
Safe Reinforcement Learning with Dead-Ends Avoidance and Recovery

Xiao Zhang, Hai Zhang, Hongtu Zhou, Chang Huang, Di Zhang, Chen Ye*, Junqiao Zhao*, Member, IEEE,

Abstract— Safety is one of the main challenges in apply-
ing reinforcement learning to realistic environmental tasks.
To ensure safety during and after training process, existing
methods tend to adopt overly conservative policy to avoid unsafe
situations. However, overly conservative policy severely hinders
the exploration, and makes the algorithms substantially less
rewarding. In this paper, we propose a method to construct
a boundary that discriminates safe and unsafe states. The
boundary we construct is equivalent to distinguishing dead-end
states, indicating the maximum extent to which safe exploration
is guaranteed, and thus has minimum limitation on exploration.
Similar to Recovery Reinforcement Learning, we utilize a
decoupled RL framework to learn two policies, (1) a task policy
that only considers improving the task performance, and (2) a
recovery policy that maximizes safety. The recovery policy and a
corresponding safety critic are pretrained on an offline dataset,
in which the safety critic evaluates upper bound of safety in each
state as awareness of environmental safety for the agent. During
online training, a behavior correction mechanism is adopted,
ensuring the agent to interact with the environment using safe
actions only. Finally, experiments of continuous control tasks
demonstrate that our approach has better task performance
with less safety violations than state-of-the-art algorithms.

I. INTRODUCTION

Reinforcement learning (RL) has made impressive
achievements in long-term control tasks, including Atria
games [1], car driving [2] and robot controling [3]. While RL
performs well in games and simulation environment, safety
becomes one of the greatest challenge when applying RL to
real-world task. In real environments such as autonomous
driving tasks, unsafe actions can lead to damage to the
agent itself and to the environment, resulting in significant
maintenance costs and even human casualties.

To learn a safe policy that satisfies state-wise safety
constraint in “safe critical” task, the agent needs to evaluate
the safety of each state and avoid entering unsafe states [4].
In some Safe RL algorithms, the agent’s awareness of safety
of a state is achieved by the safety critic that evaluates the
safety of the task policy in states. The safety critic and a
safety threshold together construct a boundary that divides
the state space into safe and unsafe subspaces, as shown
in Figure 1. The division of the state space depends on the
policy, and sub-optimal policies will lead to more states being
considered as unsafe, thus limiting agent exploration.

In [5], a recovery policy and a behavior correction mecha-
nism are introduced. The task policy and the recovery policy

*This work is supported by the National Key Research and Development
Program of China (No. 2021YFB2501104, No. 2020YFA0711402)

All the authors are with the Department of Computer Science and
Technology, Tongji University, China and the MOE Key Lab of Embedded
System and Service Computing, Tongji University, China, e-mail: (zhaojun-
qiao@tongji.edu.cn)

Fig. 1. The agent needs to control the brake of the car to avoid a collision.
A safety critic evaluates the safety of the policy in all states and combines
it with a threshold value to obtain the boundary that divides the safe and
unsafe states. At a given initial speed, no policy can avoid a collision when
the car is close enough to an obstacle, and these states are called dead-ends.
The boundary that will and only identifies all dead-ends as unsafe states is
called the optimal boundary. Since the optimal safe policy is safe in all
states except dead-ends, by evaluating the safety of the optimal safe policy,
it is possible to distinguish whether a state is a dead-end or not. In contrast,
suboptimal safe policies can lead the safety critic to conservatively consider
more states as unsafe.

are trained simultaneously to improve task performance
and to satisfy safety constraints respectively. However, [5]
inappropriately consider the safety of states as the safety of
the task policy, which leads to a conservative agent since
the agent is prone to misjudge under-explored states as
unsafe. This greatly limits exploration, which in turn leads
to inadequate collection of trajectories to correct the safety
critic.

An example is given to illustrate the problem. A beginner
learns to drive. Due to his poor driving skills, he ends up
driving off the road several times on narrow roads, which
led him to believe that driving on narrow roads is a very
dangerous behavior and prevents him from continuing to
explore in this environment. To solve this problem, an expert
who can drive the car back on the road before the imminent
danger occurs should be introduced. Thus, the beginner only
needs to focus on the reward cumulating since the expert can
take over before the imminent safety violation. In this way,
the poor skill of the beginner will no longer prevent risky
exploration.

Inspired by this, we propose our safe RL framework Safe
Reinforcement Learning with Dead Ends Avoidance and Re-
covery (DEA-RRL), following the Recovery RL framework
[5] and decoupled RL framework [6]. A recovery policy and
a safety critic are trained with the goal of maximizing safety.
When the task policy generates an action, the safety critic
judges the safety of the action and decides whether to correct

ar
X

iv
:2

30
6.

13
94

4v
1

 [
cs

.L
G

]
 2

4
Ju

n
20

23

the action before interacting with the environment. Compared
with RRL [5], the safety critic in our approach measures
the safety of the recovery policy rather than the task policy,
which reduces the conservatism and relaxes the constraint on
exploration without increasing the risk of violations.

