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Path Generation for Wheeled Robots Autonomous Navigation on
Vegetated Terrain

Zhuozhu Jian1, Zejia Liu2, Haoyu Shao2, Xueqian Wang1, Xinlei Chen3, and Bin Liang1

Abstract—Wheeled robot navigation has been widely used in
urban environments, but navigation in wild vegetation is still
challenging. External sensors (LiDAR, camera etc.) are often used
to construct point cloud map of the surrounding environment,
however, the supporting rigid ground used for travelling cannot
be detected due to the occlusion of vegetation. This often leads
to unsafe or non-smooth paths during the planning process.
To address the drawback, we propose the PE-RRT* algorithm,
which effectively combines a novel support plane estimation
method and sampling algorithm to generate real-time feasible
and safe path in vegetation environments. In order to accurately
estimate the support plane, we combine external perception
and proprioception, and use Multivariate Gaussian Processe
Regression (MV-GPR) to estimate the terrain at the sampling
nodes. We build a physical experimental platform and conduct
experiments in different outdoor environments. Experimental
results show that our method has high safety, robustness and
generalization. The source code is released for the reference of
the community1.

Index Terms—Field Robots Motion and Path Planning
Collision Avoidance

I. INTRODUCTION

AUTONOMOUS navigation technology for unmanned
ground vehicles (UGVs) has developed rapidly recently

for both indoor [1]–[3] and outdoor [4]–[6] scenarios. With
other technologies [7], [8], various novel applications become
promising, such as city scale sensing [9], [10], post disaster
quick response [11] etc. But navigation on uneven vegetated
terrain remains a challenging task. Due to the presence of
vegetation, the robot’s perception of the environment becomes
inaccurate and more time-consuming.

During the navigation process, the perception of the
environment is very important [12]–[14]. Existing autonomous
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Fig. 1. When wheeled robots navigate autonomously in penetrable
environments, support surface estimation is needed to ensure safety and
optimization of the generated path.

navigation methods usually take the vegetation as the obstacle,
but this method is too conservative, because for the shorter
penetrable vegetation, the wheeled robots have the ability
to pass through vegetation. Also, traditional methods usually
need to build a prior traversability map [15]–[18] for
navigation, which takes a lot of time, especially when accurate
support ground estimation is needed in vegetated environment.
In [4], the authors propose the PF-RRT*(Plane Fitting based
RRT*) algorithm to generate traversable path on point cloud
surfaces, this work achieves great result on uneven terrain.
However, to run the PF-RRT* algorithm in a vegetation
environment, there are still two problems: 1) the point cloud
of vegetation does not correspond to the rigid geometry of the
support ground; 2) Since the safe area is only limited to the
radius envelope of the fitting plane, it is easy to collide with
obstacles.

This work presents a real-time and safe path generation
method to support autonomous navigation on vegetated
terrain for wheeled robots. To solve challenge 1), we
design a hybrid vegetated terrain estimation method, which
fuses proprioception and external perception to generate
support plane. The support plane is used to describe the
local geometrically rigid terrain. To solve 2), the support
plane estimation is integrated to sampling algorithm for
path planning, which reduce the process time since the
traversability map construction computation is skipped. In
addition, the inflation radius is added to the sampling
algorithm to enhance safety.

This work offers the following contributions:
1) A novel approach to accurately estimate the support

plane is proposed, in which Multivariate Gaussian Process
Regression (MV-GPR) based proprioception and external
perception are fused considering uncertainty weighting.
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2) We extend PF-RRT* to PE-RRT* (Plane Estimation
RRT*), in which the safe inflation radius is innovatively
introduced in the sampling algorithm to enhance the
safety of the generated path.

3) We build the experimental platform and conduct real-
world experiments. The effectiveness of our method is
confirmed by comparison with existing methods.

II. RELATED WORK

In vegetated terrain, support surface is often invisible to
external sensors. Therefore, the accurate perception of the
support terrain is the premise of path planning. Some devices
are designed to sense directly the ground. In [19], authors
use an array of miniature capacitive tactile sensors to measure
ground reaction forces (GRF) to distinguish among hard,
slippery, grassy and granular terrain types. [20] produces a
self-supervised mechanism to train the trafficability prediction
model to estimate the trafficability. However, as the length of
the trajectory increases and the terrain becomes more varied,
the algorithm quality degrades.

