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Abstract— Local geometric information, i.e., normal and
distribution of points, is crucial for LiDAR-based simulta-
neous localization and mapping (SLAM) because it provides
constraints for data association, which further determines the
direction of optimization and ultimately affects the accuracy
of localization. However, estimating normal and distribution of
points are time-consuming tasks even with the assistance of
kdtree or volumetric maps. To achieve fast normal estimation,
we look into the structure of LiDAR scan and propose a ring-
based fast approximate least squares (Ring FALS) method. With
the Ring structural information, estimating the normal requires
only the range information of the points when a new scan
arrives. To efficiently estimate the distribution of points, we
extend the ikd-tree to manage the map in voxels and update
the distribution of points in each voxel incrementally while
maintaining its consistency with the normal estimation. We
further fix the distribution after its convergence to balance the
time consumption and the correctness of representation. Based
on the extracted and maintained local geometric information,
we devise a robust and accurate hierarchical data association
scheme where point-to-surfel association is prioritized over
point-to-plane. Extensive experiments on diverse public datasets
demonstrate the advantages of our system compared to other
state-of-the-art methods. Our open source implementation is
available at https://github.com/tiev-tongji/LOG-LIO.

I. INTRODUCTION

The performance of LiDAR (-inertial)-based simultaneous
localization and mapping (SLAM) system depends heavily
on the registration between the LiDAR scan and the map,
i.e., finding the correspondence between them based on the
similarity of the local geometric information and then mini-
mizing their distance. Local geometric information includes
attributes that can represent the position, shape, and other
characteristics of the local surface where a point is located.

The conventional method for estimating local geometric
information is to evaluate the smoothness of the input scan
and to locally approximate the map with geometric primitives
[1]. However, accurate estimation of local geometric infor-
mation requires the retrieval of neighborhood information in
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a dense point cloud, but for LiDAR-inertial odometry (LIO)
systems, this results in a huge computational burden even
with the help of kdtree or volumetric maps.

Accurate and fast estimation of local geometric informa-
tion has gained increasing attention in recent studies [2]–
[6]. Among them, the normal and the distribution of points
are two representative attributes, since the former indicates
the tangent plane of the local surface, and the latter implies
the average position and shape of the point cloud sampled
from the local surface. However, current LIO systems seldom
incorporate the real-time estimation of the normal and the
distribution of points, which hampers their pose estimation
performance.

This paper presents LOG-LIO, a robust and accurate LIO
system focusing on the real-time estimation of the normal
of LiDAR scan points and the distribution of map points,
and their rational utilization. Inspired by [7] and [8], we
look into the structure of a LiDAR scan and propose a
Ring-based fast approximate least squares method, namely
Ring FALS. We project point cloud onto the range image
to pre-build a lookup table, which represents the structural
information of the specific LiDAR. With the arrival of a new
scan, only the range information of the points is needed to
estimate the normal. We incrementally update the distribution
of points for each voxel in the map while maintaining its
consistency with the normals. To balance time consumption
and correctness of representation, we manage the map on
the extended ikd-tree and further fix the distribution after it
converges.

Similar to the FAST-LIO series [9], [10], we directly
associate scan points with voxels on the map after distortion
correction. For scan points that satisfy visibility and con-
sistency checks based on normals, we devise a robust and
accurate hierarchical data association scheme considering the
distribution. The poses are optimized by integrating the IMU
measurements as initial estimates and then using an error-
state iterative Extended Kalman filter (iEKF) [9] to minimize
the multi-scale point-to-surfel and point-to-plane distances.

The main contributions of this work are as follows:
• Ring FALS, modified from FALS, a normal estimator

that utilizes the structural information of LiDAR scan
can meet the real-time requirements of the LIO system.

• A robust and accurate hierarchical data association
scheme considering the distribution of points within
map voxels where point-to-surfel is prioritized over
point-to-plane and large-scale surfel over small-scale
surfel.

• Extensive experiments on public datasets demonstrate
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the advantages of our LIO system compared to
other state-of-the-art methods. To benefit the com-
munity, our implementation of this work is open-
source at https://github.com/tiev-tongji/LOG-LIO, and
we also open-source Ring FALS as an indepen-
dent normal estimation tool at https://github.com/tiev-
tongji/RingFalsNormal.