The advantages of our approach are as follows:
• Our method allows task policy to fully explore the

environment and significantly improve task performance
in complex environments;

• We show theoretically that our approach can learn
optimal boundary, which is equivalent to the discovery
of dead-ends.

• Our method completely decouples the task policy and
safe policy, so that the recovery policy can be plug-and-
play within other task policies without fine-tuning.

II. RELATED WORK

A. Safe RL

Safe RL addresses two main safety-related problems:
asymptotic safety and in-training safety of policies. Asymp-
totic safety means the safety of policies after convergence,
which is commonly achieved by reward penalties and cost
constraints. Lagrange Relaxtion [7] is the most widely used
method due to its simplicity, and other methods such as
Trust Regions [8], Lyapunov-based [9], Guide Policy [10] are
proposed for their stricter safety guarantees, fewer violations
during the training and having faster convergence.

Although these approaches do find safe policies after
training, they learn safety by trial-and-error as the same
as traditional RL algorithms, which means violations are
inevitable before convergence. To ensure in-training safety,
state-wise safety constraints and prior knowledge of the
environment are utilized [4]. [11] [12] [13] assume a white-
box or a black-box environment dynamics model is available,
limiting policy optimizing in a safe policy set which is
constructed based on the known model. However, these
assumptions are hard to meet in real-world problems.

RRL [5] trains a recovery policy using offline data to guar-
antee the safety of the online training process. [14] combines
RRL and Meta-RL [15], improving the generalizability of
RRL by enabling pre-trained safety critic and recovery policy
to be quickly adapted to different tasks during the fine-tuning
phase. Although these methods can achieve in-training safety,
they are prone to obtain over-conservative polices due to the
reason explained in Section I.

B. Decoupling Performance and Safety

Decoupling performance and safety offers new ideas
for solving the exploration-exploitation dilemma [6], [16],
because separating processes of maximizing reward and
guaranteeing safety prevents policies from under-performing
due to over-conservatism. [17] and [5] introduce an implicit
and an explicit safe policy respectively. The task policy
no longer needs to consider safety explicitly when being
updated. However, the identification of unsafe actions in
these methods strongly correlated with the task policy, thus
the agent is still prevented from obtaining optimal policies

by exploration-exploitation dilemma. Although [18] achieves
full decoupling of exploration and exploitation, it focuses
only on the rewards and ignores safety in training.

C. Dead-Ends Discovery and Avoidance

The concept of dead-ends discovery (DeD) was introduced
in [19] and later applied to the medical field [20]. [21] com-
bines risk sensitivity with DeD model, which allows dead-
ends to be identified earlier. [22] also proposes “irrecoverable
state” with a similar meaning to dead-ends state, preventing
dangerous situations from occurring through reward shaping
and model-based rollout [23].

We argue that distinguishing dead-ends states from normal
states is crucial for improving the performance of safe RL,
as it identifies the broadest range of policies that can be
explored safely. The safety critic in RRL [5] could not
distinguish dead-ends states, as explained later in Section IV-
A.

III. PRELIMINARY

A. Constraint Markov Decision Processes

We consider safe RL under Constraint Markov Decision
Process (CMDPs) M = (S,A,R, P, γ, ρ, C, γsafe, ϵsafe)
[24], where S is the state space, A the action space,
R : S ×A → R the reward function, P : S ×A× S →
[0, 1] the transition function, γ ∈ [0, 1) the discount factor for
reward, C : S ×A → R the cost function, γsafe ∈ [0, 1) the
discount factor for cost and ϵsafe ∈ R the safe threshold. Let
Π be the set of Markovian stationary policies. Given policy
π ∈ Π : S → P(A) maps states to action distributions and
π(a|s) denotes the probability of choosing action a in state
s. The task performance of π is defined as the discounted
cumulative reward J (π):

J (π) = Eτ∼π,P [
∞∑
t=0

γtR(st, at, st+1)] (1)

Similar to [25], state-cost function Vc and action-cost func-
tion Qc are introduced to indicate the expected cumulative
cost of π in s:

V πc (s) = Eτ∼π,P [
∞∑
t=0

γtsafeC(st, at, st+1)|s0 = s] (2)

Qπc (s, a) = Es′∼P (·|s,a)V
π
c (s′) (3)

Under the state-wise safety constraint formulation [4], we
define the set of safe policies

Πc = {π ∈ Π|∀s ∈ S, V πc (s) < ϵsafe} (4)

The objective of CMDPs is to find a policy that maximizes
Equation (1) in the set of safe policies Πc:

π∗
task = max

π
J (π), s.t.π ∈ Πc (5)

B. Safe Markov Decision Processes

In safety-critical tasks, any unsafe action is fatal. There-
fore, we define SMDPs, a special case of CMDPs to describe
this kind of tasks.

