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Occlusion-aware Risk Assessment and
Driving Strategy for Autonomous Vehicles

Using Simplified Reachability Quantification
Hyunwoo Park1, Jongseo Choi1, Hyuntai Chin1, Sang-Hyun Lee2 and Doosan Baek1,2∗

Abstract—One of the unresolved challenges for autonomous ve-
hicles is safe navigation among occluded pedestrians and vehicles.
Previous approaches included generating phantom vehicles and
assessing their risk, but they often made the ego vehicle overly
conservative or could not conduct a real-time risk assessment in
heavily occluded situations. We propose an efficient occlusion-
aware risk assessment method using simplified reachability quan-
tification that quantifies the reachability of phantom agents with a
simple distribution model on phantom agents’ state. Furthermore,
we propose a driving strategy for safe and efficient navigation
in occluded areas that sets the speed limit of an autonomous
vehicle using the risk of phantom agents. Simulations were
conducted to evaluate the performance of the proposed method in
various occlusion scenarios involving other vehicles and obstacles.
Compared with the baseline case of no occlusion-aware risk
assessment, the proposed method increased the traversal time of
an intersection by 1.48 times but decreased the average collision
rate and discomfort score by up to 6.14 times and 5.03 times,
respectively. The proposed method has shown the state-of-the-
art level of time efficiency with constant time complexity and
computational time of less than 5 ms.

Index Terms—Collision Avoidance, Motion and Path Planning

I. INTRODUCTION

AUTONOMOUS vehicles and other mobile robots of-
ten use LiDAR, cameras, and radar to perceive their

surroundings. However, these sensors generally only work
according to the line-of-sight, which gives them a critical
disadvantage in common occluded situations as shown in Fig.
1. A scenario with occluded areas can lead to potentially
dangerous scenarios where other vehicles or pedestrians may
suddenly appear in the route of the autonomous vehicle [1],
[2]. Human drivers handle occlusion by decreasing velocity
sufficiently to lower the risk without losing efficiency. For
autonomous vehicles, a common approach to occlusion-aware
risk assessment has been to generate phantom agents (PAs) in
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Fig. 1: Ego vehicle (red) entering an intersection. Occlusions due to obstacles
(dark gray) and another vehicle (blue) are shaded in gray. Positions of potential
hidden vehicles that can collide with the ego vehicle are indicated by red lines
and blue point. The blue point has same direction with the ego vehicle, while
the red lines do not. The risk along the centerline of the road due to potential
hidden vehicles is represented as purple. The darker the purple gets, the riskier
it is. Furthermore, the risk is proportional to a normal distribution where the
random variable is the distance from the centerline of the road.

occluded areas. In [3], they proposed a set-based prediction
method that considers every possible future behavior of PAs.
However, they did not quantify the occlusion risk, which can
make the ego vehicle behave overly conservatively. In [4], and
[5], they quantified the occlusion risk by sampling particles that
represent PAs in the occluded area. However, such an approach
can lead to intensive computation in heavily occluded areas and
make the risk assessment impossible to perform in real-time.

In this paper, we propose an efficient method for occlusion-
aware risk assessment and a planning strategy for safe navi-
gation through occluded areas. The risk assessment is based
on simplified reachability quantification (SRQ) that quantifies
the ability of the PAs to reach a certain position using a
simple distribution model on the PAs’ state. The model-
based quantification derived constant time complexity of the
proposed method. The planning strategy sets speed limit in
a position where occlusion risk is presented. This strategy is
effective and can be easily integrated with any other planning
and control algorithms because it plans a safe motion of the
ego vehicle using only speed limit.

The main contributions are as follows:
• The proposed method achieves constant time complexity

and assesses heavily occluded scenarios in real time using
SRQ.
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• The proposed method can handle various types of driving
environment, such as occluded vehicles in an intersection
and occluded pedestrians behind street parking cars.

• The proposed method achieves remarkable decreases in
ride discomfort and the collision rate compared to the
baseline case of no occlusion-aware risk assessment.

• The proposed method is easily integrated with any other
planning and control algorithms.

