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Diffusion Co-Policy for Synergistic Human-Robot
Collaborative Tasks

Eley Ng1, Ziang Liu2, and Monroe Kennedy III1,2

Abstract—Modeling multimodal human behavior has been
a key barrier to increasing the level of interaction between
human and robot, particularly for collaborative tasks. Our
key insight is that an effective, learned robot policy used for
human-robot collaborative tasks must be able to express a
high degree of multimodality, predict actions in a temporally
consistent manner, and recognize a wide range of frequencies of
human actions in order to seamlessly integrate with a human
in the control loop. We present Diffusion Co-policy, a method
for planning sequences of actions that synergize well with
humans during test time. The co-policy predicts joint human-
robot action sequences via a Transformer-based diffusion model,
which is trained on a dataset of collaborative human-human
demonstrations, and directly executes the robot actions in a
receding horizon control framework. We demonstrate in both
simulation and real environments that the method outperforms
other state-of-art learning methods on the task of human-robot
table-carrying with a human in the loop. Moreover, we quali-
tatively highlight compelling robot behaviors that demonstrate
evidence of true human-robot collaboration, including mutual
adaptation, shared task understanding, leadership switching,
and low levels of wasteful interaction forces arising from dissent.

Index Terms—Human-Robot Collaboration, Deep Learning
Methods, Imitation Learning

I. INTRODUCTION

MULTIMODAL behavior poses a key barrier to achiev-
ing effective human-robot coordination in collabora-

tive tasks. In collaborative tasks, decentralized agents execute
joint actions, which are defined in cognitive neuroscience
as “any form of social interaction whereby two or more
individuals coordinate their actions in space and time to bring
about a change in the environment” [1]. For such scenarios,
the ability to anticipate and predict partners’ actions is
crucial, as it can significantly enhance the capacity to plan
synergistic actions that contribute to the team’s success with
an understanding of the task (i.e. how the team’s actions
affects the dynamics). Collaborative table carrying, an exem-
plar of such tasks, demands on-the-fly mutual adaptation and
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Fig. 1: Framework for human-robot table-carrying with dif-
fusion co-policy. At time step t, the co-policy takes as input
the latest To steps of augmented state data and past human
actions, denoted as the augmented state-action pair sequence
S′
t, and outputs Ta steps of joint actions At. To generate the

output, the Transformer-based decoder architecture denoises
a sampled action sequence after K iterations through multiple
cross-attention layers. The robot extracts the robot action
sequence from At and executes it simultaneously with control
inputs from a human.

precise timing of movements. This paper introduces a new
approach to coordinating and executing behaviors seamlessly,
demonstrated through human-robot collaborative carrying.

Given the recent successes of denoising diffusion proba-
bilistic models (DDPM) in learning single agent behaviors
[2], [3], [4], we propose leveraging DDPMs in human-
robot collaboration, and demonstrate that the gains in model
expressivity enabled by DDPM are highly suited for tasks that
involve humans. Using human-human collaborative demon-
strations, we train a robot co-policy that conditions on past
observations and human actions to generate sequences of
future joint human and robot actions, and directly execute
the robot actions using receding horizon control. We show the
effectiveness of the diffusion-based co-policy in both simu-
lation and real robot experiments by highlighting compelling
collaborative behaviors exhibited by the robot and human.

Contributions: Our primary contribution is the application
of diffusion models for learning robot collaborative policies
that can synergize with a real, human partner. Our approach
utilizes a Transformer-based diffusion model to predict future
joint action sequences conditioned on past observations and
human actions, facilitating smooth, coordinated actions that
can be executed without further processing or use of hand-
engineered collaborative reward functions. We demonstrate
on the table-carrying task that this method outperforms state-
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of-the-art imitation learning approaches in both simulated
and real-world experiments with humans, achieving higher
task success rates and lower, wasteful interaction forces. By
leveraging the generative capabilities of diffusion models, we
have presented a significant step towards enabling effective
human-robot collaboration on continuous state, joint-action
tasks that require rapid mutual co-adaptation, behavior mul-
timodality, coordination, and shared task understanding via
learned, implicit constraints from human interaction.