II. RELATED WORKS

A. Point Cloud Normal Estimation

The most commonly used method to obtain surface nor-
mals from point cloud is the least square estimation based on
the neighborhood search due to its ease of implementation
[11]. However, the least squares-based method is computa-
tionally expensive for LIO systems.

[7] compares the complexity of least squares approaches
and proposes FALS, which simplifies the least squares loss
function to completely avoid the computation of the co-
variance matrix for each point. [7] also reformulates the
traditional least squares solution to estimate the normal by
calculating the derivatives of the surface from a spherical
range image (SRI). However, the number of multiplications
for normals computation of SRI is greater than FALS.

Rather than least square-based solution, 3F2N [8] per-
forms three filtering operations on the inverse depth image
to estimate the normals, which has the comparative perfor-
mance as FALS, but its efficiency and accuracy are strongly
influenced by the filter selection.

Inspired by [7] and [8], we propose Ring FALS. We pre-
build a lookup table which represent the structural informa-
tion for the specific LiDAR. Compared to FALS, Ring FALS
further simplifies the projection of each LiDAR scan with the
assistance of ring index, while preserving accuracy.

B. Distribution of Points Estimation

The distribution of a point is represented through its
3D coordinates and the covariance matrix computed by
its neighboring points. [12] proposes the generalized ICP
(GICP) algorithm, which takes into account the locally
planar structure of points in a probabilistic model and then
minimizes the distance between distributions. But searching
neighboring points to compute the covariance matrix is too
time-consuming for LIO systems.

LOAM [1] does not estimate the distribution of points,
but performs Eigen analysis on the associated map points to
determine whether its local geometry is a line or a plane.
However, the coordinates of the sparse map points cannot
accurately represent the local geometric information, which
leads to inaccurate constraints for the registration.

DLO [2] registers point cloud using GICP to minimize the
plane-to-plane distance, which is derived from the covariance
matrix of each point. It assumes that the covariance of
submap can be approximated by concatenating the normals
from keyframes, and the covariance of points is only com-
puted once when the scan is acquired. However, such a
normals stitching method cannot accurately reflect the local
geometric information of the point cloud, which ultimately

affects accuracy. LOCUS 2.0 [4] extends the work of LOCUS
[5], which constructs covariance matrices for GICP-based
registration based on the pre-computed normals, but how to
pre-compute normals is not elaborated in their paper.

Wildcat [6] fits ellipsoids based on the coordinates and
timestamps of the clustered points. The ellipsoids represent-
ing the distribution of points are further used to generate
surfels. SLICT [3] further proposes an octree-based global
map and updates the distribution of points within each voxel
incrementally. It obtains large-scale distributions by merging
multiple voxels to generate surfels in multi-resolution.

Inspired by the above methods, we extend ikd-tree to
maintain the distribution of points in each map node incre-
mentally, and fix the distribution after its convergences.

C. LiDAR (-Inertial) Odometry

LOAM [1] has inspired many LiDAR SLAM systems due
to the low coupling of system modules and the rational use
of point cloud geometry attributes. However, the lack of
effective map management and the high time consumption
required for optimization can degrade the performance of the
system.

LIO-SAM [13] proposes a framework based on keyframes
and local maps, which optimizes poses in a factor graph.
However, LIO-SAM builds sub-maps for input scans by
simply merging point cloud of surrounding keyframes, which
is a time-consuming process when the number of points is
large compared to incrementally maintaining maps.

FAST-LIO [9] employs point-to-plane correspondence and
the iEKF to directly register the LiDAR scan and the map.
It presents a new formula to compute the Kalman gain,
and the computation load only depends on the dimension of
state dimension. FAST-LIO2 [10] maintains the map by an
incremental kdtree data structure, namely ikd-tree, to further
improve efficiency.

In this paper, we adopt the iEKF to optimize poses by
directly registering the LiDAR scan and the map, but with
a different data association scheme. By incorporating real-
time normal and distribution of points estimation, we can ef-
ficiently construct surfels in multi-scale, which represent the
local surface geometry more accurately than other geometric
primitives, e.g., plane. We prioritize associating large-scale
surfels over small-scale surfels since large-scale surfels are
modeled with more points and are insensitive to noise.