The remainder of the paper is organized as follows: Section
II reviews related works of occlusion risk assessment and
driving strategy utilizing it. Section III defines problem setting
and primary concepts, which would be used in later sections.
Section IV describes how our method finds PAs that are
relevant to the ego vehicle and assesses their risks. Then,
motion planning using the occlusion-aware risk assessment
is proposed. Section V shows how our method is evaluated
in the CARLA simulator [6] and the real world. Section VI
analyzes the evaluation results and shows how the key metrics
are improved. Section VII concludes the proposed method
and discusses future works.

II. RELATED WORK

Previous approaches to occlusion-aware risk assessment can
be divided into two categories, namely probabilistic based
methods [4], [5], [7]–[9] and over-approximation methods [3],
[10], [11]. There are also other methods variated from two
methods and used concepts, such as Sequential Reasoning [11],
[12]. These categories are briefly reviewed here.

Probabilistic methods quantify the occlusion risk by for-
mulating the problem probabilistically. In [5], they sampled
potential positions of the hidden potential vehicles (phantom
vehicles) to assess the risk. However, they did not consider the
types of the phantom vehicles to filter out unnecessary ones,
and sampling the particles(phantom vehicles) was inefficient.
In [4], they calculated backward reachability set (BRS) of
every particle of forward reachability set (FRS) of the ego
vehicle to assess the occlusion risk. This method can be
inefficient particularly with a large number of particles in
heavily occluded areas. In addition, they considered every
possible control input of the phantom vehicles, which is
computationally inefficient because most vehicles have few
options when driving in the real world.

Over-approximation methods are a special case of prob-
abilistic method [5] that consider the probability of every
phantom vehicle as 100%. In [3], they used an edge, first
introduced by [10], to classify static and dynamic phantom
vehicles. The classification results were then used to assess
the occlusion risk. Over-approximation methods are efficient
because they don’t quantify the risk, however they tend to
make the ego vehicle behave conservatively and even freeze
in some corner cases where the ego vehicle must take a risk
to pass through.

Studies that used sequential reasoning considered only
necessary agents based on observations over time. In [11],
they used an over-approximation method to track hidden agents
conservatively over time and formulate a passive safety (p-safe)

[13] planning strategy using braking inevitable collision states
[14] and responsibility sensitive safety [15]. However, they
tracked every possible agent within their sensor range, which
is inefficient for heavily occluded areas and with long-range
sensors.

Driving strategies differ depending on the approach used
for occlusion-aware risk assessment. Among probabilistic
methods, [5] used optimization to generate a trajectory with
a low occlusion risk, [9] used a minimum cost function
including an occlusion risk cost to select a trajectory, and [7]
reduced the velocity of the ego vehicle when the risk was
sufficiently high before it entered an intersection. Among over-
approximation methods, [3], [10] obtained fail-safe trajectory
[16], [17] that did not collide with any other phantom vehicles.

III. PRELIMINARIES

In this section, problem setting and primary concepts used
in later sections will be defined. Let t ∈ R be the time, x(t)
be the state of the system at time t in the state space χ, and u
be the ego vehicle’s control input in the action space U. The
environment surrounding the ego vehicle comprises n ∈ Z
number of lanes l ∈ L. Each lane l has a set of continuous
and sequential centerline points denoted by P l. The k-th lane
lk, where (0 ≤ k ≤ n , k ∈ Z), has m centerline points P lk =
{plk1 , plk2 , plk3 , · · · , plkm} in the Cartesian space p ∈ P ⊂ R2 and
road width of lkw. The route of the ego vehicle is predefined
as points following certain lanes l ∈ L to reach the goal in
the Cartesian space, which is represented as route(x(t0)) =
{x(t0), x(t1), x(t2), · · · , x(tk)} where x(t) ∈ χ.

Definition 1. (Observable Polygon, O). O is generated by
the line-of-sight sensors from the ego vehicle and comprises
points p in the Cartesian space p ∈ O ⊂ R2.

Definition 2. (Phantom Agent, PA). PA is a potential hidden
agent outside the observable polygon and is modeled as a point
mass that allows small agents like cyclists and children could
be included. PAs can be further classified as phantom vehicles
(PVs) or phantom pedestrians (PPs).

PVs are assumed to always be on the road and drive along
the lane. They can have various velocities and even exceed
the speed limit of the road. In contrast, PPs can be anywhere
because they are not physically constrained unlike cars on
the sidewalk. In [11], they also considered illegally-behaving
pedestrians that walk on roads.