Some methods attempt to traverse vegetation based on
external sensors. LiDAR is a commonly used external sensor
for navigation. In [21], the authors use a fully-trained
Deep Reinforcement Learning (DRL) network to compute
an attention mask of the environment based on elevation
map constructed by LiDAR. [22] uses Markov random fields
to infer the supporting ground surface based on LiDAR
points. Learning-based methods combined with visual sensors
are often used for outdoor navigation. [23]–[25] apply self-
supervised learning method based on RGB image information
to implement outdoor terrain navigation. [26] defines a
regression problem which estimates predicted error between
the realized odometry readings and the predicted trajectory.
However, learning-based methods often lack robustness and
are difficult to ensure safety [27] [28].

Combining proprioception and external perception to
improve robustness is considered to be a common and effective
approach. [29] provides robustness of hexapod locomotion
in high grass by switching between two locomotion modes
based on proprioceptive and exteroceptive variance estimates.
In [30], the authors propose an attention-based recurrent
encoder integrating proprioceptive and exteroceptive input.
This approach is applied to quadrupeds and validated
experimentally. And in [31], the authors apply Gaussian
process regression (GPR) to estimate support surface including
the height of the penetrable layer. However, the above work
has to build a prior map first, and then analyze the travesability
of each foothold, which can cause large computational expense
and cost of time. And for the more commonly used wheeled
robots, navigation pays more attention to the overall properties
of the ground.

In our work, we propose the PE-RRT* algorithm, which
avoids the explicit maps by sampling to significantly reduce
computational expense. We describe the ground as the set of
circular planes, and fuse the height and slope of the planes
generated by MV-GPR [32] by taking the variance as the
weight. The proposed technology inspires new applications
such as city scale fine-grained sensing [33], [34], temporary
communication infrastructure construction [35] and city scale
3D sensing [36] etc.

Prev-Trajectory
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(NMPC)
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Fig. 2. System Workflow. From left to right: During the movement, the
robot receives the data from LiDAR and IMU, and generates a LiDAR-
inertial odometry. Based on the odometry, point cloud is registered to build
an incremental map. The global planner generates a real-time safe feasible
global path. The local planner based on NMPC (Nonlinear Model Predictive
Control) pubs control inputs to the robot controller to follow the global path.

III. PROBLEM FORMULATION

Our objective is to generate a global path on the rigid
geometric surface based on point cloud representing the
vegetated environment. In our work, we simplify the local
geometric support terrain of a single point into a support
plane (S-Plane) ΦS := {x, y, z, r, p}, which contains the roll
angle r ∈ R, pitch angle p ∈ R and the 3D coordinates
[x, y, z]T ∈ R3 of plane center. We address the problem
defined as follows: In the unknown vegetated terrain, given
the initial and target state projection xstart, xgoal ∈ R2, search
a feasible and optimal global path consisting of W nodes
Γ =

{
(ΦS,i)i=1:W

}
. Alone path Γ , the wheeled robot can

move from xstart to xgoal. The path should satisfy: 1) the
robot can pass safely along the path; 2) avoiding collision with
obstacles along the path; 3) reduce time spent on the move;
4) minimizing the risk of the robot being unable to maintain
a stable posture.

The workflow of our entire system is shown in Fig.2. Our
navigation algorithm is a two-layer structure including global
and local planner. The global planner generates a safe and
feasible global path in real time, which is the main content
of our research. The global planer contains two parts: PE-
RRT* which will be detailly described in Sec.IV-B, and S-
Plane Estimation which will be detailly described in Sec.IV-C.

IV. IMPLEMENTATION

Commonly used path planning frameworks require building
a priori or real-time explicit map. Traversability analysis of the
map is performed before path planning, which costs too much
time. To solve this problem, we propose PE-RRT*, a sampling-
based path planning algorithm. In PE-RRT*, we sample
and analyze directly on the point cloud, avoiding building
an explicit traversability map. PE-RRT* algorithm will be
described in detail in IV-B. For each node, proprioception and
external perception are performed in subsection IV-C1 and
IV-C2, and parameter gets estimated in real time in subsection
IV-C3. The fusion process of proprioception and external
perception to generate S-Plane is in subsection IV-C4. For ease
of understanding, we first introduce the relevant mathematical
basis in IV-A.

