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Soft and Rigid Object Grasping With
Cross-Structure Hand Using Bilateral Control-Based

Imitation Learning
Koki Yamane1, Yuki Saigusa1, Sho Sakaino1 and Toshiaki Tsuji2

Abstract—Object grasping is an important ability required for
various robot tasks. In particular, tasks that require precise force
adjustments during operation, such as grasping an unknown
object or using a grasped tool, are difficult for humans to
program in advance. Recently, AI-based algorithms that can
imitate human force skills have been actively explored as a
solution. In particular, bilateral control-based imitation learning
achieves human-level motion speeds with environmental adapt-
ability, only requiring human demonstration and without pro-
gramming. However, owing to hardware limitations, its grasping
performance remains limited, and tasks that involves grasping
various objects are yet to be achieved. Here, we developed a
cross-structure hand to grasp various objects. We experimentally
demonstrated that the integration of bilateral control-based
imitation learning and the cross-structure hand is effective for
grasping various objects and harnessing tools.

Index Terms—Grippers and Other End-Effectors, Grasping,
Imitation Learning

I. INTRODUCTION

ROBOTS are expected to replace human physical labor,
and object grasping is an important skill required for

various tasks. In particular, tasks that require precise force
adjustments during operation, such as grasping an unknown
object or using a grasped tool, are difficult for humans to
program in advance.

Accordingly, methods that employ machine learning have
been proposed to perform such complex tasks. Reinforcement
learning, which is one of such methods, allows agents to be
trained by simply defining a reward function. Martı́n-Martı́n et
al. performed reinforcement learning using variable impedance
control in an end-effector space (VICES) as the action space,
and successfully completed the task with significant contact
with the robot [1]. Beltran-Hernandez et al. achieved a contact-
rich task using modified parallel position as well as force
and admittance control as the action space for reinforcement
learning [2]. However, a few challenges persist, such as the
difficulty in defining an appropriate reward function for the
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task and the need for many trials owing to low sample
efficiency. Furthermore, several methods employ simulation
to generate large amounts of data at a low cost; however, it is
difficult to simulate non-rigid objects.

In contrast, imitation learning, which learns behaviors from
human demonstrations, is known as a method with high
sample efficiency because it learns from successful data. With
imitation learning, a human can acquire complex behaviors
simply by providing instructional data requiring neither dif-
ficult programming nor the definition of a reward function.
Force-controlled methods have been proposed, especially for
contact-intensive tasks. Rozo et al. adapted Gaussian mixture
models and variable impedance control to achieve human-
robot coordination tasks [3]. Wang et al. combined trajectory
imitation learning and reinforcement learning-based force con-
trol to achieve assembly tasks [4]. However, the teaching data
collection method often used in imitation learning, namely
direct teaching [5], in which the robot is directly manipulated
by human touch, makes it difficult to record the force applied
by the human because forces applied by the human and
reaction forces from the environment are applied to the robot
simultaneously and cancel each other out. In addition, direct
teaching records the observed values of each joint angle, and
imitation learning adopts the recorded values as the correct
data for the command values; however, in high-speed move-
ments, there is an error between the command and observed
values owing to the delay of the control system. Therefore,
most imitation learning methods require the robot to move
sufficiently slow for the delay to be negligible. Consequently,
the robot moves significantly slower than humans.