III. PRELIMINARY

A. Notation

We now define notations and frames that we used through-
out the paper. We consider W as the world frame and Ik, Lk

as the IMU and LiDAR frames, related to the k-th LiDAR
scan at time tk, respectively. aTb ∈ SE(3) to be Euclidean
transformation take 3D points from frame b to frame a,
which is consisted of rotation aRb ∈ SO(3) and translation
atb ∈ R3. nr denotes the normal from Ring FALS and ed
is the eigenvector corresponding to the smallest eigenvalue
of a distribution (see Section III-E).

https://github.com/tiev-tongji/LOG-LIO
https://github.com/tiev-tongji/RingFalsNormal
https://github.com/tiev-tongji/RingFalsNormal


(a) LiDAR observation model (b) multi-scale surfel association

Fig. 1. Illustration of the LiDAR observation model and multi-scale surfel
association. (a) The magenta line indicates the ray of the red point. The
eight points are the neighborhoods that Ring FALS uses to estimate the
normal of the red point. (b) The orange ellipses represent the large-scale
surfel merged by the five blue small-scale surfels.

B. LiDAR Observation Model

In practice, LiDAR obtains the 3D coordinates of a point
by combining bearing and range measurements of the target
surface [14], [15], as shown in Figure 1(a). The LiDAR
observation model is as follows:

pi = rivi = ri

 cos θi cosφi

sin θi cosφi

sinφi

 (1)

where ri is the range, θi the azimuth and φi the vertical angle
of the target point. vi represents the horizontal and vertical
structural information of the point relative to the LiDAR.

For a spinning LiDAR, we denote the horizontal resolution
as Hres = 2π/m, where m is the constant number of points
within each ring. Denoting the structural information si =
[cos θi sin θi cosφi sinφi]

T and then si can be arranged
into a lookup table T based on the ring index and azimuth
relative to the LiDAR as follows:

si = T (rowi, coli) (2)

where rowi represents the ring index of pi and coli =
round(θi/Hres).

C. Least Squares Normal Estimation

Given a subset of n 3D points pi, i = 1, 2, ..., n of
the surface, least squares finds the normal vector n =
(nx, ny, nz) and the scalar d that minimizes Equation (3).

e =

n∑
i=1

(pT
i n− d)2 (3)

The closed form solution of the normal n is the eigenvector
corresponding to the smallest eigenvalue of the covariance
matrix in Equation (4).

M =

n∑
i=1

(pi − p)(pi − p)T (4)

with p = 1/n
∑n

i=1 pi.

D. Distribution of Points

The distribution of points within a voxel can be repre-
sented by its mean position p and the covariance matrix M ,

as shown in Equation (4). And M can be further simplified
as follows:

M = Sn − 1

n
PnPT

n (5)

where Sn denotes
∑n

i=1 pip
T
i and Pn denotes

∑n
i=1 pi. Due

to the symmetric nature of M , it is only necessary to record
the six elements in its upper right corner.

The accurate representation of the distribution of points
requires a large number of points. Due to limited resolution
and occlusion, point cloud from multiple locations must be
accumulated incrementally to obtain high quality maps. For
newly incorporated m points in a voxel, their Sm, Pm need to
be calculated. Subsequently, the distribution of points within
this voxel can be updated by [16]:

p = (Pn + Pm)/(n+m)
M = Sn + Sm − 1

n+m (Pn + Pm)(Pn + Pm)T
(6)

E. Surfel

We define the planarity ρ within a voxel similar to SLICT
[3], and further introduce γ as following:

ρi = 2(λ2 − λ1)/(λ1 + λ2 + λ3)
γi = λ2/λ1

(7)

where λ1, λ2, λ3 are the eigenvalues of covariance matrix
M with λ1 < λ2 < λ3. We define a surfel has ρi greater
than 1.0 and γi greater than 100. A larger ρi implies that the
distribution of the sampled points is flatter on the surface,
and a larger γi indicates that the distribution is less close
to a linear geometry. If the above criteria are satisfied, the
surfel is represented by the mean position of points p and the
normal ed, where ed is the eigenvector corresponding to λ1.
Multiple small-scale surfels can be merged into a large-scale
surfel by merging the distributions following Equation (6).
And the merged distribution still needs to satisfy the criteria
in the above to be considered as a large-scale surfel.