Definition 3. (Forward Reachable Set, FRS) Assume the
vehicle’s dynamics are described as following ordinary differ-
ential equation:

ẋ(t) = f(x(t), u(t)) (1)

The FRS is a set of states that could be reached in given an
initial state x0 at time t0 and fixed time horizon Tfix:

FRS(x0,Tfix) := {x(t) ∈ χ|ẋ(t) = f(x(t), u(t)),

∀u(t) ∈ U,∀t ∈ [t0, t0 + Tfix]}
(2)

Definition 4. (Backward Reachable Set, BRS)
The BRS is a set of initial states x0 at time t0 that can reach
the given final state xf within the fixed time horizon Tfix:
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BRS(xf ,Tfix) := {x0 ∈ χ|xf ∈ FRS(x0,Tfix),∀u(t) ∈ U,
ẋ(t) = f(x(t), u(t)),∀t ∈ [t0, t0 + Tfix]}

(3)

IV. METHOD

The proposed method has three steps. First, PAs in occluded
areas are generated by node classification (Section IV-A)
and inferring the phantom agent zone (Section IV-B). Then,
an approach we call Simplified Reachability Quantification
(Section IV-C) that quantifies the reachability of the PVs is
proposed. Next, the occlusion risks of PAs are defined by SRQ.
Finally, a driving strategy that sets a speed limit depending on
the occlusion risk is developed.

A. Node Classification

Node classification is based on the edge classification which
classifies edges into static, dynamic, relevant, and irrelevant
edges [3]. They over-approximate the shape of the PVs and
represented PVs as edges. Static edges are PVs that have same
direction with the ego vehicle, whereas dynamic edges are PVs
in different direction than that of the ego vehicle. Relevant
edges are PVs that can reach the route of the ego vehicle in
the prediction horizon Tpred, while irrelevant edges are PVs
that cannot reach the route of the ego vehicle. In [3], they
also over-approximate the PVs’ positions to be the closest
position to the ego vehicle. In our method, node is introduced
instead of the edge to obtain PV intervals and to avoid the
over-approximations of the PVs.

Node classification is a sequence of procedures used to
improve the efficiency of the risk assessment by classifying
PVs according to whether they pose a static or dynamic risk
to the ego vehicle and by removing irrelevant PVs. Figs. 2a-c
show the three main steps of node classification.

1) Intersection of Observable Polygon and Lanes: Inter-
secting nodes I are defined as the intersection of the observable
polygon O and the centerline of lanes P lk .

I = {p ∈ R2|p = O ∩ P lk , k ∈ {1, 2, 3, · · ·m}} (4)

I are used to find the potential positions of PVs. I that
overlap with or are too close to other vehicles that even small
agents cannot exist are excluded.

2) Static/Dynamic Node Classification: The intersecting
nodes I are then classified as static nodes S or dynamic
nodes D. I are classified as S if it has any intersection with
FRS(xego,Tpred), and the remainder of I are classified as D:

S = FRS(xego,Tpred) ∩ I, D = I− S (5)

S can be visited by the ego vehicle in the given time horizon,
but D cannot. Note that the concept of static and dynamic are
used to characterize other terms in the following sections.

3) Relevant/Irrelevant Node Classification: Next, the static
nodes S and dynamic nodes D need to be classified as
relevant or irrelevant nodes. Irrelevant nodes do not need to be
considered because their FRS does not collide with the route
of the ego vehicle within Tpred. A node is classified as relevant
(RN) if FRS(i,Tpred), where i ∈ I, collides with the route
of the ego vehicle and as irrelevant (IN) if it does not:

RN = {i ∈ I|FRS(i,Tpred) ∩ route(x(t0)) ̸= ∅}
IN = {i ∈ I|FRS(i,Tpred) ∩ route(x(t0)) = ∅}

(6)

However, if i ∈ S, then only the first S reached by the route
of the ego vehicle is considered relevant [3] because the risk
of the other S is accounted for by the first one. Note that the
concept of relevance is used to characterize other terms in the
following sections.