However, bilateral control-based imitation learning [6] was
proposed as an adaptive force control system. In 4-channel
bilateral control [7], two robots, a leader and a follower,
are employed to measure the reaction force applied by the
robot from the environment and that applied by the human
separately. By adopting the teaching data of the force, adaptive
motion similar to that of humans can be achieved via con-
tinuous motion determination and fast motion. This method
has been validated in human-robot cooperation [8], letter
writing [9], and scoops and transportation of pancakes [10].
However, these experiments were conducted with a tool fixed
to the robot, and bilateral control-based imitation learning is
yet to be validated for tasks including grasping, such as grasp
of various unknown objects or use of a grasped tool, owing to
the constraints imposed by the ability and operability of the
hardware, including grippers.
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Although various grippers have been proposed for object
grasp, few are suitable for measuring human force. Conven-
tional grippers are based on suction or one-degree-of-freedom
rotary and linear motion types [11]; however, simple structured
grippers can only grasp a limited range of objects. Various
types of grippers that can grasp several hard and soft objects
have been proposed. For example, two-finger tendon-driven
grippers [12], which are composed of rigid links connected
through flexible joints; jamming grippers [13], which adap-
tively change their shapes by controlling the air pressure in
a balloon membrane filled with grains; and farmHand [14],
which generates van der Waals forces using the structure
of a gecko’s finger. Nevertheless, because these grippers are
made of soft materials, it is difficult for humans to manipulate
them by applying forces directly from the outside, and it is
also difficult to measure these forces because neither forces
applied by humans nor reaction forces from the environment
are transmitted to the actuator. To record movements including
applied and reaction forces, it is required that a gripper features
a rigid body that can be easily manipulated with a low degree
of freedom and can grasp various objects.

In this study, we developed a gripper suitable for object
grasping using bilateral control and successfully collected
teaching data for object grasping tasks that require force levels
to be fine-tuned during operation, such as grasping several
unknown objects and employing a grasped tool. The developed
gripper can grasp various objects, including small and thin
objects, owing to its crossed structure, while satisfying the
requirements in 4-channel bilateral control. It solely includes
rigid bodies and can be easily manipulated with one degree
of freedom. In addition, the developed gripper was subjected
to imitation learning with teaching data obtained using the
developed gripper and achieved high success rates in two tasks:
grasping various unknown objects which required soft grasp-
ing, and a letter-writing task, which required rigid grasping.

The key contributions of this study are presented below.
• We developed a simple single-degree-of-freedom hand

with cross-structure that can measure the force of a
human motion in complex grasping tasks.

• We experimentally verified that the robot can perform
soft and rigid grasping in two tasks: grasping various
unknown objects and using a grasped tool.

II. RELATED WORKS

A. Object Grasping

Object grasping is an important ability required in several
robot tasks; hence, most of this study was conducted accord-
ingly. Existing models can be broadly divided into two types:
model-based methods, in which the 3D shape and category of
the object are known, and model-free methods, in which there
is no prior information about the object. The model-based
method provides a highly reliable grasp. However, it cannot
guarantee action on unknown objects [15]. In contrast, model-
free methods can handle unknown objects. Consequently,
model-free methods are expected to be implemented. A model-
free method has been proposed to train a neural network using
RGB-D images or point clouds as input, and a graspable pose

has been adopted as the output [16], [17]. Although these
methods can handle objects of various shapes, they require
a large amount of data for generalization because they take
high-dimensional data as input. In addition, it is difficult to
consider intrinsic properties such as the density and stiffness
of an object based solely on visual information.

B. Imitation Learning

Imitation learning, which learns motions from human ma-
nipulation data, has been garnering attention as a method
with high sample efficiency among robot control methods
using machine learning, and successful learning of grasping
motions has been reported [18]–[20]. It is an end-to-end
learning method that learns the required output directly from
the data and can easily handle complex behaviors to reproduce
following a human trajectory.

C. Bilateral Control-Based Imitation Learning

Bilateral control-based imitation learning [6], [8]–[10], [21]
is an imitation learning method that employs data collected by
4-channel bilateral control.

In direct teaching, which is the typical approach to collect
teacher data for imitation learning, a human applies a force to
a robot directly, and the robot is subjected to both the human-
applied force and the reaction force from the environment
simultaneously, which cannot be measured independently.
Meanwhile, 4-channel bilateral control employs two robots
and separates the robot on the side where the human applies
the force and the robot on the side where the robot receives
the reaction force from the environment. It allows obtaining
information on the human-applied force and the reaction force
independently. Using this information for imitation learning
allows mimicking the force applied by humans.