A. MV-GPR
Gaussian process regression (GPR) has been proven to be

effective in robot navigation [4] [37]. However, the classical
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Fig. 3. Algorithm overview. From left to right: To generate the RRT tree, ‘Sample’ and ’Steer’ operations are performed to generate a new 2D node. After
combining proprioception and external perception, a S-Plane is obtained. After the ‘Obstacle’ and ‘Infation’ check, we can get a new 3D node containing the
position (x, y, z), orientation (roll, pitch), and corresponding traversability. After ‘Optimize’, ‘Connect’ and ‘Purnbranch’, the RRT tree is expanded.

GP can’t deal with the multi-response problem because of
its definition on R. As a result, the correlation between
multiple tasks cannot be taken into consideration. To overcome
this drawback, [32] proposes multivariate Gaussian process
regression (MV-GPR) to perform multi-output prediction.
Its precise definition based on Gaussian measures and the
existence proof is introduced in [38].

f represents a multivariate Gaussian process with its mean
function u : X 7→ Rd, kernel k : X × X 7→ R
and positive semi-definite parameter matrix Ω ∈ Rd×d.
And Multivariate Gaussian Process (GP) can be denoted
as f ∼ MGP (u, k,Ω). For n pairs of observations
{(xi,yi)}ni=1 ,xi ∈ Rp,yi ∈ R1×d, we assume the following
model:

f ∼MGP (u, k′, Ω) . (1)

Different from conventional GPR method, MV-GPR adpots
the noise-free regression model, thus yi = f (xi) for i =
1, · · · , n. And the noise variance term σ2

n is added into the
kernel k

′
= k (xi,xj) + δijσ

2
n, in which δij = 1 if i = j,

otherwise δij = 0.
With matrix form [f (x1) , · · · ,f (xn)]

T ∈ Rn×d, the joint
matrix-variate Gaussian distribution [39] can be represented
as: [

f (x1)
T
, · · · ,f (xn)

T
]T
∼MN (M,Σ,Ω) , (2)

where mean matrix M ∈ Rn×d, covariance matrix Σ ∈ Rn×n,
Ω ∈ Rd×d and X = [x1, · · · ,xn]T represents the location of
training set.

To predict variable f∗ = [f∗,1, · · · , f∗,m]
T with the location

X∗ = [xn+1, · · · ,xn+m]
T where m represents the test set

number, the joint distribution of the training observations Y =[
yT
1 , · · · ,yT

n

]T
and f∗ is[

Y
f∗

]
∼ MN

(
0,

[
K

′
(X,X) K

′
(X∗, X)T

K
′
(X∗, X) K

′
(X∗, X∗)

]
, Ω

)
, (3)

where K
′

is the covariance matrix of which the (i, j)-
th element

[
K

′
]
ij

= k
′
(xi,xj). Based on marginalization

and conditional distribution theorem [40] [41], the predictive
distribution is derived as

p (f∗|X,Y,X∗) =MN
(
M̂, Σ̂, Ω̂

)
, (4)

M̂ = K
′
(X∗, X)

T
K

′
(X,X)

−1
Y ; (5)

Fig. 4. Safe inflation radius is integrated into RRT tree generation for
enhancing safety. When a node is considered as an obstacle (thick red bar),
the area with radius r centered on this node is considered to be the inflation
area (thin red bar) of the obstacle.

(a) (b)

(c)

Fig. 5. Generated paths with (b) and without (c) safe inflation radius.

Σ̂ =K
′
(X∗, X∗)

−K
′
(X∗, X)

T
K

′
(X,X)

−1
K

′
(X∗, X) ;

(6)

Ω̂ = Ω. (7)

According to the above formulas, the expectation and
variance are respectively E [f∗] = M̂ and cov

(
vec

(
fT
∗
))

=

Σ̂ ⊗ Ω̂. When the dimension of the output variable d = 1
and covariance matrix Ω = I , it means the process transitions
from multivariate to Univariate.

B. PE-RRT*
PE-RRT* algorithm is based on informed-RRT* algorithm

[42] which is widely used in the field of path planning,
efficiently integrates the process of S-Plane estimation into the
RRT tree expansion. The flow of the PE-RRT* is shown in
Fig.3 and Alg.1.Especially, we first introduce a safe inflation
radius r during the sampling process to enhance safety. When
a node is detected as an obstacle, the existing nodes in the
RRT tree with this node as the center and r as the radius will
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be removed shown as the ”red bar” in Fig.4. When the node
is not an obstacle but within the range of r as the radius with
the existing obstacles as the center, it will be divided into the
inflation layer and will not be added to the RRT tree. The
advantage of this method is that there is no need to obtain the
locations of all obstacles in advance. As shown in Fig.5, when
other parameters remain unchanged, the path with r = 0.5m
added is farther from the obstacle than the path without the
radius which can enhance safety.