Definition 1: Safe Markov Decision Processes (SMDPs)
M = (S,A,R, P, γ, ρ, C, γsafe, ϵsafe), a special case of
CMDPs where episodes terminate after any danger occurred.
In SMDPs, the cost function is a binary indicator of the safety
of the state:

C(st, at, st+1) =

{
1, safety violation

0, otherwise
(6)

Observe that if γsafe = 1, Qπc indicates the probability of
ending up with a failure state in the future with π. Qπϕ,c,
parameterized by ϕ, can be optimized by minimizing the
MSE loss:

LQc(ϕ;π) =
1

2
(Qπϕ,c(st, at)− (ct + (1− ct)

γsafeEat+1∼π(·|st+1)Q
π
ϕ̂,c

(st+1, at+1)))
2

(7)

where (st, at, st+1, ct) is the transition sampled from offline
data or replay buffer and ct is short for C(st, at, st+1).
Equation (7) can be considered to be the policy evaluation
of π in terms of safety.

Definition 2: The state space is divided into three sub-
spaces:

• Sfail: Failure state. Indicates the end of an episode due
to a danger.

• Sdead: Dead-ends state. Any dead-ends state will trans-
form into a failure state, regardless of the policy π the
agent takes (π ∈ Π).

• Ssafe: Safe state. Ssafe=S \ (Sfail ∪ Sdead).
Therefore,

∀s ∈ Ssafe,∃(a, s′) ∈ (A,Ssafe), P (s, a, s′) > 0 (8)
The cost function in SMDPs can also be expressed as

C(st, at, st+1) = I(st+1 ∈ Sfail) (9)

Similar to [22], we assume that a safety violation must
come fairly soon after entering any dead-ends states region:

Assumption 1: There exists a horizon H ∈ N, that any
trajectory starting from s0 ∈ Sdead will end up in H steps.

We additionally introduce a sampling policy for training
the safety critic π̄ and modify the definition of the set of safe
policies as follows:

Ππ̄c = {π ∈ Π|∀(s, a) ∈ (Ssafe,A) and π(a|s) > 0,

Qπ̄c (s, π(s)) < ϵsafe}
(10)

Similar to CMDPs, the objective of SMDPs is to find a
policy with Equation (1) in the set of safe policies Ππ̄c :

π∗
task = max

π
J (π), s.t.π ∈ Ππ̄c (11)

IV. METHODS

A. Recovery RL

In most approaches of Safe RL without decoupling, π̄ is
the same as πtask, including RRL [5]. In pretrain phase, RRL
trains safety critic Qπtask

ϕ,c and recovery policy πθ,rec (param-
eterized by θ) by minimizing LQc(ϕ;πtask) and maximizing
Jπrec(θ;πtask) in Equation (7) and Equation (12).

Jπrec(θ; π̄) = −Es∼D[Q
π̄
c (s, πθ,rec(·|s))] (12)

In fine-tune phase, unsafe actions will be corrected by πrec:

at =

{
aπtask , Qπ̄ϕ,c(st, a

πtask) < ϵsafe

aπrec , otherwise
(13)

Similar to Equation (11) The objective of RRL can be
expressed as:

π∗
task = max

π
J (π), s.t.π ∈ Ππc (14)

Because πtask has not been trained during pretrain phase
that it is unable to avoid unsafe situations, resulting in an
overestimation of Qπtask

ϕ,c which represents a conservative
estimate of safety.

B. Dead-ends Discovery and Avoidance

Different from RRL, our proposed DEA-RRL ensure
safety by distinguishing between dead-ends states and safe
states and only prevent the agent from entering dead-ends.
In the pretrain phase, DEA-RRL trains safety critic Qπrec

ϕ,c

and recovery policy πθ,rec by minimizing LQc
(ϕ;πrec) and

Jπrec
(θ;πrec) as in Equation (7) and Equation (12), which

is completely decoupled from πtask. This is equivalent to
solving the optimal Bellman equation [25] for safety. Thus,
the optimal recovery policy and the corresponding policy
evaluation function can be obtained.

π∗
rec(θ) = min

θ
Eτ∼P,πrec(θ)[Q

πrec
c (s, πrec(s; θ))]

= min
θ

Eτ∼P,πrec(θ)[

∞∑
t=0

γtsafect]
(15)

By using the same behavior correction mechanism as Equa-
tion (13) where π̄ is π∗

rec, the object of DEA-RRL can be
expressed as:

π∗
task = max

π
J (π), s.t.π ∈ Π

π∗
rec

c (16)

C. Theoretical Proof

We will illustrate the advantages of DEA-RRL over RRL
theoretically.

Theorem 1: Ππtask
c and Π

π∗
rec
c are the accessible space for

π to explore safely in RRL and DEA-RRL respectively, we
have Ππtask

c ⊆ Π
π∗
rec
c .

Proof : Since Q∗
c (the shorthand of Qπ

∗
rec
c) is the optimal cost

value function, we have Q∗
c(s, a) ≤ Qπtask

c (s, a) for every
(s, a). As in Equation (10), ∀(π, s, a) ∈ (Ππtask

c ,Ssafe,A)
and π(a|s) > 0,

Q∗
c(s, π(s)) ≤ Qπtask

c (s, π(s)) < ϵsafe

therefore π ∈ Π
π∗
rec
c , which means Ππtask

c ⊆ Π
π∗
rec
c .