IV. RING FALS NORMAL ESTIMATOR

We first revisit FALS [7]. In FALS, Equation (3) is
reformulated to obtain:

ẽ =

n∑
i=1

(pT
i ñ− 1)2 (8)

where ñ is defined up to a scale factor. Substituting Equa-
tion (1) gives:

ẽ =

n∑
i=1

r2i (v
T
i ñ− r−1

i )2 (9)

where ri is the range and vi implies the bearing information
of the target points related to the LiDAR.

It can be assumed that the range of points within a small
region are similar, thanks to the high-resolution LiDAR.
Therefore, r2i can be removed from Equation (9) to obtain
an approximation:

ê =

n∑
i=1

(vT
i n̂− r−1

i )2 (10)



where n̂ is the approximate normal, and it has the closed
form solution n̂ = M̂−1b̂ where M̂ =

∑n
i=1 viv

T
i and

b̂ =
∑n

i=1 vi/ri. The matrix M̂−1 depends only on the
constant structural information v, independent of the range
r. Hence, the matrix M̂−1 can be pre-computed as a lookup
table.

To obtain the neighborhood of vi for computing M̂−1

and b̂, FALS projects the LiDAR scan points onto an SRI
following Equation (1). The computation of M̂−1 and b̂
requires that each pixel in the SRI has a corresponding
measurement, hence an interpolation is needed since the
LiDAR scan points only occupy sparse pixels. This is in
turn a time-consuming process.

Different from FALS, Ring FALS establishes a fast map-
ping following Equation (2) based on the structural infor-
mation of the LiDAR. To avoid the costly vacant pixel
interpolation, we create a table with the number of rows
corresponding to the number of rings and the number of
columns matching the number of points within each ring. The
table is created solely based on the provided measurements,
eliminating the necessity for interpolation. Thus Ring FALS
speeds up the projection step in FALS and circumvents the
time-consuming neighborhood search in many LIO systems,
facilitating dense normal estimation for LiDAR scans.

Note that there are instances where the assumption of Ring
FALS may not hold. Such cases include scenarios like wall
edges, occlusions where the range of points varies signif-
icantly in a small area, and situations with missing range
measurements. To address this, we flip all the backfaced
normals and then apply image median blurring to smooth
the normals and enhance their consistency. For points whose
normal direction still differs significantly from the associated
map points, we identify them as outliers in the optimization
process through visibility and consistency checks, as elabo-
rated in Section V-B.2.

V. SYSTEM DESCRIPTION

The pipeline of LOG-LIO is shown in Figure 2. For a
new input scan, we first estimate the normal of the points.
The association is then performed between the undistorted
point cloud and the map according to their local geometric
information. We incorporate the measurements of IMU and
optimize the poses of the body via iEKF. After optimization,
new points are added to the map managed by the extended
ikd-tree, and the distribution within a voxel is incrementally
maintained.

Our system takes the IMU frame as the body frame, where
the system state x can be written as:

x =
[WRT

I
WpT

I
WvT

I bT
ω bT

a
WgT

]
(11)

whereWRT
I , WpT

I and WvT
I are the orientation, position

and velocity of IMU in the world frame (i.e., the first IMU
frame), bT

ω and bT
a are gyroscope and accelerometer bias

respectively, WgT is the known gravity vector in the world
frame.

A. Data Pre-processing

LOG-LIO uses Ring FALS (Section IV) to to estimate the
normal for each input point, denoted as nr. Subsequently,
voxel grid downsampling and backward propagation based
on IMU measurements are used for point reduction and
distortion correction, respectively.

B. Data Association

At the beginning of data association, the IMU measure-
ments are integrated from the previous frame to predict the
pose x̂k. Using this prediction, each new input point Lpi is
transformed to the world frame Wpi =

W T̂I
ITL

Lpi. Then,
data association is performed in three consecutive steps:

1) Initial Correspondence: For a query point Wpi, we
first search for its k nearest map points corresponding to k
nearest map voxels.