Some new subfunctions presented in Alg.1 are described
as follows while subfunctions common to the informed-RRT*
algorithm can be found in [42] [4]. Surf-Plane ΦSurf , Pro-
Plane ΦPro, EP-Plane ΦEP and S-Plane ΦS all consist of a
3D plane center point, roll angle and pitch angle.
• Proprioception(ζ, xnew): Given the robot’s Prev-Trajectory
ζ and the node’s 2D coordinate xnew, the Pro-Plane is
returned. The implementation will be discussed in detail in
part IV-C1.

• ExPerception(ΦSurf , ζ, xnew): Given the robot’s
Prev-Trajectory ζ, the Surf-Plane ΦS and the node’s
2D coordinate xnew, the EP-Plane is returned. The
implementation will be discussed in detail in part IV-C2.

• SupportFuse(ΦEP , ΦPro): Given the Pro-Plane ΦPro and
EP-Plane ΦEP , the fused S-Plane is returned. The
implementation will be discussed in detail in part IV-C4.

• ObsCheck(ΦSurf , ΦS): Given the S-Plane ΦS and Surf-
Plane ΦSurf , we use the height h of vegetation as the
criterion for judging obstacles, and it can be obtained by
h = zSurf − zS , where zS represents the height of ΦS and
zSurf represents the height of ΦSurf . When the vegetation
in an area is too high, there are usually rigid trees, which
can cause collisions. So we define a threshold value hcrit,
when h > hcrit, the node is considered to be obstacle, the
function returns ”True”, otherwise ”False”.

• InflationCheck(ΦS , ΞObs): Given the S-Plane ΦS and
obstacle set ΞObs, if for any element in ΞObs, its Euclidean
distance in 2D x − y space from ΦS is greater than the
inflation radius r, then the function returns ”True”, otherwise
”False”.

• PurnBranch(T, ΦS): Given the RRT tree T and S-Plane
ΦS , for each node in T , if its Euclidean distance in 2D
x − y space from ΦS is smaller than r, the node and its
branch will be deleted.

• TraEvaluation(ΦS): Given the S-Plane ΦS , the
traversability is obtained from the slope and the uncertainty
of ΦS . The implementation will be discussed in detail in
part IV-C4.

C. S-Plane Estimation

In order to generate S-Plane, we perform proprioception
and external perception on the node to generate Pro-Plane and
EP-Plane respectively.

1) Proprioception:
The Proprioception of the robot usually depends on the

sensors of the robot itself (wheel speedometer, IMU, etc.),
but usually causes cumulative errors. In our experiments,
FAST-LIO2.0 [43] is adopted as an odometer, in which the
information of IMU and LiDAR is fused to improve the
positioning accuracy.

Algorithm 1: PE-RRT*(Nstart,Ngoal, k)

1 V ← {Nstart}, E ← ∅, σ∗ ← ∅,Ωgoal ← ∅, ΞObs ← ∅;
2 T = (V,E);
3 for i= 1 to k do
4 if S∗ ̸= ∅ then
5 xrand ← SampleEllipsoid();
6 else
7 xrand ← RandomSample();
8 Nnearest ← FindNearest(T, xrand);
9 xnearest ← ProjectToPlane(Pos(Nnearest));

10 xnew ← Steer(xnearest, xrand);
11 ΦSurf ← FitPlane(xnew);
12 ΦPro ← Proprioception(ζ, xnew);
13 ΦEP ← ExPerception(ΦSurf , ζ, xnew);
14 ΦS ← SupportFuse(ΦEP , ΦPro);
15 if !ObsCheck(ΦS , ΦSurf ) then
16 if !InflationCheck(ΦS , ΞObs) then
17 Nnew ← TraEvaluation(ΦS);
18 else
19 T ← PurnBranch(T, ΦS);