We will show that with appropriate ϵsafe, Q∗
c can be used

to identify dead-ends states.
Lemma 1: Suppose that Assumption 1 holds and uncer-

tainties are ignored in the environment i.e. P : S ×A× S →
{0, 1},

• ∀(s, π) ∈ (Sfail,Π), V πc (s) = V ∗
c (s) = 1,

• ∀(s, π) ∈ (Sdead,Π), V πc (s) ≥ V ∗
c (s) ≥ γH−1

safe

• ∀(s, π) ∈ (Ssafe,Π), V πc (s) ≥ V ∗
c (s) = 0

Proof : Since V ∗
c is the optimal value function, we have

V πc (s) ≥ V ∗
c (s) for all s ∈ S . By the definition of cost

function Equation (9) and state-cost function Equation (2),
∀s ∈ Sfail, V πc (s) = 1. Assumption 1 shows that episode
would terminate after at most H steps since the agent reach
dead-ends state, we can derive from Equation (2) that

V πc (s) = Eτ∼π,P [
∞∑
t=0

γtsafeC(st, at, st+1)|s0 = s ∈ Sdead]

≥
H−2∑
t=0

γtsafe ∗ 0 + γH−1
safe ∗ 1 = γH−1

safe .

(17)
By Equation (8) in Definition 2, for every s ∈ Ssafe,
there always exists at least one action a such that s′ ∼
P (·|s, a), s′ ∈ Ssafe. Start at s ∈ Ssafe, agent would never
reach dead-ends state by choosing the safe action, which
means that V ∗

c (s) = 0.
Theorem 2: Suppose that Assumption 1 holds and uncer-

tainties are ignored in the environment, and let

ϵsafe = γHsafe (18)

Then, with behavior correction mechanism showed by Equa-
tion (13), the agent will be prevented from reaching dead-
ends states.
Proof : According to Equation (13), the actions allowed to
be performed satisfy:

Qπc (s, a) = Es′∼P (·|s,a)γsafeV
π
c (s′) < γHsafe (19)

therefore
V πc (s′) < γH−1

safe ,∀s ∈ Ssafe (20)

which ensuring s′ ∈ Ssafe. Also because of the initial state
s0 ∈ Ssafe, it is ensured that the agent is always explored
in safe states.

Theorem 1 shows that DEA-RRL provides larger accessi-
ble space for exploration than RRL, reducing conservatism
without loss of safety. Lemma 1 and theorem 2 indicate
that starting from safe states, both RRL and DEA-RRL are
able to prevent agent entering dead-ends states with behavior
correction mechanism and appropriate ϵsafe. Notice that in
RRL, it is not ensured that V πtask

c (s) < γH−1
safe ,∀s ∈ Ssafe,

thus RRL will recognize some safe states as dead-ends states
due to its over-conservatism on under-explored states.

D. Offline Pretrain

The safety critic in RRL is entirely determined by πtask,
thus πrec is equivalent to a single-step greedy policy that

chooses the action with the smallest Qπtask
c in a state. This

is referred to as single-step dynamic programming (SSDP)
[26]. By contrast, safety critic in DEA-RRL is determined by
πrec, giving πrec the ability to combine multiple sub-optimal
trajectories into one optimal trajectory, hence it is referred
to as multi-steps dynamic programming (MSDP) [26].

The bias in MSDP due to querying the Qπc value of out-of-
distribution (OOD) actions accumulates over the DP process,
making MSDP more sensitive to OOD actions compared
with SSDP. In the training of safety critic, we prevent safety
critic from overestimating the safety of an action by avoiding
querying the Qc value of OOD actions. While in the training
of recovery policy, we can not completely ignore OOD
actions especially in states where the offline data do not
contain safe actions, for it is better to try an unknown and
possibly safe action than to choose a known but certainly
dangerous action.

Inspired by implicit Q-learning (IQL) algorithm [26], we
use Expectile Regression to train Qπrec

c , avoiding the impact
of OOD actions. Different from IQL, we use Advantage
Policy Gradient instead of Advantage Weighted Regression
used in [26] to train πrec, allowing an OOD action to be
attempted in a state where all known actions are unsafe.

The state-cost function V πc and action-cost function Qπc is
updated by minimizing following loss functions:

LV π
c
(ψ) = E(s,a)∼D[L

τ
2(Q

π
ϕ,c(s, a)− V πψ,c(s))] (21)

LQπ
c
(ϕ) = E(s,a,s′)∼D[(c(s, a, s

′)+

(1− c(s, a, s′))γsafeV πψ,c(s′)−Qπϕ,c(s, a))2]
(22)

where Lτ2 is the expectile regression loss and D the offline
dataset.