B. Inferring the phantom agent zone

The phantom agent zone is a set of occluded points where
relevant PAs exist. It comprises the phantom vehicle zone
(PVZ) and phantom pedestrian zone (PPZ). The PVZ com-
prises the phantom vehicle set (PVS), which is a set of
occluded points in a lane that are continuously connected to
each other. We assume that one relevant PV exists in every
PVS, therefore every PVS must include at least one relevant
node RN. If a PVS includes a relevant D, it is defined as a
dynamic PVS. However, if it includes relevant S, then only
the relevant S is defined as the static PVS. In Fig. 2d, the
dynamic PVS is represented as a red line, while the static
PVS is represented as blue dot.

1) Static Phantom Vehicle Set: Defining the static PVS as
encompassing the positions of every PV that poses a static
risk to the ego vehicle is dangerous and inefficient because
the occlusion risk would be scattered. Furthermore, we have
observed that the static occlusion risk is often removed before
it affects the ego vehicle. Therefore, the most efficient and
safest way to consider the positions of static PVs is to define
the static PVS as encompassing the positions of relevant S.

2) Dynamic Phantom Vehicle Set: The dynamic PVS is
obtained as follows. First, the dynamic relevant nodes are taken
as the starting point of the dynamic PVS. Then, new points
pnew are added to the dynamic PVS in the reverse direction
of the lane until two conditions are satisfied: pnew reaches
O and FRS(pnew,Tpred) does not collide with the route of
the ego vehicle. Fig. 3 shows the dynamic PVS obtained for
a common intersection scenario. The dynamic PVS considers
every potential dynamic PV that is relevant to the ego vehicle.

3) Phantom Pedestrian Zone: Unlike PVs, PPs can be
anywhere. In [11], they called PPs outside a sidewalk or
crosswalk, illegally-behaving pedestrians. Because the area
of illegally-behaving pedestrians covers the area of legally-
behaving pedestrians, we only considered illegally-behaving
pedestrians. Given Tpred and route of the ego vehicle at time
t0, the PPZ is defined as follows:

PPZ := {p ∈ R2|p = Oc ∩BRS(xk,Tpred),

xk ∈ route(x(t0))}
(7)
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(a) (b) (c) (d)

Fig. 2: Node classification: (a) application scenario where an ego vehicle (red) navigates an intersection having occluded areas (shaded in gray) and another
vehicle (blue). Intersecting nodes are represented as white points. (b) Relevant static node (circled blue point) and irrelevant static nodes (crossed-out blue
points) are classified according to the FRS of the dynamic nodes (shaded in yellow). (c) Relevant dynamic nodes (circled red points) and irrelevant dynamic
nodes (crossed-out red points) are classified according to the FRS of the dynamic nodes (shaded in yellow). (d) Obtained phantom vehicle zone and its
occlusion risk. The magenta carries the same meaning as in Fig. 1

Fig. 3: Dynamic phantom vehicle set (PVS): The starting position of the
dynamic PVS (red) is (ss, 0), and the end position is (se, 0) where both
positions are in the Frenet frame of PV. The forward reachable set (FRS) of
the collision point is shaded in yellow.

Unlike the PVZ, no nodes are available for obtaining the
FRS of PP. Therefore, we use the BRS of the route of the ego
vehicle to find the PPZ. The furthest PP (i.e., the edge of the
BRS of the PPs) from the route path of the ego vehicle would
be PP moving at maximum speed toward the route of the ego
vehicle along the shortest path. For a road such as that shown
in Fig. 4, the PPZ can simply be obtained as the rectangular
area along the route from which the observable polygon is
subtracted.

C. Simplified Reachability Quantification

Strongly motivated by [4], [5], we improved upon their
occlusion-aware risk assessment method by reducing the com-
putational load. Our approach, namely SRQ, quantifies the
reachability of dynamic PVS using a simple distribution model
as follows.