II. RELATED WORK

Imitation learning: A multitude of work has been done in
improving the quality of policies trained with offline datasets,
particularly to account for multimodality. In particular, behav-
ioral cloning has made significant progress due to advances
in policy representation, by moving from explicit representa-
tions (e.g. LSTM-GMM [5], Transformers [6], normalizing
flows [7]) to implicit representations (energy-based models
[8], score-based models [9], diffusion models [4]), which
allow for the expression of multimodal outcomes. Chi, et. al.
showed that the diffusion policy representation can surpass
other policy representations in expressing multimodality over
a variety of tasks [4]. While these methods demonstrate the
generative power of diffusion models, their effectiveness in
scenarios that involve human behavior recognition remains
to be seen.

Human intent modelling for HRI: Prior works in human-
robot interaction (HRI) have generally fallen along a spec-
trum defined by the degree to which the human or the world
is modelled. Theory of Mind (ToM) methods, which ascribe
mental states to the human with whom the robot interacts,
generally involve learning human reward functions [10], [11],
learning user type [12], human motion prediction [13], or
latent strategies [14]. These approaches are predicated on the
hypothesis that human behavior follows a goal-directed pol-
icy, but are not necessarily structured to allow for multimodal
behaviors given an attribute. Contrary to ToM methods, black
box methods leverage data to directly train robot policies,
though many approaches are a mix of both. Recent advances
in HRI suggest that a promising approach for modelling
multimodal behavior is to leverage the expressiveness of
generative models for planning (e.g. variational autoencoders
[15], [16], [17], variational recurrent neural networks [18]),
or learning a joint action policy (e.g. Co-GAIL [19]).

In this work, we leverage diffusion models to learn a
co-policy, wherein we predict future action sequences of
both agents given sequences of past partner actions and
observations. Nikolaidis, et. al. [20] similarly investigates
the human-robot table carrying task, using a discrete state-
action formulation to model human adaptation during interac-
tion. While our continuous state-action formulation does not
explicitly model adaptation, it enables the robot to execute
dynamic behaviors alongside a human in real-time.

III. DIFFUSION CO-POLICY FORMULATION

This section describes the formulation of the collaborative
robot policy as a DDPM. First, we describe the collaborative

task and motivate the use of diffusion models, leading to the
formulation of a co-policy which incorporates human action
and scene conditioning for significantly improved human-
robot coordination on continuous state-action tasks.

A. Problem Setting

Consider a human-robot system wherein the dynamics of
the world state s ∈ S ⊂ Rn. Let ai ∈ A ⊂ Rm, i ∈ [H,R]
define the action space of the human H and robot R. At
any point in time t, the human can take action aHt jointly
with the robot action aRt , and the joint action is denoted by
the concatenated vector at = (aHt , aRt ). The state progresses
with the following dynamics:

st+1 = f(st, at) (1)

Provided with a control sequence of joint actions, a roll-
out starting from initial state s0 results in trajectory τ =
(s0, a0, ...sT , aT ).

Typically, the goal is to find a sequence of actions a∗
0:T that

maximizes the sum of rewards
∑T

t=0 r(st, at) via trajectory
optimization or reinforcement learning methods.

An instance of such a system is the collaborative carrying
task [18], a human and a robot both carry a table at opposite
ends, moving it from a start pose to a goal location while
avoiding obstacles. In this task, we assume full observabil-
ity of the state. The state is a 7-dim. vector of the 2D
table pose (px, py, θ) and its velocity in the world frame:
s = [px, py, cosθ, sinθ, ṗx, ṗy, θ̇]. Furthermore, the state
can be augmented by concatenating the following: the initial
pose of the table, the 2D goal position of the table, and a
6-dim observation of the map, which consists of a vector
concatenation of the world-frame positions of a maximum of
three obstacles in the map. We refer to this 18-dim augmented
state as s′. Perception was not the focus of this work, so
we used a low-dimensional vector representation; however,
future work can amend this representation to an arbitrary
number of local obstacles, or leverage visual information.
Each agent’s action is a 2D force applied at opposite ends of
the table; thus, the joint action is 4-dim.