2) Visibility and Consistency Checks: The candidate as-
sociated map points may not be visible to the LiDAR if
the angle between the normal of the map point and the ray
(vector from the query scan point to the LiDAR center) is
greater than 90 degrees. Such a case usually occurs indoors,
where the two planes of an object (e.g., a wall) are close to
each other, which is referred to as the double-side issue [17].
This incorrect correspondence is eliminated directly.

The consistency of the associated map points is evaluated
by computing the average angle between the normal of the
query point and the normals of the associated map points. If
the average angle is larger than a threshold α (α = 60◦), we
consider it an inconsistent association and discard it.

3) Hierarchical Association: For query points satisfying
visibility and consistency checks, a hierarchical association is
performed, where point-to-surfel is prioritized over point-to-
plane, and large-scale surfels are prioritized over small-scale
surfels.

Surfels offer a more precise and flexible representation
of a local surface compared to a plane fitted with sparse
map points since they are modeled with the distribution of
points, which not only indicates the location but also captures
the shape of the local surface. Large-scale surfel can be
approximated by merging multiple small-scale distributions
following Equation (6). Moreover, they exhibit a high tol-
erance to noise, thereby providing more robust constraints
when contrasted with small-scale surfels. As illustrated in
Figure 1(b), the orange ellipse depicts the large-scale surfel
merged by the five blue small-scale surfels. The green query
point is initially associated with the merged large-scale surfel
if the merged large-scale surfel satisfies the criteria outlined
in Section III-E, and the distance from the mean position of
each small-scale surfel to the large-scale surfel is below a
predefined threshold. Otherwise, the association with small-
scale surfels is preferred.

For constraints with small-scale surfels, we associate the
query point with the surfel of the voxel where the point is
located, which must already be fixed. If the voxel cannot
meet the criteria of a surfel (Section III-E), we resort to
using the point-to-plane association as LOAM [1].



Fig. 2. System overview of LOG-LIO

C. Pose optimization

We adopt the iEKF from FAST-LIO2 to optimize the pose.
The prediction step is implemented by the integration of IMU
measurements from the latest optimized state xk−1 along
with the covariance matrix Pk−1.

For the residual computation, given a point Wpi in the
world frame, the residual zi is calculated as:

zi = nj(
Wpi −W qj) (12)

where nj is the normalized normal of the associated surfel
or plane for pi, and Wqj is a point lying on the associated
element.

Then, we denote the propagated state and covariance by
x̂k and P̂k respectively. They represent the prior Gaussian
distribution for the state. By incorporating the prior distri-
bution and the measurement models for point-to-surfel and
point-to-plane associations from Equation (12), we obtain the
maximum a-posterior estimate (MAP) as follows:

min
x̃κ
k

(∥xk ⊟ x̂k∥2P̂k
+

∑
i∈surfel

∥zκi +Hκ
i x̃

κ
k∥2Ri

+
∑

j∈plane

∥zκj +Hκ
j x̃

κ
k∥2Qj

)
(13)

where ⊟ computes the difference between xk and x̂k in the
local tangent space of xk, x̃κ

k is the error of the κ-th iterate
update at time k, Hκ

i and Hκ
j are Jacobian matrices with

respect to x̃κ
k , Ri and Qj come from the raw measurement

noise. Compared with FAST-LIO2, we augment the MAP
with point-to-surfel associations, which are the middle term
of Equation (13). The Kalman gain can be computed effi-
ciently, with the computation load depending on the state
dimension instead of the measurement dimension [9], [10].

D. Map Management

LOG-LIO uses an extended ikd-tree to manage the map.
The ikd-tree originally stores map points in both leaf nodes
and internal nodes [10]. In our extension, we additionally
store a distribution in each node, and this distribution is
maintained through voxels. Upon the first scan, we initialize
the tree-structured map with a predetermined voxel resolution
and associate the distribution of points within each voxel
with the corresponding tree node. For subsequent points, if
they fall within the same voxel as the nearest associated map
point, we incrementally update the distribution within the
voxel (Section III-D). In cases where the points belong to a

different voxel, we initialize a new tree node encompassing
those points and the voxel and add it to the map.