SRQ quantifies the reachability of the dynamic PVS using
the BRS with simple distribution model. Let Tpred be the
prediction horizon in which it is impossible to avoid a collision
with a suddenly appearing vehicle due to the computational
time of the autonomous driving stack, the maximum velocity
of PV vmax, the dynamic PVS, x be the initial position of a PV,
y be the final position of a PV, and g(y) amount of element
of BRS(y,Tpred), which represents the amount of PVs that
can reach y while satisfying below conditions. Here, PV is
assumed to be driving along the lane. Therefore, x and y are
defined as longitudinal positions in the Frenet frame of the
PV, which can be anywhere within the dynamic PVS and can
have random velocity. However, since no prior information is

Fig. 4: Phantom pedestrian zone (PPZ): The ego vehicle (red) drives along
other vehicles (blue) parked on the street. The PPZ (cyan) is derived from the
BRS (yellow rectangle) of the route (black) and the observable polygon (red).
The risk is represented as purple, and the darker the purple gets the riskier it
is. The risk of PPs beyond a threshold distance (blue line) is filtered out.

provided, the initial position of PV is assumed to be uniformly
distributed along the DPVS [ss, se] and the velocity of PV is
constant and uniformly distributed [0, vmax] like [5] did. The
function g(y) is defined in three intervals according to the
value of y: I1 := [ss, se], I2 := [se, ss + vmaxTpred], and
I3 := [ss + vmaxTpred, se + vmaxTpred]. Note that se − ss ≤
vmaxTpred always satisfies by the definition of the dynamic PVS
in Section IV-B.

Fig. 5 shows the BRS of PV depending on the value of y
that satisfies the aforementioned assumptions, as gray-shaded
polygon. Because the initial position and velocity of PV are
assumed to be uniformly distributed, the area of gray-shaded
polygon represents the PV that can reach y. Note that the
conditions x ∈ [ss, se], v ∈ [0, vmax], t ∈ [0,Tpred] should
be satisfied. The blue line represents the PV whose initial
positions are already in y, therefore they reach y at t = 0
regardless of their velocities. The red line represents the PV
that manages to reach y at t = Tpred. Because the velocity of
PV is assumed to be constant, y = x+ vt is always satisfied.
Using this condition, g(y) is easily derived. For convenience,
s is used instead of y because s is commonly used to represent
the longitudinal position in the Frenet frame. This is graphed
in Fig. 6 and is derived as follows:

g(s)

:=


1
2 (2vmax − s−ss

Tpred
)(s− ss), (s ∈ I1)

1
2 (2vmax − s−ss

Tpred
− s−se

Tpred
)(se − ss), (s ∈ I2)

1
2 (vmax − s−se

Tpred
)(se − (s− vmaxTpred)), (s ∈ I3)

(8)
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Fig. 5: The area of shaded in gray represents the g(y). Each graph represents a different interval of g(y) depending on the value of y.

Fig. 6: SRQ along the longitudinal position in the Frenet frame of the dynamic
PVS.

Here, (8) considers every possible motion of PV in every
position of the dynamic PVS without prior information.

D. Risk Assessment

The PVZ and PPZ obtained from the previous steps is then
applied to the risk assessment.

1) Static Phantom Vehicle: For the same reason why static
PVS is defined to encompass relevant S, PV in the static PVS
is assumed to be stopped, which is an most efficient and safest
approach to assess its risk.

2) Dynamic Phantom Vehicles: g(s) from SRQ represents
the amount of PV that can reach s. It can be interpreted
as the occluded area (i.e., dynamic PVS) may contain a
hidden vehicle with the ability to reach the position s, and
the probability to reach position s increases as g(s) increases.
Therefore, g(s) can be used to define an occlusion risk of
dynamic PVS.

In Section IV-B, we assumed that an actual vehicle always
exists in the dynamic PVS. The probability that an actual
vehicle exists in the dynamic PVS should also be considered.
Naturally, the probability increases if the dynamic PVS is
longer. Therefore, the occlusion risk should be defined to be
increased with a longer dynamic PVS. The occlusion risk o(s)
considering the probability of an actual vehicle existing in the
dynamic PVS is defined as follows:

o(s) := (se − ss) · g(s) (9)

However, assessing the risk of a dynamic PVS of which the
collision point is too far from the ego vehicle is unnecessary.
A more efficient approach is to filter out the dynamic PVS
of which the collision point is farther than static nodes or a

threshold distance, which is proportional to the current velocity
of the ego vehicle.