ΞObs ← ΞObs ∪ {ΦS};
20 if Nnew ̸= ∅ and Pos(Nnew) ∈ Xtrav then
21 Ωnear ← FindNeighbors(V,Nnew);
22 if Ωnear ̸= ∅ then
23 Nparent ← FindParent(Ωnear,Nnew);
24 V ← V ∪ {Nnew};
25 E ← E ∪ {(Nparent,Nnew)};
26 T ← (V,E);
27 T ← Rewire(T,Ωnear,Nnew);
28 if InGoalRegion(Nnew) then
29 Ωgoal ← Ωgoal ∪ {Nnew};
30 S∗ ← GeneratePath(Ωgoal);
31 return S∗

In this module, MV-GPR is used for estimate Pro-Plane
ΦPro of new node. To reduce the computational expense,
the training size has to be limited [31]. We record the
position {xi, yi, zPro,i}i=1:N and pose {rPro,i}i=1:N ,
{pPro,i}i=1:N of the previous N steps of the robot. The
training input data comprises the horizontal position of the

prev-trajectory X =
[
[x1, y1]

T
, · · · , [xN , yN ]

T
]T
∈ RN×2,

while the output data is defined as YPro =[
[zPro,1, rPro,1, pPro,1]

T
, · · · , [zPro,N , rPro,N , pPro,N ]

T
]T
∈

RN×3. Note that in order to ensure that the yaw angle make
no difference to the slope, we extract roll r and pitch p from
rotation matrix Ri, which can be obtained from odometer.
And YPro,i = [zPro,i, rPro,i, pPro,i]

T for i = 1 · · ·N , where

pPro,i = atan2

(
R31,i,

√(
R32,i

)2
+

(
R33,i

)2)
, (8)

rPro,i = atan2

(
− R32,i

cos (pPro,i)
,

R33,i

cos (pPro,i)

)
. (9)

.
Quantifying uncertainty is crucial for assessing the accuracy

of plane estimations, which will be discribed in detail in IV-C4.
For proprioception, the uncertainty σ2

n,Pro of the training set is
from TF, which is set to be a constant value in our experiment.
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In MV-GPR, the covariance matrix Σ depends on inputs and
the kernel function k. Compared to other kernel functions
(such as linear, rational quadratic and Matern [44]), squared
exponential (SE) kernel is more commonly used due to its
simple form and many properties such as smoothness and
integrability with other functions. The kernel is defined as:

kSE

(
x, x

′
)
= s2f exp

−

∥∥∥∥x−x
′ ∥∥∥∥2

2
2l2 , (10)

where s2f is overall variance and l is kernel length scale. Due to
the properties of SE kernel, when the distance between inputs
(Euclidean distance) is farther, the variable z, r and p variance
becomes larger, which means that the Pro-Plane estimated by
proprioception becomes more uncertain.

We take the 2D coordinates xnew = [x∗, y∗] of a single
node as the input of the test set, and {X,YPro} as the
training set, according to formula 5 6 7, we can get the
prediction of height ẑPro,∗ and pose r̂Pro,∗, p̂Pro,∗ of the
node. Thus, we can get the estimation of Pro-Plane is Φ̂Pro =
{x∗, y∗, ẑPro,∗, r̂Pro,∗, p̂Pro,∗}. The height variance σ2

Pro,z,∗,
roll variance σ2

Pro,r,∗ and pitch variance σ2
Pro,p,∗ can be

obtained from the Kronecker product of Σ̂ and Ω̂.
2) Externel Perception: Compared with proprioception,

external perception relies on point cloud map generated by
LiDAR. To get a new EP-Plane ΦEP , we first fit the Surf-Plane
ΦSurf corresponding to the 2D node. Compared to the SVD
method used in PF-RRT* [4], we adopt RANSAC method to
fit a plane, which can avoid the influence of tall rigid obstacles
(such as tall trees, large stones) on the slope of the fitted Surf-
Plane.

For slope estimation of EP-Plane, we consider roll and
pitch of EP-Plane and Surf-Plane to be the same: rEP,∗ =
rSurf,∗, pEP,∗ = pSurf,∗, due to the assumption of uniformity
and continuity of penetrable vegetation. And so is the
corresponding variance: σ2

EP,r,∗ = σ2
Surf,r,∗, σ2

EP,p,∗ =
σ2
Surf,p,∗. The variance of σ2

Surf,r,∗ and σ2
Surf,p,∗ obtained

by the empirical formula:

σ2
Surf,r,∗ = κr

ΣK
k=1

[
n ·

(
xkΦ,∗ − xSurf,∗

)]2
K − 1

, (11)

σ2
Surf,p,∗ = κp

ΣK
k=1

[
n ·

(
xkΦ,∗ − xSurf,∗

)]2
K − 1

, (12)

where the Surf-Plane envelops K points on the point cloud
map, the k-th point’s 3D coordinate is xkΦ,∗ ∈ R3, and the
plane center is xSurf,∗ ∈ R3. n represents the normal vector
of Surf-Plane. κr and κp are constant coefficient.