Furthermore, bilateral control-based imitation learning can
move robots at the same speed as humans. Although in
conventional imitation learning, the next response value is
predicted from the current response value, the response and
command values do not match because robots exhibit phase
delay due to imperfect control. Therefore, robots need to move
at a speed that allows them to ignore this difference and
move significantly slower than humans. Meanwhile, bilateral
control-based imitation learning predicts the next command
value based on the response value of the autonomous robot. It
enables learning that considers the control delay and achieves
fast autonomous motion like humans.

III. CONTROL SYSTEM

A. Manipulator

CRANE-X7, a manipulator manufactured by RT corpora-
tion, was employed. The appearance of the manipulator is
presented in Fig. 1. The manipulator exhibits seven degrees
of freedom, while the gripper exhibits one degree of freedom,
thereby providing a total of eight degrees of freedom. We
replaced the robot’s hand with a hand later described.
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Fig. 1: CRANE-X7 with developed hand

B. Position and Force Hybrid Controller

Each axis was controlled using a position and force hybrid
controller. The block diagram of the controller is presented in
Fig. 2.

The proportional-derivative (PD) control was applied to the
position, and the proportional (P) control was applied to the
force. The disturbance torque of each joint τ̂dis was calculated
and suppressed using a disturbance observer (DOB) [22]. The
control frequency was set to 500 Hz.

The angle of each joint was obtained from the rotary
encoder, and the angular velocity was calculated by pseudo-
differential. Although the reaction torque applied to each axis
needs to be observed for this control, it cannot be measured
directly because CRANE-X7 does not include a torque sensor.
Hence, the control system was implemented using sensorless
force control. The torque response value τ̂res was estimated
using a reaction force observer (RFOB) [23].

The torque reference value was calculated as

τ ref =
J

2
Kp(θ

cmd − θres)

+
J

2
Kd(θ̇

cmd − ˆ̇θ
res

)

+
1

2
Kf (τ

cmd − τ̂ res) + τ̂ dis (1)

τ̂ dis =
gDOB

s+ gDOB
(τ ref − Jsˆ̇θ

res

) (2)

τ̂ res = τ̂ dis − gDOB

s+ gDOB
(D

ˆ̇
θ
res

+M(θ)) (3)

ˆ̇θ
res

=
gds

s+ gd
θres (4)

where J , D, M(θ), gDOB , and gd are the moment of inertia
of the joint, coefficient of viscous friction, gravity, and cut-off
frequencies of the low-pass filters, respectively. In addition,
Kp, Kd, and Kf represent the control gains of position,
velocity, and force controls, respectively. These parameters
are set to the same values as presented in related work [10].
Here, θ, θ̇, and τ denote the angle, angular velocity, and torque
of each joint, respectively, and the superscripts “cmd,” “res,”
“ref,” and “dis” denote the command, response, reference, and
disturbance values, respectively;ˆdenotes the estimated value.
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Fig. 2: Block diagram of position and force hybrid controller

C. 4-Channel Bilateral Control

To collect demonstration data for imitation learning, we
employed 4-channel bilateral control [7], which is a system
that comprises two robots: a leader directly manipulated by a
human and a follower of the leader. The system controls the
position and torque of the two robots to synchronize them.
The angle, angular velocity, and torque command values for
the 4-channel bilateral control are defined as

θcmd
f = θres

l ,θcmd
l = θres

f (5)

θ̇cmd
f = θ̇res

l , θ̇cmd
l = θ̇res

f (6)

τ cmd
f = −τ res

l , τ cmd
l = −τ res

f (7)

where subscripts l and f represent the leader and follower,
respectively.