To balance computational efficiency and accuracy, we
limit the number of points added to each voxel by tuning
the downsampling rate in pre-processing. Additionally, we
consider the distribution stabilizes once the directions of nr

and ed converge. The distribution is then fixed in the map.

VI. EXPERIMENTAL RESULTS

A. Implementation details

In data pre-processing, we set the downsampling grid
to match the map’s voxel size, ensuring that each voxel
contains at most one point per frame. And we normalize
the normal after downsamping. Within the extended ikd-
tree nodes, we maintain the point distribution, updating it
once the voxel accumulates η = 25 points. When the angle
between nr and ed falls below 20 degrees, we consider the
distribution stabilized, and both nr and ed are fixed and
replaced by the average of their values. For map voxels that
accumulate 2η points without stabilization, we conclude that
their distribution no longer requires updates and fix it.

B. Experimental Settings

The experiment focuses on the following two research
questions:

• Can Ring FALS estimates the normal of LiDAR points
in real-time and accurately represents environmental
information?

• Can LOG-LIO improve the accuracy of pose estima-
tion by incorporating normal and distribution of points
estimation?

We conduct extensive experiments on the M2DGR [18]
and NTU VIRAL [19] datasets, both of which include 9-
axis IMU measurements and ground truth trajectories. The
M2DGR dataset collects data on a ground platform equipped
with Velodyne-32 LiDAR and captured in diverse indoor
and outdoor scenarios with ground truth trajectories obtained
from laser 3D tracking, motion capture, and RTK receivers.
The NTU VIRAL dataset collects data on an Unmanned
Aerial Vehicle (UAV) platform with ground truth obtained
by a laser-tracker total station with centimeter-level accu-
racy. The horizontal Ouster 16-channel OS1 LiDAR and
VectorNav VN100 IMU are used. Compared with M2DGR,
the LiDAR used by VIRAL has a sparser point cloud,
making it more challenging to estimate poses in open areas.



Fig. 3. The starting position of the sequence gate03 of M2DGR dataset. The white lines represent normalized normals from Ring FALS estimation.

TABLE I
THE MEAN RUNNING TIME(MS) OF NORMAL ESTIMATION FOR A SINGLE SCAN TO CERTAIN LIDARS

points Ring FALS PCL
projection box-filtering smoothing total single thread OMP 10 threads

Velodyne-32 57600 2.045 2.540 3.199 7.784 79.811 26.355
Ouster-16 16384 0.560 1.221 0.815 2.597 155.972 39.664

In the experiments, the resolution of maps and new scan
downsampling size are set to 0.4 m for M2DGR and 0.5
m for NTU VIRAL respectively. Our workstation runs with
Ubuntu 18.04, equipped with an Intel Core Xeon(R) Gold
6248R 3.00GHz processor and 32GB RAM.

C. Evaluation of Normal Estimation

We conduct a comparative analysis of Ring FALS and
PCL [11] normal estimation tools. The implementation of
PCL normal estimation is based on traditional least squares
with the assistance of kdtree. PCL also provides a parallel
implementation using OpenMP to speed up the computation.
Note that normal smoothing is a time-consuming process for
PCL, so only Ring FALS smoothness the normals.

To provide an intuitive evaluation, we visualize the nor-
mals at the starting position of sequence gate03 of the
M2DGR dataset. As shown in Figure 3, the white lines
represent the normalized normals estimated by Ring FALS.
Notably, almost all ground point normals exhibit a vertical
upward orientation. With respect to the pillar in the yellow
box, the normals at the corners transit smoothly with the
normals on the adjacent sides. Due to occlusion, points near
fake edges within the green box fail to meet the neighbor-
hood range similarity assumption, leading to inaccurate Ring
FALS estimation. However, these points with misestimated
normals are a minority within the scan and are filtered out
during visibility and consistency checks (Section V-B.2).

Table I shows the average processing times of normal
estimation for a single LiDAR scan from the M2DGR and
NTU VIRAL datasets, respectively. The M2DGR dataset
contains about 57,600 points per scan. Ring FALS demon-
strates significantly reduced processing time compared to

PCL, taking only one-tenth of the time, and it’s four times
faster than the OpenMP version. For NTU VIRAL, Ring
FALS also achieves significantly shorter processing times
compared to PCL, with or without OpenMP.