Because not every vehicle drives along the centerline of
a road, the lateral deviation of PVs should be considered,
which we assume can be represented as a normal distri-
bution of which confidence interval of lateral deviation d
(set to 90% for evaluation) is [−lkw/2, l

k
w/2]. Let w(d) :=

N(0, (
lkw

2×Z(1−0.5(1−d)) )
2). Then, the final distribution of the

risk of the dynamic PVS can be defined as follows:

r(s, d) := o(s)× w(d) (10)

The occlusion risk that are on the route of the ego vehicle are
illustrated in Fig. 2d.

3) Phantom Pedestrians: Unlike PVs, PPs can move in
any direction. Thus, the FRS of a PP for a given Tpred can
be assumed as a circle. However, PPs moving away from
the route of the ego vehicle do not have to be considered,
therefore the FRS can be assumed as a semicircle toward the
route. Without prior information, PP could be assumed to move
straight toward the closest point along the route. Since the
expected heading angle of PP would be straightforward to the
closest point along the route.

If the heading angle of the PP is fixed and with the
same assumption used in risk assessment of PVs, the risk of
PPs can be assessed in the same manner as for PV. Given
ss, se,Tpred, vmax, (9) can be used to assess the risk due to PPs.
However, assessing the risk of PPs too far from the current
position is unnecessary. Thus, such PPs should be filtered out
as we did for unnecessary PVs as illustrated in Fig. 4.

E. Driving Strategy

There are lots of driving strategies when driving through
an occluded area. One of them is to plan a trajectory that
reduces the occlusion risk [4], [5], [9] or plan the velocity
profile of a fixed path [7], [18]–[20]. The latter approach
was chosen because expert drivers rarely change their path
in common occluded scenarios such as intersections, roads
with street parking, and narrow alleys. In addition, tuning
the parameters for generating trajectories with and without
occlusion risk would be difficult or would not work in the
desired manner.

The occlusion risk obtained from SRQ can be used to control
the velocity of the ego vehicle on a fixed path. The occlusion
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Fig. 7: Velocity planning delay. The same velocity is used as the target velocity
and speed limit. The red square represents the speed limit due to occlusion
risk.

risk can be used directly as a cost function for optimization or
trajectory selection, lowering the target velocity, or adding a
speed limit condition.

Using the occlusion risk as cost for optimization can yield
a high computational load or even be infeasible because the
occlusion risk distribution is spread over a large area. Lowering
the target velocity is ineffective if the velocity is planned
for every time step, which will delay the time taken by the
ego vehicle to reach the target velocity as shown in Fig. 7
[21]. Adding a speed limit condition is an agile and effective
approach that allows the ego vehicle to be aware of exact
position where occlusion risk presents and guarantees that it
slows down where expected. In addition, the speed limit is
easily integrated with any planning algorithm by adding the
extra constraint v ≤ vspeed_limit or selecting a trajectory that
satisfies the speed limit among sampled trajectories.

1) Speed Limit: The speed limit voccspeed_limit and its position
pspeed_limit due to the occlusion risk are obtained as follows.
First, the points along the route of the ego vehicle where
an occlusion risk exists should be determined. Second, these
points should be clustered. Third, the weighted average of the
occlusion risk for these points should be obtained. Then, the
speed limit and its position can be defined as follows:

p
[c]
speed_limit :=

N [c]∑
k=1

r
[c]
k · p[c]k

r
[c]
total

(11)

where c ∈ C is the cluster of points with an occlusion risk,
p
[c]
speed_limit is the weighted average position of occlusion risk

for each cluster c, N [c] is number of points in cluster c, p[c]k is
the position of the point, r[c]k is the occlusion risk of the point,
and r

[c]
total is the total sum of the occlusion risk defined in (10)

for cluster c. Then,

voccspeed_limit

=


vocc

min−vocc
max

cth
max−cth

min
(r

[c]
total − cth

min) + vocc
max, (cth

min ≤ r
[c]
total ≤ cth

max)

vocc
min, (cth

max < r
[c]
total)

(12)

where cth
min, cth

max are the minimum and maximum occlusion
risk threshold and vocc

min, vocc
max are the minimum and maximum

Fig. 8: The test vehicle. It is remodeled from a Hyundai Solati and equipped
with several LIDAR, RADAR, and camera units.

speed limits when the occlusion risk is sufficient. voccspeed_limit

has a simple linear relation: it is low when the occlusion risk
is high and vice versa. vocc

min is for features of expert drivers
who take risk and preventing the ego vehicle from freezing
and never reaching the goal. If cth

min = 0 and vocc
min = vocc

max =
0, then our proposed method obtains similar results as over-
approximating methods.