Using torque synchronization, the operating human can ob-
serve the reaction force from the environment to the follower
robot and control the force of the follower robot. The position
is controlled such that the leader’s and follower’s joint angles
match each other by setting the follower’s and leader’s joint
angles as command values, respectively. Regarding the torque,
the sign of the torque applied to the leader’s joints (τ res

l )
was reversed to represent the torque exerted by humans, and
the sign of the torque applied to the follower’s joints (τ res

f )
was reversed to represent the reaction force received by the
follower from the environment.

IV. CROSS-STRUCTURE HAND

A simple robot hand was developed for grasping tasks using
bilateral control-based imitation learning. An overview of the
hand is shown in Fig. 3.

Given that robot hands with multiple joints increase the size
and cost of the entire mechanism, a two-finger gripper, which
has the simplest configuration, is practically preferable [11].
For a two-finger gripper to enclose an object, the tips of the
fingers must be curved inward. However, with such a shape,
the hand cannot be closed any further when the tips of the
fingers of the hand hit the tips of the fingers on the opposite
side, as illustrated in Fig. 4 (a). This creates a gap on the root
side of the hand, and force cannot be applied to an object
smaller than this gap. Therefore, we adopted a shape in which
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(a) opened (b) closed

Fig. 3: Overview of cross-structure hand

(a) typical rotary hand (b) cross-structure hand

Fig. 4: Feature of cross-structure hand

the tip of the hand is divided. This allows the tip to cross and
close to the root, allowing it to grasp thin objects and apply
force, as illustrated in Fig. 4 (b).

As a design specification, a cylinder with a diameter ranging
from 5 to 60 mm was assumed to be grasped. The maxi-
mum and minimum grasp size of the hand are presented in
Figs. 5 (a) and 5 (b). Moreover, considering the trade-off
between strength and graspable size, the finger width was
assumed to be 9.4 mm, and the finger space was 10.4 mm
(the clearance was 1 mm). The finger width and space are
presented in Fig. 5 (c). An FDM 3D printer was employed
to create this hand using polycarbonate, which is a hard and
light element.

In addition, the tip of the hand has a pointed shape similar to
that of a nail. This makes it easier to insert the fingers into the
gap between the object and ground when grasping the object
and allows strong grasping action at the root side. The shape
of the nail was designed so that the indentation is tangent to
the straight slot, as shown in Fig. 5 (d).

Moreover, finger holes were added to improve operability
because the robot was intended for bilateral control. Hence, it
is better to operate the entire robot with one hand.

V. SYSTEM FOR BILATERAL CONTROL-BASED IMITATION
LEARNING

A. Network Architecture

Here, the Follower to Follower and Leader (F2FL)
model [9], which predicts the next follower and leader states
from the current follower state and comprises a long short-
term memory (LSTM) [24], was adopted as the neural network
architecture for imitation learning. The proposed network
features 24 dimensions of input ([angle, angular velocity,
torque] × [8 degrees of freedom]), 6 or 8 layers of LSTM
with 400 units, and one layer including all connected layers
with 48 units ([angle, angular velocity, torque] × [8 degrees
of freedom] × [leader, follower]). As an output layer, a linear

(a) maximum grasp size (b) minimum grasp size

(c) finger width and clearance (d) nail design

Fig. 5: Design of cross-structure hand
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Fig. 6: Network architecture

layer was used to connect from 400 dimension LSTM output
to the 48-dimension output. The number of LSTM layers was
modified according to the task. To prevent overtraining, each
layer of the LSTM employed dropout, which ignores node
connection with a probability of 0.1. The inputs were the
response values of the follower for the current step, whereas
the outputs were the leader’s and follower’s command values
for the next step. The entire picture of the neural network
model is illustrated in Fig. 6.