It is noteworthy that despite the Ouster-16 LiDAR having
fewer points than Velodyne-32 in one scan, the consumption
time increases. This is due to the time-consuming kdtree
neighborhood search in PCL’s normal estimation. And it is
influenced by the spatial structure of the kdtree, which, in
turn, reflects the complexity of the environment.

D. Evaluation of Odometry

We compare LOG-LIO with two state-of-the-art LIO
methods, FAST-LIO2 [10] and LIO-SAM [20] without en-
abling loop closure. Accuracy assessment is based on the
root-mean-square error (RMSE) of absolute trajectory error
(ATE). We employ LOG-C, which only performs point-to-
plane association, for ablation experiments.

1) M2DGR Datasets: Due to the instability of the RTK
signal, the first 100 seconds and the last 100 seconds of
street07 and street10 are discarded in the experiment.

Table II reports the quantitative results. Notably, LOG-
LIO, LOG-C, and FAST-LIO2 show comparable accuracy in
indoor scenes, such as doors and halls, outperforming LIO-
SAM in most cases. This is due to the abundance of planar
features in indoor scenes, which results in more map points
forming true planes. Consequently, the point-to-plane data
association provides effective constraints for pose estimation.
Conversely, the point-to-line data association of LIO-SAM
may become less reliable, especially when errors accumulate.

In outdoor sequences, i.e., gate, street, map points are
relatively sparse compared to indoor scenes. This is espe-



cially evident in the street sequences, where the robot moves
on wide campus roads at night. Figure 4 shows the trajec-
tories of sequence street10 for qualitative comparison. The
competitive results of LOG-LIO suggest that efficient and
accurate estimation of local geometric information exhibits
great potential in reducing the error of LIO system.

Overall, when employing only point-to-plane association,
LOG-C demonstrates a slight improvement in average ac-
curacy when compared to FAST-LIO2. However, with the
implementation of our proposed hierarchical data associa-
tion and map management scheme, LOG-LIO consistently
achieves the lowest mean error and gets the best results in
10 out of the 21 sequences.

TABLE II
THE TRANSLATION RMSE(M) RESULTS OF POSE ESTIMATION

COMPARISON ON THE M2DGR DATASET

Seq duration(s) LOG-LIO LOG-C FAST-LIO2 LIO-SAM

gate01 172 0.097 0.085 0.091 0.122
gate02 327 0.270 0.277 0.279 0.288
gate03 283 0.085 0.085 0.109 0.095
walk01 291 0.078 0.077 0.112 0.080
door01 461 0.251 0.249 0.271 0.269
door02 127 0.172 0.177 0.200 0.180
street01 1028 0.246 0.294 0.329 0.559
street02 1227 2.448 2.228 2.754 3.320
street03 354 0.097 0.103 0.106 0.102
street04 858 0.485 0.565 0.552 1.009
street05 469 0.331 0.287 0.377 0.407
street06 494 0.342 0.391 0.434 0.332
street07 829 2.916 3.646 3.512 1.614
street08 491 0.130 0.146 0.170 0.161
street09 907 3.164 3.754 3.648 2.657
street10 810 0.388 0.977 0.956 8.560
hall01 351 0.256 0.256 0.258 0.281
hall02 128 0.274 0.272 0.274 0.285
hall03 164 0.345 0.359 0.343 0.579
hall04 181 0.944 0.944 0.952 1.076
hall05 402 1.045 1.046 1.049 1.015

mean 0.684 0.772 0.799 1.095

The best and second-best results are bolded and underlined respectively.

2) NTU VIRAL Datasets: As depicted in Table III, LOG-
LIO demonstrates the best performance in most sequences,
closely followed by LOG-C. LIO-SAM achieves the best
results on several sequences but fails in half of the dataset.