2) Planning: Piecewise-jerk speed optimization (PJSO)
method is chosen [22] for the velocity planning, which involves
minimizing the cost function comprising the cost of ride
discomfort (acceleration, jerk). The speed limit was added as
a hard constraint to the optimization problem:

ẋ(t) < min(
√
alateral_max/κ(x)max, voccspeed_limit) (13)

where κ(x)max is the maximum curvature of the ego vehicle
and alateral_max is maximum lateral acceleration along the
fixed path. Together

√
alateral_max/κ(x)max represents the

approximate speed limit due to the curvature of the fixed path.

V. EVALUATION

We compared our method with three baseline methods in
various scenarios in the CARLA simulator and the real world
with the test vehicle in Fig. 8. Fig. 9 shows the five scenarios
implemented in CARLA. Furthermore, scenarios 1 and 5 were
evaluated in the real world. In CARLA, each scenario was
simulated 500 times with velocities randomly distributed in
[vroad

speed _limit, 1.5 × vroad
speed _limit] and pedestrian with velocities

randomly distributed in [4km/h, 6km/h]. Every method was
implemented using the AMD Ryzen 7 series clocked at 2.2
GHz.

A. Baseline Methods

1) Baseline 1: Baseline 1 used the path velocity decompo-
sition method for trajectory planning without occlusion-aware
risk assessment. The path is given by the route of the ego
vehicle, and the velocity profile was generated using PJSO.

2) Baseline 2: Baseline 2 was the same as baseline 1
but with the SOTA occlusion-aware risk assessment algorithm
proposed by [5]. Compare to baseline 2, our method was
more robust in various scenarios and had better computational
efficiency. However, the obtained occlusion risk for PVs was
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Fig. 9: Five scenarios in the CARLA simulator. Obstacles that induce occlusion
are represented as magenta polygon. The ego vehicle drives along the route
(red arrow) and counters occluded agent(OA) moving along its own route
(blue arrow).

(a) (b)

Fig. 10: Comparison between the proposed method (blue), baseline 1 (red),
and baseline 3 (yellow) in the CARLA simulator (Scenario 1): The horizontal
axis of graph (i.e., s) denotes the longitudinal position of the Frenet frame of
the ego vehicle. ath(4m/s2) is represented as magenta.

similar to our method, and [5] cannot be used in scenarios
including occluded pedestrians. Thus, we could only compare
the computational times of methods for scenarios without
occluded pedestrians.

3) Baseline 3: Baseline 3 also used the same planning
method (i.e., baseline 1) but with another SOTA occlusion-
aware risk assessment algorithm proposed by [3].

B. Metrics

We used five metrics to evaluate the methods: the discomfort
score, collision rate, traversal time, freeze rate, and average
computational time. The discomfort score from [5] was used
to represent the discomfort of passengers in the ego vehicle
and ath was chosen as 4m/s2:

Discomfort Score =
1

T

∫ T

0

max(0, |aego(t)| − ath)dt

The freeze is defined as a situation when the ego vehicle
doesn’t go any further because the occlusion risk presented in
front of the ego vehicle prevents the ego vehicle from moving
forward.

VI. RESULT

Compared with baseline 1, our proposed method decreased
the collision rate and the discomfort score by up to 6.14 times

(a) (b)

(c) (d)

Fig. 11: Comparison between the proposed method (blue), baseline 1 (red),
and expert drivers (yellow and green) in the real world (Scenario 1, 5): The
horizontal axis of graph (i.e., s) denotes the longitudinal position of the Frenet
frame of the ego vehicle. ath(4m/s2) is represented as magenta.

and 5.03 times, respectively, while it increased the traversal
time by 1.48 times. In addition, our method decreased traversal
time by up to 1.58 times, while it increased the collision rate by
0.4%, compared to baseline 3. In Table.I, baseline 1 showed the
shortest traversal time, while resulting in the highest collision
rate and discomfort score. This is because baseline 1 doesn’t
consider the sudden appearance of OAs. On the other hand,
baseline 3 was overcautious about OAs, resulting in the longest
traversal time or even freeze in heavily occluded scenarios,
while having the lowest collision rate and discomfort score.
However, the proposed method efficiently assessed occlusion
risk, resulting in a small increase in collision rate and discom-
fort score while decreasing considerable traversal time. The
proposed method performed better in scenarios 3 and 4 than
in scenarios 1 and 2. This is because the routes of the ego
vehicle in scenarios 1 and 2 included left/right turns, which
made the ego vehicle slow down before reaching the speed
limit due to occlusion. Therefore, the differences between the
velocity profiles with our method and with baseline 1 were
unclear.