And the estimation of zEP is more complicated.
Vegetation depth H is introduced as an intermediate
variable for estimating zEP . Take Prev-Trajectory X =
[[x1, y1]

T, · · · , [xN , yN ]T as the inputs and corresponding
vegetation depth Y = [H1, · · · , HN ]

T as the outputs. For
the i-th vegetation depth Hi, it can be obtained as Hi =
zSurf,i − zPro,i, where zSurf,i is the Surf-Plane height. Its
uncertainty σ2

H,i = σ2
Pro,z,i+σ

2
Surf,z,i contains the uncertainty

σ2
Pro,z,i from TF and the uncertainty σ2

Surf,z,i from Surf-Plane
due to the independence assumption. And σ2

Surf,z,i is defined
as:

σ2
Surf,z,i =

∑K
k=1

(
zkΦ,i − zSurf,i

)2
K − 1

, (13)

EP-PlaneS-Plane

Pro-Plane Surf-Plane

Traveled Path Predicted Path

Fig. 6. As the robot moves, the estimated planes for the node changes.

where the height of the k-th point is zΦ,i,k, and the height of
the plane center is zSurf,i for i-th Surf-Plane.

Thus the vegetation depth Ĥ∗ of a new node and its variance
σ2
H,∗ can be obtained based on equation 5 6 7. And for the

new node, the height of EP-Plane is ẑEP,∗ = zSurf,∗ − Ĥ∗,
and its variance σ2

EP,∗ = σ2
H,∗ + σ2

Surf,z,∗ consists of two
parts: covariance generated from GPR σ2

H,∗; covariance of
Surf-Plane σ2

Surf,z,∗. Note that the σ2
Surf,z,∗ calculation of

Surf-Plane is consistent with formula 13.
3) Parameter Estimation: In the process of the robot

moving forward, in order to ensure the accuracy of MV-
GPR, it is necessary to estimate its parameters in real
time. For proprioception which contains a 3-variate Gaussian
process, the estimated parameters include kernel matrix
parameters s2f , l2, covariance matrix Ω = ΦΦT , where for
ψ11, ψ22, ψ33, ϕ31, ϕ21, ϕ32 ∈ R:

Φ =

eψ11 0 0
ϕ21 eψ22 0
ϕ31 ϕ32 eψ33

 , (14)

to ensure the positive definiteness of the matrix. We use the
maximum likelihood method to estimate the parameters. For
negative log marginal likelihood

L =
nd

2
ln (2π) +

nd

2
ln det

(
K + σ2

n

)
+

d

2
ln det (Ω)

+
1

2
tr
((

K + σ2
n

)−1
Y Ω−1Y T

)
.

(15)

The derivatives of the negative log marginal likelihood with
respect to parameter s2f , l2, ψii and ϕij can be obtained.
Formula derivation reference [32].

For external perception witch is Univariate Gaussian
process, we only need to estimate the kernel s2f , l2.

4) Plane Fusion: The vegetation height varies in different
environments. On the grassland, the vegetation is usually
short, and the point cloud returned by the LiDAR is relatively
smooth; while in the bushes, the vegetation is usually high and
uneven, and the point cloud is rougher; And for tall trees, it is
considered to be impassable. As shown in Fig.6, for Pro-Plane,
the source of variance is mainly the Euclidean distance, it can
more accurately estimate the terrain conditions of the nearby
area, but has a poor estimation for the far terrain; for EP-Plane,
the source of variance includes both the distance and the the
surface condition of the point cloud. In order to accurately
estimate the support ground in different environments, the
variance is used as a weight to fuse Pro-Plane and EP-Plane.
We define the weight as follows:
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w[·] = σ2
EP,[·],∗/

(
σ2
EP,[·],∗ + σ2

Pro,[·],∗

)
, (16)

where the symbol [·] here is to refer to r, p and z for
simplifying the formula. Thus the estimation of S-Plane
Φ̂S,∗ = {x∗, y∗, ẑS,∗, r̂S,∗, p̂S,∗} can be obtained as:

[̂·]S,∗ = w[·] [̂·]Pro,∗ +
(
1− w[·]

)
[̂·]EP,∗. (17)

When the point cloud in the area where the robot is driving
is relatively cluttered, wz , wr and wp will become larger,
and the robot will trust proprioception more; otherwise, the
robot will trust external perception more, as shown in Fig.6.
In this way, the robustness and safety of the algorithm can be
enhanced. Note that when the vegetation height exceeds the
threshold hcrit, it is considered as an obstacle, and the RRT
tree will delete the node and nearby nodes.

