
error statistics. Specifically, we can first generate the keyframe 
point clouds F  and keyframe point-cloud maps Μ  with FF-
LINS. Then, the ground-truth poses can be employed to build 

the frame-to-frame association presented in section III.B. The 
frame-to-frame measurement errors can also be calculated 
using the ground-truth poses. Finally, we can analyze the 
distributions of all the frame-to-frame measurement errors to 
obtain the covariance. According to our experiments, the 
covariance can be set as 2R

h  I , where   is about 0.1 m. 
3) Jacobians of the Frame-to-Frame Measurement Residual 

Using the error-perturbation method in [24], we can obtain 
the analytical Jacobians of Rr  in (7) w.r.t the pose errors 

 w w
wb wb,

n n
 p  and  w w

wb wb,
i i

 p , and the LiDAR-IMU 

extrinsic errors  b b
br r, p . Here,   denotes the rotation 

vector of a quaternion q , and   represents the attitude errors 
[24]. Specifically, the Jacobians w.r.t the pose errors 
 w w

wb wb,
n n

 p  can be formulated as 
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where    denotes the skew-symmetric matrix of a vector [16]; 
,bn hp  is the point projection in (7). Similarly, the Jacobians 

w.r.t the pose errors  w w
wb wb,

i i
 p  can be written as 
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where whp  is the point projection in (7). We can also obtain the 
Jacobians w.r.t the LiDAR-IMU extrinsic errors b b

br r, p  as 
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where ,bi hp  is the point projection in (7), and ,rn hp  is the raw 
point in the keyframe nF . The rotation matrix r

b
i

n
R  can be 

written as 

    r b w w
b r b b .n i

i

n

TT
R R R R  (11) 

Finally, we obtain the Jacobians of Rr  w.r.t pose errors and the 
LiDAR-IMU extrinsic errors in (8), (9), and (10), which are all 
analytically expressed. 
4) Outlier Culling 

We adopt a two-step optimization when solving the non-
linear least squares problems in (6). As wrong frame-to-frame 
associations may occur, especially in complex environments, 
we employ the Huber robust cost function to reduce the impacts 
of the outliers. After the first optimization, a chi-square test is 
employed to determine and remove the LiDAR frame-to-frame 
factor outliers from the optimizer. The estimated states will be 
further optimized in the second optimization. We do not need 
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to remove outliers after the two-step optimization because new 
frame-to-frame associations will always be constructed when a 
new LiDAR keyframe is selected. All in all, the outlier-culling 
methods in FF-LINS can effectively improve the robustness in 
complex environments. 

IV. EXPERIMENTS AND RESULTS 
In this section, we conduct exhaustive experiments to 

evaluate the proposed FF-LINS. The public and private datasets 
are all employed to examine the accuracy and robustness of FF-
LINS. The running-time analysis is also conducted to evaluate 
to real-time performance of FF-LINS. 

A. Datasets and Implementation 
The employed public datasets are the Lili-OM [18] and 

R3LIVE datasets [27]. The LiLi-OM dataset includes the Livox 
Horizon and the built-in IMU, and the three longest sequences 
are adopted, including the sequences Schloss-1, Schloss-2, and 
East. The R3LIVE dataset includes the Livox AVIA and the 
built-in IMU, and the three longest sequences with end-to-end 
trajectories are adopted, including the sequences 
hku_main_building, hkust_campus_00, and hkust_campus_01. 

The private datasets are collected with a low-speed wheeled 
robot with an average speed of around 1.5 m/s. The sensors 
include a solid-state LiDAR (Livox Mid-70 with a frame rate 
of 10 Hz) and an industrial-grade MEMS IMU (ADI 
ADIS16465 with a gyroscope bias instability of 2 °/hr and a 
frame rate of 200 Hz), as depicted in Fig. 5. The solid-state 
LiDAR and the IMU are well-synchronized through hardware 
triggers. The ground-truth system is a high-accuracy 
GNSS/INS integrated navigation system using the GNSS-RTK 
and a navigation-grade IMU [16]. Besides, the ground truth 
(0.02 m for position and 0.01 deg for attitude) is generated by 
post-processing software. As depicted in Fig. 6, there are four 

sequences in the Robot dataset, including campus (1.33 km and 
934 s), building (2.56 km and 1825 s), playground (1.33 km and 
969 s), and park (1.46 km and 1326 s). The testing scenes 
contain various structured and unstructured environments, as 
shown in Fig. 6. Besides, many moving objects, such as 
pedestrians, bicycles, and vehicles, make it great challenging to 
achieve robust navigation. 

The proposed FF-LINS is implemented using C++ and the 
robot operating system (ROS). The multi-thread technology is 
adopted in FF-LINS. The sliding-windows size n  is set to 10 
to reduce the computational complexity. We assume that the 
LiDAR-IMU extrinsic and time-delay parameters are all 
uncalibrated on these datasets. The state-of-the-art (SOTA) 
tightly-coupled LiDAR-inertial navigation systems LiLi-OM 
(without loop closure) [18], LIO-SAM (without loop closure) 
[12], and FAST-LIO2 [19] are employed for comparison. We 
adopt FF-LINS-WO (without the online calibration) to evaluate 
the impact of the online calibration of the LiDAR-IMU 
extrinsic and time-delay parameters. All the systems are run in 
real-time on a desktop PC (AMD R7-3700X) under the 
framework of ROS. 