As illustrated in Algorithm 1, we provide the agent with D
that contain several transitions from both safe trajectories and
unsafe trajectories. Safety critic and recovery are trained by
minimizing corresponding objective functions without task
policy anymore.

Algorithm 1 DEA-RRL Pretrain Offline
1: Input: offline dataset D, pretraining steps N
2: for steps,← 1, N do
3: Sample a mini-batch (st, at, st+1, ct) from D
4: Update ϕ by minimizing LQπ

c
(ϕ) (Equation (22))

5: Update ψ by minimizing LV π
c
(ψ) (Equation (21))

6: Update θ by maximizing Jπrec(θ) (Equation (12))
7: end for

E. Online Training

Any of the RL algorithms can be used to train πtask. In
our work, we utilize Soft Actor Critic algorithm (SAC) [27].
The process of online fine-tuning is illustrated in Algorithm
2, and we give some remarks on online training.

• We relabel all actions with the action proposed by
πtask as the same as [5], which is important to achieve
decoupled safe reinforcement learning, as it prompts

the agent to view behavior correction as part of the
environment.

• Since πrec ignores task performance, unsafe actions
result in low reward by behavior correction, which
enables πtask to learn to avoid unsafe actions with
reward feedback only.

• πrec is a Gaussian policy, we use the action mean rather
than sampling over the distribution during behavior
correction for safety.

• We choose not to fine-tune Qπrec
c and πrec in online

training, because a fixed behavior correction strategy
provides the agent a stable MDP dynamic model, thus
improving the stability of training.

• Finally, we use a small ϵsafe to improve the safety of
the algorithm due to aleatoric uncertainty and epistemic
uncertainty,

Algorithm 2 DEA-RRL Training Online
1: Input: safety critic Qπrec

c , recovery policy πrec, task
horizon H , training steps N

2: Initialize replay buffer Dtask ← ∅
3: s0 ← env.reset()
4: for steps,← 1, N do
5: for t ∈ {1, ...,H} do
6: if ct−1 = 1 or t = H then
7: st ← env.reset()
8: end if
9: Sample aπtask , aπrec from πtask, πrec

10: if Qπrec
c (st, a

πtask) < ϵsafe then
11: at = aπtask

12: else
13: at = aπrec (behavior correction)
14: end if
15: Execute at, Observe st+1, rt, ct
16: Dtask ← Dtask ∪ (st, a

πtask , st+1, rt)
17: Train πtask on Dtask by maximizing J (π)
18: end for
19: end for

V. EXPERIMENTS
In the experiments, we investigate whether our approach

can:
• exceed state-of-the-art algorithms in terms of task per-

formance, post-training safety and in-training safety;
• improve the safety of the training process with minimal

impact on task performance;
• obtain a task-independent behavior correction strategy

that can ensure safety of other trained policies in testing.

A. Domains

Experiments were conducted under the standard safety
reinforcement learning test environment Safety Gym [28]. As
shown in Figure 2, We selected the two simple environments
(StaticEnv, DynamicEnv) set up in [29] and three more
complex environments (PointGoal1, CarGoal1, DoggoGoal1)
pre-defined in Safety Gym. Unlike the general Safety Gym

setup, we require that any violation of safety constraints
will result in immediate termination of the episode, which
corresponds to real world tasks. This setup significantly
increases the difficulty of the task and poses an extreme
challenge to the agent’s capacity to balance exploration and
exploitation.

B. Offline Data Collection

Unlike general offline RL where the training results are
influenced by the performance of the behavior policy that
used for data sampling, Recovery RL framework requires
offline data to contain a wide coverage of unsafe trajectories,
allowing Qc to learn to identify unsafe actions efficiently.
The offline dataset we used contains 2M transitions includ-
ing: (1) 1M transitions sampled from the replay buffer of
SAC training, and (2) 1M transitions obtained by interacting
with the environment using random actions. The latter is
included because in our experiments we find that the failed
transitions in the SAC replay buffer tend to share similar
characteristics. The random sampling data can diversify the
failed transitions in the offline data. Inspired by [30], we
filter out the parts of the data that are less relevant to safety
by keeping only 100 transitions before violations.

C. Evaluation Metric

The average cumulative reward (ACR) over episodes is
used as a measure of the task performance, and a higher
return indicates a better task performance. The default reward
functions provided by Safety Gym are used in our exper-
iments, which define algorithm-independent tasks. We use
the average rate of constraint violation (AVR) in testing as a
measure of asymptotic safety and the number of constraint
violations (TV) in training as a measure that indicating in-
training safety. To highlight the differences between our
method and RRL, we use the ratio of steps that behavior
correction mechanism is used (ARR) as a measure of the
extent to which the behavior correction mechanism intervene
in training and testing phase.

D. Comparisons with Baselines

• Unconstrained Baseline [27]: We use SAC as a base-
line for unconstrained methods, optimizing task perfor-
mance and ignoring safety constraints.