B. Approach

While we could formulate the diffusion model for plan-
ning with RL using classifier-guided sampling [2], [21],
doing so would require hand-designing a collaborative reward
function. However, manually designing reward functions is
tricky and prone to over-specification, particularly for multi-
agent collaborative scenarios, where multimodal behaviors
arise from preference and various factors like diversity and
inconsistency. Despite promising directions in increasing the
nuance of learned reward functions [22], querying methods
would not be viable in interactive, long-horizon tasks like
collaborative carrying, as specifying the query itself would
be non-trivial.

Our key insight is that an effective, learned robot policy
used for human-robot collaborative tasks must be able to
express a high degree of multimodality, predict actions in a
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temporally consistent manner, and recognize a wide range
of frequencies of human actions in order to seamlessly
integrate with a human in the control loop. Given recent
empirical breakthroughs in the generative quality of diffusion
models [23], [24], we propose leveraging diffusion models to
enable coordination on long-horizon, continuous state-action,
human-robot collaborative tasks in novel settings during test
time by relying on demonstrations to capture interaction
dynamics.

C. Denoising Diffusion Probabilistic Models

DDPMs [25], [26], [23] are generative models that ap-
proach sample generation with an iterative denoising pro-
cess modeled by Langevin dynamics. Data generation via
diffusion works by denoising (reversing) a forward diffusion
process that iteratively adds noise to data until it resembles
as standard Gaussian. Specifically, samples from a standard
Gaussian prior, p(xK) = N (0, I) pass through K iterations
of noise reduction based on a fixed iteration-dependent
variance schedule (parameterized by σk, αk and γk), pro-
ducing K intermediate latent variables, xk−1, ..., x0, where
x0 is the noiseless output. The Gaussian noise predicted
is parameterized by a network, ϵθ(xk, k). Thus, to sample
xk−1 ∼ p(xk−1|xk), we compute:

xk−1 = αk

(
xk − γkϵθ(xk, k)

)
+ σkz (2)

where z ∼ N (0, I).
Clarification of notation: In this work, we use two different

time steps in subscript: k to denote the diffusion timestep, and
t to denote the prediction timestep, i.e. st,k is the tth state in
the kth diffusion step. Subscripts of noiseless quantities are
omitted, e.g. st. Subscripts of constants parameterized only
by k do not have a time-indexed subscript, e.g. ϵk.

D. Diffusion Co-Policy for Coordinating with Humans

We consider the task of modeling a robot co-policy as
learning a probabilistic model for the robot that infers fu-
ture sequences of joint human-robot actions, conditioned on
past states, map information, and past human actions. More
specifically, we seek to model the conditional distribution
p(at|s′t, aHt−1). Thus, we modify the DDPM in two ways: 1.
Conditioning on past human actions, which allows the robot
to derive an understanding of human strategy from past hu-
man action trajectories to aid future team predictions; and 2.
High-level goal conditioning, wherein the robot can condition
its predictions on where the carried table should land. Eq. 2
can be modified to model the conditional distribution:

at,k−1 = αk

(
at,k − γkϵθ(at,k, s′t, a

H
t−1, k)

)
+ σkz (3)

Eq. 3 can also be interpreted as a noisy gradient descent
step, with the gradient of the energy-based model (EBM),
∇Eθ(at, s

′
t, a

H
t−1), and learning rate γ:

at ← at − γ∇Eθ(at, s′t, a
H
t−1) (4)

In other words, ϵθ(at,k, s′t, aHt−1, k) predicts
∇Eθ(at, s′t, aHt−1), which approximates the action-score
gradient, i.e. ∇ log pθ(at|s′t, aHt−1). Song, et. al. [9]
provides further background on score-based models and
this relationship, but we summarize the implications.
By learning the parameters of the action-score gradient
(thus, the distribution pθ(at|s′t, aHt−1)), we can circumvent
approximating the intractable normalization constant,
a problem which pervades likelihood-based models by
affecting training stability and limiting model expressivity
[9]. By performing Stochastic Langevin Dynamics sampling
on this gradient field, the network can express arbitrary,
multimodal distributions, which is beneficial for learning
behaviors in human-robot interactive tasks.