B. Dataset

Here, data acquired at 500 Hz were decimated to 25 Hz via
sampling every 20 steps. When training a neural network with
time-series data, the learning efficiency can be improved by
reducing the sampling frequency to a certain degree [19]. In
addition, the number of data can be increased by a factor of
20. Furthermore, in combination with a low-pass filter, high-
frequency components that do not require imitation can be
eliminated from the data, thereby increasing the stability of
the operation. The data were normalized for training the neural
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(a) w/o nail (b) w/o cross (c) w/o nail, cross

Fig. 7: Hands for preliminary experiment

(a) triangle block picking (b) pen cap picking

Fig. 8: Task for preliminary experiment

network by setting the mean to zero and the standard deviation
to one. In addition, normally distributed noise with a variance
of 0.01 was added to the input.

VI. EXPERIMENT

Two tasks were set up to evaluate the generalizability of
soft and rigid grasping: a pick-and-place task as soft grasping
and a letter-writing task as rigid grasping.

A. Preliminary

To confirm the effectiveness of the proposed hand, we
created versions of the hand without the crossing structure
and the claw, respectively. To compare these hands, two typical
grasping tasks are prepared: triangle block picking and pen cap
picking. The success rate was verified by teleoperation with 4-
channel bilateral control, not imitation learning. Experiments
are conducted 5 times for each setting by one operator. The
hands for compare-experiments are shown in Fig. 7, the
overviews of tasks are shown in Fig. 8 and the results of the
experiments are provided in Table I.

1) Triangle block picking: The first task was picking a
triangle block, as shown in Figure 8 (a). Success or failure
was judged when the block completely left the table. The
results of the experiment showed that the hands without nails
could not pick up. It is because they cannot slide their fingers
under the block. On the other hand, the hands with claws
were able to slide their fingertips under the block, and by
enclosing the block with their hands, they were able to apply
force appropriately and pick up it easily. These results indicate
that the fingertips need to be slid under the object to grasp an
object with sloping sides, such as a triangular prism, which

TABLE I: Success rate of preliminary experiments

task proposed w/o nail w/o cross w/o nail
w/o cross

triangle block picking 100 0 100 0
pen cap picking 100 100 0 0

exerts downward force when a lateral force is applied, and that
the nail-like shape is effective in such cases.

2) Pen cap picking: The second task is picking a pen cap,
which involves grasping a thin, cylindrical object horizontally,
as shown in Figure 8 (b). Success or failure was judged when
the cap was picked above the tip of the pen. In the experiment,
the hands with the cross-structure succeeded at all, whereas
the hands without the cross-structure did not succeed at all.
To grasp a thin object with the one-degree-of-freedom rotary
hand without the cross-structure, it is necessary to pinch the
object with the tips of the fingers, which requires considerable
accuracy of motion. Even if the object can be grasped, the hand
cannot be geometrically constrained because there are only
two points of contact between the hand and the object. On the
other hand, a hand with a cross-structure can close without
gaps, so that even a thin object can be grasped with the entire
inside of the fingers. Because of its adaptability, it is possible
to grasp the object even if the positioning is not precise.
Moreover, it is possible to completely geometrically constrain
the object by making three contact points. This facilitates the
task that an external force is applied to the grasped object such
as reinserting the gripped cap into the pen or letter writing.

B. Pick-and-Place Task

1) Task Design: An overview of the environment consid-
ered in this experiment is presented in Fig. 10 (a). The robot
picked the object at the center of the left tray and placed it
at the right tray’s center. Demonstration data were collected
using 12 objects, and we collected 2 training datasets and 1
validation dataset per object. Images of the objects used to
collect the demonstration data are presented in Fig. 10 (b).
Trained objects include 9 sponges and 3 aluminum pipes.
The width of each sponge was 10, 20, and 30 mm, and the
constituent materials were ethylene propylene diene monomer
(EPDM), natural rubber (NR), and urethane, respectively,
which were low-cost and high-availability materials. Further-
more, each aluminum pipe had a different diameter: 8, 10, and
12 mm, respectively. To collect demonstration data, we applied
scaling bilateral control, scales the force of the follower’s
hand to 1/10 that of the leader. By employing scaling bilateral
control, higher precision motion than that of a human can
be obtained. For imitation learning, a 6-layer LSTM was
employed. Adam [25] was utilized for optimization, and 10000
epochs were trained with a batch size of 16. In total, 20 types
of objects were employed in the experiment to test autonomous
control. Experiments are conducted 5 times for each object.
Images of the objects utilized in the experiment are presented
in Fig. 9. The tasks were tested with force control as the
proposed method (F2FL) and without force control but only
position control as the baseline method, i.e., Kf = 0 in Eq.
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(a) pen (b) block (c) cutter (d) cracker (e) egg