• Worst-Case Soft Actor Critic (WCSAC) [29]: A com-
bined Lagrangian relaxation and risk-sensitive approach
that maximizing

J (π)− λ(Eτ∼P,π[CV aRα(Qπtask
c (s, a))]− ϵsafe)

where CV aRα
.
= Epπ [Qπc |Qπc ≥ F−1

C (1− α)] and FC
is the CDF of pπ(Qπc |s, a), updating policy parameters
and λ via dual gradient descent.

• RRL [5]: A semi-decoupled approach that preventing
agent using unsafe action for which Qπtask

c (s, a) ≥
ϵsafe by behavior correction mechanism.

• Implicit Q-Learning (IQL) [26]: An offline RL al-
gorithm that optimizing critic and actor by expectile
regression and advantage weighted regression.

Fig. 2. The experiments in this paper were conducted in the safety gym standard test environment. The figure shows five task environments from left
to right, including StaticEnv, DynamicEnv, PointGoal1, CarGoal1 and DoggoGoal1. These environments are based on Safety Gym, where the task is to
navigate a Point robot from its initial position to the target area (green area) and avoid entering unsafe areas (blue areas) during the process. PointGoal1,
CarGoal1 and DoggoGoal1 can be seen as upgraded versions of DynamicEnv, which include more unsafe areas, larger action space and more complex
robots.

To better compare the ability of each method to balance
safety and task performance, we let each method has similar
asymptotic safety achieving by using different ϵsafe.

E. Results
1) Main Results: The performance and safety of all

methods are showed in Figure 3 and Table I. The results
show that our method has high asymptotic safety and in-
training safety in all tasks and similar cumulative reward to
the unconstrained method in most tasks, suggesting that our
method can substantially improve the safety of the algorithm
with less impact on performance.

WCSAC obtains a policy with higher safety than SAC
after training for all tasks, however, since WCSAC can only
learn information related to the safety of the environment
during training, a large number of constraint violations are
inevitable in the early stages of training.

IQL avoids interaction with the environment by training
completely offline so that safety constraints are not violated
during training, but a safe policy cannot be obtained after
training.

RRL learns information about the safety of the environ-
ment in advance through pre-training and therefore maintains
a low number of constraint violations throughout the training
process. As shown in Figure 3, the ratio of steps RRL
using behavior correction during training process is much
higher than that of DEA-RRL, indicating a large amount
of intervention in the training process of πtask, which is
an important reason why RRL can only learn sub-optimal
policies in complex environments. The training curve of RRL
has large variance, which is caused by the fact that πtask is
training in an unstable environment. In contrast, DEA-RRL
does not fine-tune πtask and Qπrec

c during online training,
providing a stable MDPs for training πtask.

We also remark that DEA-RRL has lower return than SAC
in DoggoGoal1 because the environment are more difficult
to explore with the introduction of the behavior correction
mechanism, and it takes longer for agents to learn the optimal
policy.

2) Ablations: We design ablation experiments to investi-
gate the effect of settings in pre-training and online training
on safety and task performance.

We first compare the effects of using different train-
ing methods in offline training on the experimental results

which are shown in Figure 4. RRL (MSDP) is a multi-
step dynamic programming version of RRL, significantly
reducing conservatism of RRL. However, RRL (MSDP) is
still highly conservative due to the OOD actions and has high
recovery ratio and low cumulative reward. DEARRL (IQL)
extract a policy from safety critic using advantage weighted
regression. Since DEARRL (IQL) will only select known
actions, it cannot guarantee safety in states where the dataset
does not contain safe actions, resulting in an unsafe policy.

We then compared the performance and safety of RRL and
DEA-RRL under different ϵsafe. As Figure 5 shows, as ϵsafe
decreases, RRL and DEA-RRL have the same performance,
i.e. the average reward and the proportion of constraint
violations decrease. Notice that with equal ϵsafe, DEA-
RRL has a similar safety and far superior task performance
than RRL. DEA-RRL substantially reduces the influence of
the behavior correction mechanism on πtask, and eventually
enables algorithm to find a better πtask.

3) Decoupled Framework: In DEA-RRL, πrec and Qπrec
c

are completely decoupled from πtask, so that the pre-trained
πrec and Qπrec

c can be directly combined with other πtask
trained to improve the safety of these algorithms in testing.
We combine the behavior correction strategy obtained by
RRL and DEA-RRL pre-training with the other policies
obtained through SAC and IQL training and test them on
500 random episodes, the results of which are shown in
Table II. The results show that DEA-RRL can be combined
directly with any RL algorithm to substantially improve the
safety of these algorithms in testing at the expense of slightly
lower return. Notice that in some environment s, πtask and
πrec obtained by IQL (with DEA-RRL) even achieve the
performance and safety of the online training method when
trained completely offline.

Finally, we find that although the average episode length
in testing increases significantly with the introduction of the
behavior correction mechanism compared to using SAC and
IQL only, there is only a slight improvement in the return.
The reason is that the introduction of the behavior correction
mechanism actually changes the MDPs model so that policies
trained using SAC and IQL that maximize the returns of the
original MDPs model have lower performance under the new
MDPs model.