E. Network Architecture

We adopt the Transformer-Based Diffusion architecture
from Chi, et. al. [4], which uses the minGPT [27] trans-
former decoder model for action prediction, and modify the
inputs as follows. The model takes as input a sequence of
To steps of augmented state-action pairs; more specifically,
these pairs consist of augmented states s′ and past human
actions aH . The model outputs a sequence of Ta joint action
steps denoised by the diffusion model. Noise-injected joint
actions, at,k, are tokenized and passed to the transformer
decoder, which uses a sinusoidal embedding to encode the
kth diffusion step inputs as well as k, which is prepended
as first token. Positional embedding is applied to conditional
inputs, s′t and aHt−1, which are converted to a sequence before
passed to the transformer decoder. The decoder then predicts
the noise corresponding to each input in the time dimension
for the kth iteration. A causal attention mask constrains
the attention of each action to itself and prior actions. The
predicted joint action sequence is constructed only after the
predicted noise is propagated through the noise scheduler
following the reverse diffusion process.

As expected [4], the 1D temporal CNN diffusion model
does not work as well as the Transformer-based model for
this task due to oversmoothing the action space. For the task
we focus on, the actions are inertial forces. Depending on the
user and playing style, people tend to apply short impulses
due to damping and oscillations when pivoting around ob-
stacles or correcting speed, making the Transformer-based
architecture useful for the table-carrying task.

F. Training

To train the diffusion model, unnoised joint action data,
at,0, and a value of k are randomly sampled, the latter of
which is then used to sample noise ϵk with variance σk.
ϵθ(at,k, s′t, aHt−1, k) then predicts the noise from the data
sample (with the noise added). The loss for the noise model
is:

L = ∥ϵk − ϵθ(s
′
t, a

H
t−1, at,0 + ϵk, k))∥22 (5)
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Fig. 2: Co-planning evaluation training (yellow box) and test
(green box) maps. Start poses and goal positions (green “X”s)
are shown, along with obstacle layouts (red boxes).

IV. EVALUATION

A key advantage of the Diffusion Co-policy is its gener-
ative quality; however, the model’s effectiveness on human-
robot collaborative tasks remains unexplored. The collabo-
rative carrying task itself poses several interesting questions
for evaluation: 1) Can it learn to effectively condition on
obstacles? 2) Can it learn to effectively condition on its
partner’s behaviors and shared task representation? 3) Can it
mutually adapt with real humans in test time? To attempt to
address these questions, we compare our diffusion co-policy
against several state-of-art imitation learning methods on a
suite of evaluations described in the following sections.

We select three learning-based methods for comparison:
• BC-LSTM-GMM [5]: Several works in HRI have lever-

aged a variant of this method, notably for the GMM
output layer. We adapt the implementation from [5] and
did not condition inputs on past human actions; doing
so led to worse performance on the task.

• VRNN Planner [18]: This sampling-based planner
autoregressively predicts team waypoints learned from
demonstrations in receding horizon and does not condi-
tion on human actions.

• Co-GAIL [19]: Co-GAIL learns collaborative behaviors
from demonstrations and maps human behaviors to a
latent space, which is then used to train a co-policy with
Generative Adversarial Imitation Learning (GAIL).

Some baselines do not incorporate map information. To
improve task performance, we trained them using the aug-
mented state representation, s′t. We also compare two variants
of the Diffusion Co-Policy: one with past human action
conditioning (CoDP-H), and the other without (CoDP).