B. Evaluation of the Accuracy 
1) Public LiLi-OM Dataset 

There is no ground truth in the LiLi-OM dataset, and we do 
not have the end-to-end reference. Hence, the GPS positioning 
results (with meter-level accuracy) at the starting and ending 
points are adopted to calculate the starting-ending distance. We 
also calculate the starting-ending distances of the employed 
LiDAR-inertial navigation systems. Hence, the distance errors 
on the LiLi-OM dataset are shown in Table I. It should be noted 
that such an evaluation is not accurate, and thus we can only 
qualitatively analyze the results. 

According to the results in Table I, the proposed FF-LINS 
yields comparable accuracy to the SOTA methods. FAST-LIO2 
exhibits degraded accuracy on Schloss-2, as its distance error is 
far larger than other systems. The distance errors are all meter-
level on Schloss-1 and Schloss-2, except for FAST-LIO2, and 
thus LiLi-OM, LIO-SAM, and FF-LINS achieve the same 
accuracy. However, FF-LINS yields the best accuracy on East, 
which is the longest sequence. The improvement benefits from 
the robust INS-centric architecture and the consistent state 
estimation. Besides, the online calibration of the LiDAR-IMU 
extrinsic and time-delay parameters may further improve the 
system consistency and thus improve the accuracy. 
2) Public R3LIVE Dataset 

In R3LIVE datasets, we have the end-to-end reference for 
quantitative evaluation. We fail to run LiLi-OM on the R3LIVE 
dataset, as LiLi-OM is designed for Livox Horizon rather than 
Livox AVIA in the R3LIVE dataset. We obtain the end-to-end 
results, as shown in Table II. LIO-SAM fails on 
hku_main_building, mainly because of the few feature points in 
narrow indoor passages. Nevertheless, direct-based methods 
FAST-LIO2 and FF-LINS succeed in such environments. FF-
LINS achieves superior accuracy than FAS-LIO2 on 
hku_main_building and hkust_campus_00. FAST-LIO2 yields 
the best end-to-end result on hkust_campus_01 because it can 

 
Fig. 5. Equipment setup in the Robot dataset. 

 
Fig. 6. Testing scenes in the Robot dataset. Different colors denote different 
sequences. 
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match its prebuilt map due to the frame-to-map association. As 
FAST-LIO2 may also drift without the prebuilt map, such 
frame-to-map matching will result in a large jump in the 
trajectory. Besides, hkust_campus_00 and hkust_campus_01 
are collected in the same testing scenes. FAST-LIO2 exhibits 
different results on the two sequences, while the proposed FF-
LINS yields a similar accuracy. Hence, the result for FF-LINS 
on hkust_campus_01 is not so-called bad. The results 
demonstrate the proposed FF-LINS with the frame-to-frame 
association is more robust. Besides, FF-LINS is more accurate 
in terms of consistency in different sequences on R3LIVE, i.e. 
hkust_campus_00 and hkust_campus_01. 
3) Private Robot Dataset 

We fail to run LiLi-OM and LIO-SAM on the Robot dataset. 
As Livox Mid-70 only contains one scanning line, few feature 
points can be extracted, which is terrible for feature-based 
systems like LiLi-OM and LIO-SAM. The absolute rotation 
error (ARE) and absolute translation error (ATE) are adopted 
for quantitative evaluation. Table III indicates that FF-LINS 
exhibits superior accuracy than FAST-LIO2 on all four 
sequences. The results may be the sparse single LiDAR frame 
of Livox Mid-70, resulting in fewer frame-to-map associations 
than for FAST-LIO2. Hence, FAST-LIO2 degrades accuracy in 
the Robot dataset, especially when large motions occur, which 
may result in few LiDAR frame-to-map measurements. In 
contrast, with the INS-centric architecture, the keyframe point-
cloud maps are built with several LiDAR frames to construct 
the frame-to-frame association in FF-LINS. In other words, the 
proposed frame-to-frame association is more robust. Besides, 
the INS information is fully utilized in FF-LINS, and the 
LiDAR-IMU extrinsic and the time-delay parameters are all 
estimated and calibrated online. Hence, FF-LINS can achieve 
more consistent state estimation and thus can perform higher 
navigation accuracy. 

C. The Impact of the Online Calibration 
FF-LINS-WO is adopted to evaluate the impact of the online 

calibration of the LiDAR-IMU extrinsic and time-delay 

parameters. Table II shows that FF-LINS-WO indicates 
significant accuracy degradation without the online calibration 
on the R3LIVE dataset. The reason is that the rotation parts of 
the LiDAR-IMU extrinsic parameters are relatively large. 
Specifically, the angles w.r.t the x  and y  axes (the horizontal 
attitude angles) are larger than 1.0 degrees, as depicted in Fig. 
7. The horizontal attitude angles, i.e. the roll and pitch angles, 
are observable terms due to the gravity [10]. Thus their impacts 
are much more significant. 