Fig. 3. Training Curve. Means (solid lines) and variances (shaded) of the training curves for the four algorithms under different tasks, with the first
row showing the average cumulative reward, the second row showing the average proportion of constraint violations over update steps and the third row
showing the average use of behavior correction. We adapted ϵsafe for RRL and DEA-RRL to make the two algorithms have similar safety in training.
For each method we used random seeds for training.

TABLE I

Environments SAC WCSAC RRL DEA-RRL(ours) IQL
ACR AVR TV ACR AVR TV ACR AVR TV ACR AVR TV ACR AVR

StaticEnv 2.754 0.043 1642 2.936 0.008 1453 2.779 0.038 311 2.882 0.023 119 2.630 0.095
DynamicEnv 17.434 0.519 3330 19.004 0.069 1451 7.479 0 92 20.784 0.018 86 18.044 0.565
PointGoal1 12.609 0.753 12375 7.811 0.055 5739 1.155 0.078 408 14.079 0.035 236 12.740 0.76
CarGoal1 16.727 0.73 14850 18.672 0.035 6199 1.827 0.043 1006 15.430 0.091 786 11.357 0.94

DoggoGoal1 16.956 0.908 31450 1.055 0.013 10825 6.969 0.22 546 7.002 0.048 706 18.889 0.838

The table records the average cumulative reward (ACR) and the average violation rate (AVR) for the policy trained by, and the number of violations
during training (TV) for the SAC, WCSAC, RRL, DEA-RRL and IQL. Since IQL is trained completely offline, the number of violations during
training is 0. The ACR and AVR are obtained by testing πtask on 500 random episodes on average.

TABLE II

Environments SAC(with RRL) IQL(with RRL) SAC(with DEA-RRL) IQL(with DEA-RRL)
ACR AVR ARR ACR AVR ARR ACR AVR ARR ACR AVR ARR

StaticEnv 2.379 0 0.417 1.308 0.005 0.426 2.673 0 0.009 2.947 0 0.031
DynamicEnv 1.928 0.004 0.671 1.488 0.008 0.764 18.769 0.032 0.242 19.425 0.078 0.235
PointGoal1 5.462 0.116 0.546 3.669 0.064 0.581 10.596 0 0.275 9.926 0.04 0.322
CarGoal1 0.093 0.034 0.614 0.144 0.094 0.602 8.165 0.028 0.334 10.783 0.116 0.297

DoggoGoal1 0.751 0 0.987 0.656 0 0.941 13.285 0.002 0.780 9.407 0 0.846

We compare the average cumulative reward (ACR) and average violation rate (AVR) of the algorithms by directly combining a
pre-trained behavior correction mechanism with πtask trained using SAC and IQL, where the parameters of RRL and DEA-RRL
and ϵsafe are set as the same as in the previous experiment. All data are derived from the average of 500 random episodes of test
results.

VI. CONCLUSION

In this paper, we propose DEA-RRL, a fully decoupled
safe reinforcement learning framework. The decoupling of
task performance and safety is achieved by pre-training the
recovery policies that maximize safety. The task policies are
free to explore without considering safety at all, and safety
in exploration is achieved by combining recovery policies
with behavior correction. We show that, our approach is
able to identify the dead-end states in determined MDPs,

which is the maximum range that a policy can explore safely.
Using appropriate safety thresholds to prevent policies from
going into dead-ends can ensure safety without compro-
mising reward improvement. We demonstrate in a series of
experiments that our approach balances task performance and
safety well, suggesting that our approach has potential to be
used in realistic environmental tasks.

Future work will consider the following aspects: (1) in-
troducing model-based reinforcement learning to estimate
uncertainty, allowing ϵsafe to be adaptive, and (2) obtaining

Fig. 4. Ablations of offline pretraining. Average reward, average proportion
of constraint violations and average proportion of use of behavioral correc-
tion for different methods. For each method we used same ϵsafe = 0.7
and random seeds for training.

Fig. 5. Ablations of online training. Average reward, average proportion of
constraint violations and average proportion of use of behavioral correction
for different ϵsafe choices for RRL and DEA-RRL in PointGoal1. For each
method we used random seeds for training.

an offline safe reinforcement learning algorithm that involves
behavior correction mechanism in offline training process of
πtask to improve task performance.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[2] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D.
Lam, A. Bewley, and A. Shah, “Learning to drive in a day,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 8248–8254.

[3] C. Bodnar, A. Li, K. Hausman, P. Pastor, and M. Kalakrishnan,
“Quantile qt-opt for risk-aware vision-based robotic grasping,” arXiv
preprint arXiv:1910.02787, 2019.

[4] W. Zhao, T. He, R. Chen, T. Wei, and C. Liu, “State-wise safe
reinforcement learning: A survey,” arXiv preprint arXiv:2302.03122,
2023.

[5] B. Thananjeyan, A. Balakrishna, S. Nair, M. Luo, K. Srinivasan,
M. Hwang, J. E. Gonzalez, J. Ibarz, C. Finn, and K. Goldberg, “Re-
covery rl: Safe reinforcement learning with learned recovery zones,”
IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4915–4922,
2021.