A. Experimental Setup

We trained the diffusion co-policy, CoDP, and variant
(CoDP-H) to output joint actions at 10Hz, which were exe-
cuted on a simulator running at 30Hz, applying a zero-order
hold of 3 time steps for each planned. All other baselines
were trained to produce outputs at 30Hz. We conduct the

following experiments and user studies for the collaborative
carrying task to address the questions posed above.

1) Co-planning (in simulation environment): To test
each method’s ability to complete the task without a human
in the loop and learn a representation of the map without
the potential added benefit of human co-piloting corrections,
we varied out-of-distribution obstacle locations while keeping
the same distribution of initial and goal states from the
training data. We executed Ta = 8 actions sampled with
100 denoising steps before replanning, which takes roughly
0.3 sec on a NVIDIA 3090Ti GPU.

2) Human-in-the-loop evaluation (in simulation envi-
ronment): In this user study, the robot policies complete
the task with a real human-in-the-loop, in various out-of-
training-distribution settings. The human teleoperates the
orange circle agent in the simulation using joystick control.
The sampling scheme for the human-in-the-loop simulation
evaluation is different than the co-planning setting due to
having a human in the loop. To account for visual latency
and reaction time, we execute Ta = 1 sampled actions with
34 inference steps to allow for planning time of roughly 0.1
sec, and zero-order hold each planned action for 3 time steps
before executing the next planned action, resulting in low
visual latency in the simulator.

Here, we study the effect of the policy or planning method
on success rate (i.e. the percentage of trials in which the
user succeeds in completing the task with the robot). Our
hypothesis is that the diffusion policies will enable the robot
to complete the task with a human at a higher success
rate than the other methods, particularly since the diffusion
policies are generating multimodal, multi-step predictions.

3) Human-in-the-loop evaluation (in real environment):
In this user study, a human uses a joystick to teleoperate
an Interbotix Locobot that is pin-connected via a rigid rod to
another Locobot, operated by a policy or planner. We use the
same policies trained in simulation and deploy them in the
real environment in zero-shot sim-to-real transfer. We also
use the same sampling scheme from the human-in-the-loop
evaluation in simulation. To address the sim-to-real gap of
the state space, we mapped a space in the experiment room
and scaled it to the simulation environment coordinates, using
data from motion capture. For this experiment, we consider
two initial configurations: in the first, which we denote as
“Human Front”, the human is placed closest to an obstacle
such that they are inclined to make the decision to go above or
below the obstacle before the robot; and in the second, which
we denote as “Robot Front”, the robot is placed closest to
an obstacle, implicitly forcing the robot to make the same
decision before the human.

In this study, we investigate the robustness of the robot’s
policy or planner to its initial configuration by determining
whether there is a significant interaction effect of those two
factors. Our hypothesis is that robots running the diffusion
methods should not see an interaction effect with initial
configuration since diffusion methods can express a high
degree of multimodality.
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(a) Mutual adaptation and shared
task understanding with CoDP-
H.

(b) Leadership switching with
CoDP-H.

(c) No human action condition-
ing (CoDP).

(d) Learned partner behaviors
with human action conditioning
(CoDP-H).

Fig. 3: Qualitative Observations: (a) Mutual adaptation and
shared task understanding between human (orange circle)
and CoDP-H agent (blue triangle). (b) Leadership switch-
ing with CoDP-H. (c) Without conditioning on past human
behavior, robot behavior is notably affected: the human be-
comes de-facto leader as the robot displays passive behavior.
(d) With conditioning on its partner’s past actions, the robot
actively takes the lead, and displays interesting leadership
switching behaviors via pivoting.