Moreover, all LiDAR-IMU extrinsic parameters converge, 
and even the tiny time-delay parameter converges. The results 
in Fig. 7 demonstrate that the proposed FF-LINS is consistent 
in state estimation; thus, these parameters can be effectively 
estimated. It should be noted the estimated parameters are 
almost the same on different sequences within a dataset, which 
proves that FF-LINS is consistent once again. 

The results in Table III also demonstrate that the online 
calibration can notably improve the system accuracy on the 
Robot dataset, especially the rotation accuracy. The reason is 
that the angle w.r.t the z  axis (the yaw angle) of the LiDAR-
IMU extrinsic parameters is larger than 2.0 degrees on the 
Robot dataset, according to our analyses. The yaw angle is an 
unobservable term [10], and thus its impact should be limited, 
as the translation accuracy only degrades a little. 

D. Running time analysis 
The average running times of FF-LINS on the Robot dataset 

are shown in Table IV. The LiDAR frame preprocessing costs 
about 0.6 ms per frame. The average interval of the keyframes 
is determined by the motions of the robot. The FGO times vary 
on different datasets, as the number of valid frame-to-frame 
associations may be notably different. According to the results 
in Table IV, the proposed FF-LINS can perform real-time 

TABLE II 
END-TO-END ERRORS ON THE R3LIVE DATASET 

Error (m)  hku_main_building hkust_campus_00 hkust_campus_01 

LIO-SAM Failed 3.29 20.82 

FAST-LIO2 2.50 3.69 0.14 

FF-LINS-WO 12.18 14.16 17.14 

FF-LINS 1.20 2.41 2.51 
FF-LINS-WO denotes the configuration without the online calibration of the 
LiDAR-IMU extrinsic and time-delay parameters in section IV.C. 

TABLE I 
DISTANCE ERRORS ON THE LILI-OM DATASET 

Error (m)  Schloss-1 Schloss-2 East 

LiLi-OM 1.36 1.27 15.43 

LIO-SAM 0.47 0.36 25.16 

FAST_LIO2 1.10 6.59 8.30 

FF-LINS 0.23 1.14 2.81 
 

TABLE III 
ARE AND ATE ON THE ROBOT DATASET 

ARE / ATE (deg / m)  campus building playground park 

FAST-LIO2 3.55 / 4.42 3.13 / 3.12 2.84 / 1.59 3.24 / 4.00 

FF-LINS-WO 2.45 / 2.17 2.23 / 2.24 2.55 / 1.79 2.40 / 2.08 

FF-LINS 0.41 / 1.51 0.65 / 1.90 0.77 / 1.27 0.90 / 1.44 
 

 
Fig. 7. Estimated LiDAR-IMU extrinsic and time-delay parameters on 
R3LIVE-hkust_campus_00. 
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navigation. According to our statistics, FF-LINS can run at 
4~6 speeds on the desktop PC (AMD R7-3700X), exhibiting 
superior real-time performance. 

V. CONCLUSIONS 
This letter proposes a frame-to-frame solid-state-LiDAR-

inertial state estimator, which can achieve robust and consistent 
navigation in challenging environments. The proposed LiDAR 
measurement model can provide a relative pose constraint by 
constructing the direct frame-to-frame data association. Hence, 
the inconsistency problem in LiDAR-inertial navigation 
systems due to the frame-to-map association has been solved. 
The LiDAR-IMU extrinsic and time-delay parameters can be 
effectively estimated and calibrated online with the consistent 
state estimator. Besides, we do not need to extract feature points 
or segment and track plane points, significantly improving the 
real-time performance. 

The proposed LiDAR frame-to-frame measurement model 
can be seamlessly incorporated into a multi-sensor fusion 
navigation system with absolute-positioning sensors, such as 
the GNSS and the high-precision map. Besides, the proposed 
method provides an effective solution for offline LiDAR-IMU 
calibrations. In addition, the frame-to-frame association can 
also be utilized for large-scale and consistent mapping by 
incorporating loop closure. One of the key points is that the 
accumulated point clouds are used to build the keyframe point-
cloud map for the frame-to-frame associations with the INS-
centric architecture. Hence, the proposed FF-LINS is not 
limited to the Livox LiDARs. It can be applied to other LiDARs, 
such as MEMS and flash solid-state LiDARs, and even 3D-
spinning LiDARs. 
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TABLE IV 
THE AVERAGE RUNNING TIMES OF FF-LINS ON THE ROBOT DATASET 

Time (ms) campus building playground park 

Keyframe interval 300 300 310 370 
Frame-to-frame 

assocaition 2.7 2.6 2.7 2.7 

Factor graph 
optimization 38.5 37.5 45.6 32.6 

 