In the sequences nya and tnp, where the drone traverses
indoors, LOG-LIO, LOG-C and FAST-LIO2 exhibit similar
errors. This behavior is consistent with what we observed in
M2DGR, where the presence of numerous planes in confined
spaces can effectively constrain the point-to-plane associa-
tion. In the eee, sbs, and rtp outdoor scenes amidst buildings,
LOG-LIO, LOG-C, and FAST-LIO2 yield highly similar
trajectories due to effective constraints imposed by the plane
structure. However, in the spms sequences, where the drone
departs from an area surrounded by buildings and ascends
to higher altitudes, the sparse LiDAR points lead to limited
map overlap. This can potentially result in registration errors
when performing point-to-plane data association. LOG-LIO
addresses this challenge by performing point association
with corresponding voxels. The accurate local geometric

information within these voxels help mitigate registration
errors, ultimately resulting in more precise trajectories.

It is worth noting that in practice, trajectory error in the
LIO system should consider various factors such as map
resolution, IMU noise, and etc. And we focus on factors
closely tied to our contributions while keeping the other
parameters fixed in this paper.

TABLE III
THE TRANSLATION RMSE(M) RESULTS OF POSE ESTIMATION

COMPARISON ON THE NTU VIRAL DATASET

Seq duration(s) LOG-LIO LOG-C FAST-LIO2 LIO-SAM

eee_01 399 0.084 0.082 0.084 0.049
eee_02 321 0.072 0.072 0.073 0.051
eee_03 181 0.112 0.114 0.113 0.081
nya_01 396 0.081 0.080 0.075 0.174
nya_02 428 0.111 0.111 0.109 0.085
nya_03 411 0.120 0.121 0.121 0.249
sbs_01 354 0.094 0.095 0.097 x
sbs_02 373 0.085 0.086 0.080 0.080
sbs_03 389 0.085 0.083 0.083 x
rtp_01 482 0.191 0.230 0.209 x
rtp_02 453 0.147 0.153 0.163 0.117
rtp_03 355 0.180 0.181 0.170 0.113
tnp_01 583 0.093 0.095 0.094 x
tnp_02 457 0.075 0.058 0.071 x
tnp_03 407 0.084 0.079 0.080 x

spms_01 446 1.450 1.670 1.818 x
spms_02 398 2.196 2.748 3.378 x
spms_03 386 0.685 0.766 0.793 x

mean 0.330 0.379 0.423 x

The best and second-best results are bolded and underlined respectively.

3) Processing Time Evaluation: We perform statistical
analysis on the time consumption of LOG-LIO and FAST-
LIO2 in each sequence, as shown in Table IV. It is observed
that the average processing time per scan of LOG-LIO is
slightly longer than that of FAST-LIO2, which is mainly due
to the Ring FALS normal estimation and incremental point
distribution maintenance within map voxels. Despite LOG-
LIO exhibiting an additional average time consumption of
8 ms than FAST-LIO2, it still meets real-time requirements.
This performance difference should be considered in light of
the number of points and the complexity of the environment.

VII. CONCLUSION AND FUTURE WORK

This paper introduces LOG-LIO, an online LiDAR-inertial
odometry method that estimates normal and distribution
of points for local geometric information in real time. To
improve normal estimation efficiency for LiDAR scans, we
introduce Ring FALS, an efficient normal estimator that pre-
records structural information and uses range data for normal
estimation. In LOG-LIO, we manage the map using an ex-
tended ikd-tree, incrementally maintaining normal and point
distribution within map voxels. We employ a hierarchical
data association scheme for accurate constraints, resulting
in precise pose estimation. Experimental results show that
LOG-LIO is competitive with state-of-the-art LIO systems
in various environments.



Fig. 4. Localization estimates in sequence street10 of the M2DGR dataset. The zoomed in image of the colored boxes corresponds to the boxes of the
same color in the trajectory.

TABLE IV
THE AVERAGE TIME CONSUMPTION(MS) OF EACH SEQUENCE IN THE EXPERIMENTS

M2DGR NTU VIRAL
gate walk door street hall eee nya sbs rtp tnp spms mean

LOG-LIO 46.563 45.964 24.083 42.480 24.903 20.991 18.027 17.997 25.388 19.412 23.348 28.101
FAST-LIO2 31.378 32.276 14.754 28.970 15.509 15.705 12.476 12.785 21.006 13.340 17.106 20.523

For future research, we intend to incorporate dynamic
noise removal and loop closure to enhance stability in
dynamic environments and ensure long-term operation.
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