In the process of RRT tree generation, proper introduction of
traversability can improve the safety and stability of the path.
When the vehicle is driving, we often pay less attention to the
road conditions in small areas (pebbles, clods, etc.). Instead,
we are more concerned about the information of the slope s,
the uncertainty ε and the vegetation height h. The robot travels
on terrain with shallow vegetation and small slope, so it is less
likely to slip. The slope s can be obtained from roll and pitch
of the S-Plane:

s = arc cos (cos (r̂S,∗) cos (p̂S,∗)) , (18)

and ε can be obtained from σ2
S,z,∗, σ2

S,r,∗,σ2
S,p,∗:

ε = σ2
S,z,∗ + µ ∗

(
σ2
S,r,∗ + σ2

S,p,∗
)
, (19)

where µ is a constant coefficient. Thus, the traversability τ
can be described as:

τ = α1
s

scrit
+ α2

ε

εcrit
+ α3

h

hcrit
, (20)

where α1, α2, and α3 are weights which sum to 1. scrit,
εcrit, and hcrit, which represent the maximum allowable slope,
uncertainty, and vegetation height respectively, are critical
values that may cause collision or rollover. In PE-RRT*,
cost includes Euclidean distance d from parent node and
traversability: Cost = d/ (1− τ). When the RRT tree is
expanded, the nodes with lower cost will be selected first.
With the increase of sampling points, the generated path will
gradually tends to be optimal.

V. EXPERIMENTS
We conduct real-world experiments to verify the

effectiveness of our work utilizing the physical platform
illustrated in Fig.7. Our algorithm works under ROS Melodic
operating system, generating the global path at 2Hz and
local path at 10hz by NMPC method using CasADI. The
resolution of global map is set to 2cm, the radius for plane
estimation is 15cm, and the inflation radius is set to 25cm.
Note that the starting point is set to be the origin of the map,
i.e xstart = [0, 0]

T.
We conduct experiments in three different scenarios. In the

first scenario, the robot needs to traverse across a hillside
with grass and trees. And the snapshots of our algorithm in
the main scenario are shown in Fig 8. The robot chooses

Platform
Main View Side View

RS LiDAR
Onboard 
Computers Camera

IMUPower for RS LiDAR 
& Computers

4WD UGV

31cm 40.5cm 10.5cm

10cm

30cm

Fig. 7. Robot platform for the experiment. A four-wheel differential-drive
mobile robot equipped with RS-Helios 5515 and IMU. RS-Helios 5515 is
a 32-beam LiDAR, which boasts a 70° ultra-wide vertical field of view.The
camera is only for front view in the video. Two Intel@NUC with an i5 2.4GHz
CPU and 16GB memory are used to run the planning algorithm and the SLAM
algorithm, respectively. And a battery is installed to power both two computers
and the LiDAR.

TABLE I: Comparison between each method

Algorithms Path
len(m)

Safety
deg(m)

Comp
time(s)

Cons
time(s)

Speed
dev(m/s)

PE-RRT* 11.869 0.853 0.5 38 0.0069
PF-RRT* 13.006 0.798 0.5 43.8 0.0343
Pro-RRT* Collision 0 0.5 - 0.0144

RRT*+PrevMap 18.761 0.691 1.3-2.5 74.3 0.0254

to generate path where the Vegetation Height is smaller, as
shown in Fig.8(a). If the robot detects an obstacle (long red
bar), it navigates avoiding the obstacle and continues moving
forward, as depicted in Fig.8(b). Once the robot enters a safe
area with little grass cover, it engages in longer-range global
path planning preferring gentle slopes of the supporting plane,
as illustrated in Fig8(c). In the end, the robot reaches the target
point and stops, as depicted in Fig8(d). Note that compared
to the height of the camera, the height of vegetation ranges
from from 0.1m to 0.2m, which can seriously block the image
captured by the camera as shown in Fig.8(a)(d), which could
lead to the failure of the vision-based navigation and obstacle
avoidance methods like [23]–[26]. For evaluation, we compare
ours with 3 baseline approaches In this scenario:

1) PF-RRT* [4]: RRT* in which each node fits the plane
directly on the point cloud map.