[6] L. Schäfer, F. Christianos, J. Hanna, and S. V. Albrecht, “Decoupling
exploration and exploitation in reinforcement learning,” in ICML 2021
Workshop on Unsupervised Reinforcement Learning, 2021.

[7] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk
in the real world with minimal human effort,” arXiv preprint
arXiv:2002.08550, 2020.

[8] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy op-
timization,” in International conference on machine learning. PMLR,
2017, pp. 22–31.

[9] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge,
“Projection-based constrained policy optimization,” arXiv preprint
arXiv:2010.03152, 2020.

[10] D. Kim, Y. Kim, K. Lee, and S. Oh, “Safety guided policy opti-
mization,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2022, pp. 2462–2467.

[11] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 33, no. 01, 2019, pp. 3387–3395.

[12] Y. S. Shao, C. Chen, S. Kousik, and R. Vasudevan, “Reachability-based
trajectory safeguard (rts): A safe and fast reinforcement learning safety
layer for continuous control,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 3663–3670, 2021.

[13] A. Wachi and Y. Sui, “Safe reinforcement learning in constrained
markov decision processes,” in International Conference on Machine
Learning. PMLR, 2020, pp. 9797–9806.

[14] M. Luo, A. Balakrishna, B. Thananjeyan, S. Nair, J. Ibarz, J. Tan,
C. Finn, I. Stoica, and K. Goldberg, “Mesa: Offline meta-rl for
safe adaptation and fault tolerance,” arXiv preprint arXiv:2112.03575,
2021.

[15] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on
machine learning. PMLR, 2017, pp. 1126–1135.

[16] W. F. Whitney, M. Bloesch, J. T. Springenberg, A. Abdolmaleki,
K. Cho, and M. Riedmiller, “Decoupled exploration and exploitation
policies for sample-efficient reinforcement learning,” arXiv preprint
arXiv:2101.09458, 2021.

[17] K. Srinivasan, B. Eysenbach, S. Ha, J. Tan, and C. Finn, “Learning to
be safe: Deep rl with a safety critic,” arXiv preprint arXiv:2010.14603,
2020.

[18] L. Zhang, Z. Yan, L. Shen, S. Li, X. Wang, and D. Tao, “Safety
correction from baseline: Towards the risk-aware policy in robotics via
dual-agent reinforcement learning,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2022,
pp. 9027–9033.

[19] M. Fatemi, S. Sharma, H. Van Seijen, and S. E. Kahou, “Dead-ends
and secure exploration in reinforcement learning,” in International
Conference on Machine Learning. PMLR, 2019, pp. 1873–1881.

[20] M. Fatemi, T. W. Killian, J. Subramanian, and M. Ghassemi, “Medical
dead-ends and learning to identify high-risk states and treatments,”
Advances in Neural Information Processing Systems, vol. 34, pp.
4856–4870, 2021.

[21] T. W. Killian, S. Parbhoo, and M. Ghassemi, “Risk sensitive dead-end
identification in safety-critical offline reinforcement learning,” arXiv
preprint arXiv:2301.05664, 2023.

[22] G. Thomas, Y. Luo, and T. Ma, “Safe reinforcement learning by
imagining the near future,” Advances in Neural Information Processing
Systems, vol. 34, pp. 13 859–13 869, 2021.

[23] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model:
Model-based policy optimization,” Advances in neural information
processing systems, vol. 32, 2019.

[24] E. Altman, Constrained Markov decision processes. CRC press, 1999,
vol. 7.

[25] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process-
ing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[26] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning
with implicit q-learning,” arXiv preprint arXiv:2110.06169, 2021.

[27] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR,
2018, pp. 1861–1870.

[28] A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe exploration in
deep reinforcement learning,” arXiv preprint arXiv:1910.01708, vol. 7,
no. 1, p. 2, 2019.

[29] Q. Yang, T. D. Simão, S. H. Tindemans, and M. T. Spaan, “Wcsac:
Worst-case soft actor critic for safety-constrained reinforcement learn-
ing,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 12, 2021, pp. 10 639–10 646.

[30] S. Feng, H. Sun, X. Yan, H. Zhu, Z. Zou, S. Shen, and H. X. Liu,
“Dense reinforcement learning for safety validation of autonomous
vehicles,” Nature, vol. 615, no. 7953, pp. 620–627, 2023.

	sec:introduction
	sec:relatedwork
	Safe RL
	Decoupling Performance and Safety
	Dead-Ends Discovery and Avoidance

	Preliminary
	Constraint Markov Decision Processes
	Safe Markov Decision Processes

	METHODS
	Recovery RL
	Dead-ends Discovery and Avoidance
	sec:proof
	Offline Pretrain
	Online Training

	EXPERIMENTS
	Domains
	Offline Data Collection
	Evaluation Metric
	Comparisons with Baselines
	Results
	Main Results
	Ablations
	Decoupled Framework

	CONCLUSION
	References