Fig. 10 compared the proposed method, baseline 1, and
baseline 3 for scenario 1 in the CARLA simulator and Fig.
11 compared the proposed method, baseline 1, and expert
drivers for scenarios 1 and 5 in the real world. In Fig.10,
every method managed to safely stop and avoid collision with
a suddenly appearing agent. However, our method reduced
the velocity before entering the intersection which prevented
sudden deceleration and collision while baseline 1 didn’t
reduce the velocity and ended up with sudden deceleration. In
addition, baseline 3 was overcautious about OAs and reduced
the velocity more than our method before entering the
intersection. At the intersection, baseline 3 froze because of
its conservativeness. In Fig.11, expert drivers showed safe and
comfort driving without losing efficiency. Our method reduced
the velocity earlier than expert drivers, which made the driving
much comfortable but lost some efficiency. This trade-off
between driving comfort and efficiency is inevitable. Our
method can adjust the magnitude of the trade-off by tuning
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TABLE I: Performance Comparison Between the Proposed Method, Baseline
1, and Baseline 3 in the CARLA simulator

Scenario Collision Discomfort Traversal Freeze
rate score time rate

1 Proposed 6.00% 0.0251 20.63s 0.00%
Baseline 1 15.80% 0.0663 14.22s 0.00%
Baseline 3 0.00% 0,0237 31.54s 70.00%

2 Proposed 0.20% 0.0008 16.82s 0.00%
Baseline 1 0.60% 0.0009 15.00s 0.00%
Baseline 3 0.00% 0.0008 27.31s 0.60%

3 Proposed 1.40% 0.0009 12.97s 0.00%
Baseline 1 8.60% 0.0047 8.75s 0.00%
Baseline 3 0.00% 0.0008 21.63s 0.00%

4 Proposed 0.40% 0.0004 17.4s 0.00%
Baseline 1 1.20% 0.0020 11.1s 0.00%
Baseline 3 0.00% 0.0003 27.6s 0.00%

5 Proposed 10.00% 0.0065 13.78s 0.00%
Baseline 1 24.00% 0.0186 12.58s 0.00%
Baseline 3 0% 0.0012 30.3s 97.80%

TABLE II: Average Computational Times of the Proposed Method, Baseline
2, and Baseline 3 in the CARLA simulator.

Computation Time Table
Scenario # 1 2 3 4
Proposed 1.3029ms 1.5005ms 1.6467ms 2.6913ms
Baseline 2 26.2528ms 18.6865ms 32.0241ms 39.9024ms
Baseline 3 1.2693ms 1.3453ms 1.4322ms 2.3604ms

the parameters such as threshold distance and vocc
min. A video of

the experiments is available at https://youtu.be/TJo2pfhkxw4.

Table.II compares the average computational times of base-
line 2, 3, and our method. Even though we set baseline 2 to
Nk ≤ 4 ·104, which is a much smaller number of particles than
used by [5], our method reduced computational time by up to
20.15 times. Moreover, our method quantified the risk of PAs
while having a similar computational efficiency to baseline 3.

VII. CONCLUSIONS AND FUTURE WORK

We proposed the occlusion-aware risk assessment method
and planning strategy using SRQ that improves upon the work
of other authors [3]–[5], [10] by extending the risk assessment
to occluded pedestrians and reducing the computational load.
We evaluated our method in various scenarios and the results
showed that our method effectively decreased the collision rate
and discomfort score while greatly reducing the computational
time compared with the current state-of-the-art methods. Fu-
ture work will involve using sequential reasoning to remove
redundant PAs and improve the driving efficiency of the ego
vehicle by preventing conservative behavior.
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