2) Pro-RRT*: RRT* in which each node estimates the S-
Plane directly based on the Prev-trajectory.

3) RRT*+PrevMap: Estimate the S-Plane based on MV-GPR
to generate the previous traversability map. Based on the
map, RRT* is used to obtain the global path.

Each algorithm generates trajectories with different colors
is shown in Fig.9. And to intuitively compare the performance
of different algorithms, we adopt the following indicators to
compare the four algorithms:
• Path len: length of the path from the start to the end.
• Safety deg: minimum distance to the obstacle.
• Cons time: consuming time from start to goal.
• Comp time: computation time to generate a global path.
• Speed dev: speed deviation of the robot, reflecting the

stability of the robot during navigation.
And the results of the evaluation are presented in Table I. Since
the supporting ground cannot be estimated, PF-RRT* chooses
to avoid vegetation, which increases its ”Path len” and ”Comp
time”. And as shown in Fig.9, on uneven terrain where the
vegetation is often more complex, PF-RRT* cannot recognize
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(a) (b) (c) (d)

Global Path

Local Path
Support Plane

Prev-Trajectory

Target Point

Traversability

0 0.5 1

Vegetation 
Estimation Obstacle

Fig. 8. The blue line indicates the global path generated by PE-RRT*, and the plane with normal vectors indicates the estimation of the support plane at the
global path, with passability from blue to red. The green line demonstrates the local path planning generated by NMPC based on the global path, and the
pink line shows the Prev-Trajectory used for MV-GPR training. The rectangles correspond to the vegetation estimates at the locations sampled by PE-RRT*
with traversability from blue to red, and the red indicate the obstacles and the sampling points within their inflation radius. The figures (a), (b), (c) and (d)
show the strategy of our method in different states.

Fig. 9. The trajectory of the four approaches. White dots represent the start
and target points, the background is the contour line of global map whose
color changes from red to blue with height increasing.

Park

Garden

Fig. 10. Experiments in the garden and park. Our algorithm gives the optimal
global path of these scenarios with the global point cloud map in the
background.

steep slope which can cause danger. By comparison, PE-RRT*
is more robust due to the uncertainty-weight based fusion of
proprioception and external perception. Pro-RRT* fails and
collides with the tree since it does’t use the point cloud
information to avoid obstacles. RRT*+PrevMap occurs with
several lags due to the construction of the explicit traversability
map, which is time consuming, in contrast, PE-RRT* only
takes 63.27% of the time. Ours efficiently and accurately
estimates the height and slope of the node, ensuring the
asymptotic optimality of global path generation and smooth
obstacle avoidance.

To demonstrate the generalizability of our algorithm, we
conduct experiments in other scenarios with same parameters,
as shown in Fig 10 (more details at 2).

VI. CONCLUSIONS AND DISCUSSIONS
This paper proposes a novel path planning method (PE-

RRT*) on vegetated terrain based on sampling tree and support
plane estimation, in which safe inflation radius is added
into RRT tree to avoid collision. Proprioception and external
perception are fused to generate support plane based on the
uncertainty weight. In addition, we compare our method with
three methods (PF-RRT*, Pro-RRT* and RRT*+PrevMap) in
real scenarios. The experimental results show that our method
is safer and more efficient than other methods in global path
planning.

Discussions: The Plane-Estimation algorithm is based on
incremental point cloud map and previous trajectory. In
addition to LiDAR, depth camera and solid-state LiDAR can
also be used to build the map. Also, UWB-based or vision-
based positioning algorithms can be used to record historical
trajectories. In vegetation environments where sensors can be
easily blocked, these two methods have lower accuracy or are
easily lost compared to LiDAR-inertial odometry. However,
due to the properties of the SE kernel function, the supporting
ground and vegetation layer need to satisfy the assumptions
of smoothness and continuity. Therefore, the effect of the
algorithm will be better in areas where the vegetation and
terrain height are relatively uniform. When the terrain is
steeper, or the vegetation becomes more complex, the accuracy
of support plane estimation decreases.
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