B. Dataset and Map Details

1) Training data: The training dataset consists of 376
human-human demonstrations (179,993 environment inter-
actions) on the collaborative carrying task collected by 5
distinct pairs of people on a total of 36 possible configura-
tions. Due to the added complexity of obstacle representation
learning, cost of demonstration collection, and requirement of
hand-engineered obstacle placement to allow for multimodal
behaviors, we used up to a maximum of three obstacles
in each training demonstration, with each initial, goal, and
obstacle location illustrated in Fig. 2a. Note that while many
offline dataset learning methods [28] augment data with
trained RL policies, planners paired with PID controllers,
etc., we recognize that such augmented data could skew
our dataset distribution, particularly if these methods do
not contain demonstrations of multimodal, sub-optimal, and
inconsistent, yet “human-like” behaviors. For example, RRT
planners do not exhibit the same behaviors (e.g. rotations,
distance from obstacles) as human demonstrators on the
collaborative carrying task [18]. The demonstration data in
this work contains multimodal behaviors, as seen in Fig. 4.

2) Test maps: For the co-planning evaluation, we eval-
uated on all possible combinations of unseen map settings
outlined in Fig. 2b. For the human-in-the-loop simulation
evaluation, we sampled from a subset of unseen maps, goals,
in addition to different initial orientations. For reference, π is
the initial table orientation depicted in Fig. 2, and we included
four total initial orientations in our sampling, i.e. [0, π

2 , π,
3π
2 ].

We then evaluated on the same sampled subset per method.

On the real robot evaluation, we used a one obstacle unseen
map with two initial orientations: robot facing the obstacle
first, and human facing the obstacle first.

Method Unseen Maps
Success (%)

Test Holdout Maps
Success (%)

CoDP-H 40.48 / 32.54 78.57 / 77.38
CoDP 32.14 / 28.97 72.62 / 67.86

BC-LSTM-GMM[5] 19.05 / 17.06 60.71 / 55.16
Co-GAIL[19] 25.00 / 22.22 47.62 / 39.28

VRNN[18] 22.62 / 19.44 22.62 / 20.24

TABLE I: Co-planning Results. Reported success rates for
each method as (max performing seed / average performance
over 3 random training seeds) over a total of 84 randomly se-
lected test holdout maps (Fig. 2a) and 84 novel configurations
on unseen maps (Fig. 2b). Our results show that the diffusion
co-policy conditioned on past human partner actions (CoDP-
H) outperformed all state-of-art imitation learning methods
and baselines on the co-planning evaluation.

C. Simulation Results: Key Findings
1) Co-planning: We subjected the co-policies to the col-

laborative carrying task on maps seen in training, as well as
maps unseen in training. CoDP-H consistently outperforms
other baselines on all maps tested (Table I). Considering the
few maps and obstacle configurations used during training,
methods leveraging diffusion models exhibited unexpectedly
high performance on maps with novel obstacle locations,
suggesting that the diffusion co-policy was able to learn
obstacle representations efficiently.

2) Human-in-the-loop trials: The diffusion methods out-
perform other baselines on the human-in-the-loop evaluation
on task success rate (Table II). We validate this trend by
conducting a one-way repeated measures ANOVA to examine
the effect that the methods had on task success rate. Results
showed statistically significant differences in success rate
(F(4, 16) = 11.65, p < .001). We ran a post-hoc analy-
sis with Tukey HSD corrections for multiple comparisons,
which showed the human-in-the-loop performance of the
diffusion methods to be significantly different from that of
Co-GAIL, BC-LSTM-GMM, and VRNN, and all contrasts
with p < .0001. The contrasts support our hypothesis that
using a diffusion network for the robot policy yields higher
success rates on the collaborative human-robot task, as it
surpasses other methods at predicting multimodal behavior.
Fig. 4 shows heat maps of the state visitation frequencies
for the human-in-the-loop simulation evaluations for each
policy or planner, as well as rollouts from the human-human
demonstration dataset. Note in the test maps that obstacles
were placed in locations where the table frequently visited
in the training data. This suggests that the diffusion methods
are able to learn a shared task representation and perform
well on unseen maps with a real human partner.

Table II also demonstrates the planning time disadvantage
of diffusion-based methods; yet, despite planning less fre-
quently and requiring interpolation methods, diffusion-based
methods achieve higher success rate on the task.
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Fig. 4: Heat map visualization of state visitation frequencies, from left to right, of human-human demonstration data for
training the models, and the human-in-the-loop simulation evaluations on novel, unseen maps for each policy or planner. In
each scenario, one to three obstacles are placed in the the potential obstacle locations shown as red squares for each map.

Fig. 5: Comparison of interaction forces from the human-human demonstrations and simulation evaluations with a human-
in-the-loop on novel, unseen maps. For each trajectory, we binned the interaction force magnitudes (see color-map bar for
bins) at each location in the discretized map, then normalized the magnitudes across all trajectories. Each map shows 1− 3
obstacles at potential obstacle locations (red squares). The diffusion methods show overall lower magnitudes of interaction
forces across all human-in-the-loop evaluations in simulation.

Method Success
(%)

Time
(s)

Plan Time
(ms)

CoDP-H 68 ± 2.1 32.3 ± 0.2 93.5 ± 4.0
CoDP 61 ± 3.7 31.0 ± 0.1 87.0 ± 3.8

BC-LSTM-GMM[5] 36 ± 1.4 22.3 ± 0.5 0.745 ± 0.004
Co-GAIL[19] 37 ± 1.9 23.9 ± 0.9 0.267 ± 0.003

VRNN[18] 35 ± 3.6 15.8 ± 1.4 18.52± 0.02

TABLE II: Human-in-the-Loop Simulation Results. The
max performing model seed was used for each robot planner
or policy, which played with human subjects (N = 5) for a
total of 60 randomly selected configurations on unseen maps
(Fig. 2b). Standard error (SE) is reported for all measure-
ments, including success rate (%), time to completion (s)
for successful trajectories, and average time for the model
to plan (ms). Our results show that the diffusion co-policy
conditioned on past human partner actions (CoDP-H) outper-
formed all baselines for the human-in-the-loop evaluation in
simulation.

D. Interesting Behaviors in Human-in-the-loop Evaluation

Diffusion co-policy demonstrated interesting collaborative
behaviors on novel configurations in simulation evaluation.
We highlight them qualitatively as follows:

1) Mutual adaptation and shared task understanding: Fig.
3a demonstrates an instance of mutual adaptation as well as
shared task understanding. Initially, both agents simultane-
ously choose different strategies: the robot (blue triangle)
applies a downward force while the human (orange circle)
applies an upward force, resulting in an in-place moment on
the table. The human leads, while the robot maintains aware-
ness of obstacles and rotates to avoid them, demonstrating
shared task understanding between human and robot. These
behaviors lend insight into the better performance of CoDP-H
in human-in-the-loop evaluations.

2) Leadership switching: Fig. 3b demonstrates an instance
of leadership switching, which occurs several times over the

course of the trajectory. The human starts leading by moving
below the obstacle, but the robot takes over by maintaining
its lead in front. Both agents approach the goal past the final
obstacle. This demonstrates the ability to switch roles while
maintaining task understanding.

3) Learning partner behaviors: Conditioning on past part-
ner actions allows the robot to develop a better understanding
of the task and its partner’s intentions. Without this past
action conditioning, the robot acts passively, leaving the
human to lead (Fig. 3c). Fig. 3d shows that the CoDP-H
robot is capable of pivoting, a proactive behavior, since it has
learned to associate past partner actions with observations.
This behavior was not seen in the demonstration data.

4) Low interaction forces: Stretching or compressing may
occur during transport of an object, indicating non-zero
interaction forces [29]. Interaction forces do not contribute
to motion, and can lend insight into periods of collaboration,
disagreement, and other decision points in the trajectory.
Fig. 5 shows a 2D heat map of normalized interaction force
magnitudes over all trajectories for each method. Interaction
forces less than 0.25 are generally negligible, and all human-
human demonstrations displayed a negligible frequency of
non-zero interaction forces. Forces between 0.25 - 0.75 may
indicate a decision point or dissent; those above 0.75 are
strong indicators of dissent or human corrective action. Fig.
6 shows interaction forces across an example map config-
uration for each method with a human in the loop. Across
all methods, the diffusion policies display lower interaction
forces over most areas in the maps.

E. Real robot evaluation

Table III shows that the diffusion methods outperform the
other baselines, except for BC-LSTM-GMM in the “Robot
Front” case. While BC-LSTM-GMM appears to outperform
the diffusion methods in the “Robot Front” case, it performs
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Fig. 6: Visualization of interaction forces over rollouts on a sample map configuration played between each robot policy or
planner (blue triangle) with a human (orange circle) for evaluation in simulation, with the goal (yellow region) and obstacles
(red squares) shown. Closer to zero is better, as demonstrated in the human-human exemplar. The diffusion policies show
overall lower (in magnitude) interaction forces over the course of the trajectory.

Method Human Front
Success (%)

Robot Front
Success (%)

CoDP-H 75.0 ± 4.6 91.7 ± 3.4
CoDP 66.7 ± 4.3 91.7 ± 3.4

BC-LSTM-GMM[5] 33.3 ± 4.3 100.0 ± 0.0
Co-GAIL[19] 66.7 ± 4.3 50.0 ± 7.4

VRNN[18] 75.0 ± 4.6 75.0 ± 7.0

TABLE III: Human-in-the-loop Real Robot Experimental
Results. We tested on a real-robot scenario with a single
centered obstacle (see bottom unseen map in Fig. 2), in two
initial configurations: one with the human facing the obstacle
first (“human front”), and the other with the robot facing
the obstacle first (“robot front”). Average success rate (%)
is reported with std. dev. over subjects (N = 6), with a
total of 12 trajectories per initial configuration. BC-LSTM-
GMM outperforms CoDP-H in the robot front setting, but
does significantly worse in the human front setting.

poorly in the “Human Front” case. BC-LSTM-GMM prefers
a route below the obstacle; if the human partner happens to
adapt to the robot or pick the same route, this tends to lead
to success. However, unlike CoDP-H, it is unable to adapt
to move above the obstacle when necessary to achieve task
success, as seen in Fig. 7. This suggests a significant inter-
action between the policy or planner method and the initial
configuration of the robot with respect to the obstacle, which
is confirmed by results from a two-way repeated measures
ANOVA for interaction effects, F(4,20) = 3.170, p = 0.036.
Main effects on task success rate were also significant for ini-
tial configuration, F(1, 5) = 7.857, p = 0.038, and for method,
F(4, 20) = 3.152, p = 0.037. We further investigated the
interaction effect of the initial configuration for each method.
Adjusted P-values using Holm multiple testing corrections
show that the effect of initial configuration on success rate
was significant for BC-LSTM-GMM (p = 0.001), but not for
the other methods. This supports our hypothesis, and suggests
that BC-LSTM-GMM is affected by the initial configuration
and therefore less robust to multimodal outcomes that arise
from human-robot interactions. While the other methods do

not show significant interaction effects, they perform poorly
in the task compared to the diffusion methods.

V. CONCLUSION

In this work, we explore using action predictions from
diffusion models to plan collaborative actions that synergize
well with real humans in the loop. We show that a co-
policy developed with a Transformer-based diffusion model
and conditioned on past human actions can not only plan
multimodal action sequences with real humans-in-the-loop
to achieve high success rates, but also qualitatively display
compelling collaborative behaviors in novel, out-of-training-
distribution settings, including mutual adaptation, shared task
understanding, and leadership switching.

Our study has several limitations. The time required to gen-
erate a sample with the diffusion policy is longer than other
methods. We also faced several limitations in the real robot
experiments, including physical capabilities of the robots,
physical space constraints, and human subject variance. To
extend this method for a co-manipulation task similar to
[30], a dataset with tactile feedback from both agents co-
manipulating a table would be highly beneficial for the
learned task representation. Despite limitations in this work,
the diffusion co-policy has demonstrated the significance
of an expressive policy for human-robot collaboration, i.e.
one that can capture a high degree of multimodality, predict
actions in a temporally consistent manner, and recognize a
wide range of frequencies of actions in order to seamlessly
integrate with a human.
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