(f) cloth (g) tofu (h) roll cake (i) rice ball (j) baumkuchen

(k) potato (l) nuts (m) potato chips (n) pineapple (o) blueberry

(p) mushroom (q) mini tomato (r) fried potato (s) sushi (t) shrimp

Fig. 9: Objects used in the experiment

(1) and using the same LSTM model as that of the proposed
method (F2FL-w/o-Force).

2) Results: The success rate of the pick-and-place task of
F2FL and F2FL-w/o-Force are presented in Table II.

Regarding F2FL, it was demonstrated that grasping motion
is possible with a high success rate, even for objects whose
shape and hardness were not known in advance. We also
verified that the robot could grasp a low-stiffness object such
as tofu with appropriate force to accomplish the task. One
failure instance occurred when the pen’s center of gravity was
biased, causing the pen to be dropped because the force of
the learned grasping motion was weak, the shape of the pen
was long and slender, and its surface was slippery. In addition,
when gripping a cloth, if the cloth was flat, there was no part
to be caught, and it could not be gripped. Furthermore, the
smallest object, namely a blueberry, sometimes fell between
the fingers of the hand. The finger space of the hand was 10.4
mm, and the blueberry was the only object that included a
smaller one than this space. This result suggests limitations of
the cross-structure hand.

However, for the F2FL-w/o-Force, several mistakes were

TABLE II: Success rate of pick-and-place task

Test object Success rate
name weight [g] F2FL (proposed) F2FL-w/o-Force
pen 7.8 60 0

block 50.9 100 80
cutter 77.8 100 40

cracker 3.4 ∼ 3.5 100 0
egg 49.1 ∼ 54.4 100 0

cloth 28.0 80 40
baumkuchen 21.7 ∼ 21.9 100 60

rice ball 73.9 ∼ 75.1 100 60
roll cake 35.9 ∼ 38.8 100 20

tofu 60.0 ∼ 70.0 100 100
potato 93.7 ∼ 131.1 100 40
nuts 0.9 ∼ 2.8 100 20

potato chips 0.8 ∼ 1.8 100 20
pineapple 14.6 ∼ 23.4 100 60
blueberry 1.1 ∼ 2.4 60 100
mushroom 5.0 ∼ 22.7 100 60

mini tomato 11.1 ∼ 22.3 100 60
fried potato 2.7 ∼ 22.9 100 80

sushi 23.1 ∼ 31.2 100 80
shrimp 5.1 ∼ 6.8 100 60

Total 95 49
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(a) ENV of pick-and-place task (b) Objects for training (c) ENV of letter-writing task (d) Positions of the pen

Fig. 10: Experimental setups

(a) F2FL (proposed method) (b) F2FL-w/o-force

Fig. 11: Results of writing task

observed for various objects. In particular, for the pen, which
had the narrowest width, several failures were registered. In
addition, the cracker and egg, which presented large widths,
could be easily damaged. The experiments with these ob-
jects were totally unsuccessful owing to torque limitations or
because the objects crushed. Easily collapsible objects, such
as tofu and sushi, whose widths were close to those of the
learning objects, exhibited a high success rate. Also, blueberry
exhibited a higher success rate than the proposed method. It
is because in some cases blueberries are wet and stuck to the
fingers without force.

These results indicate that when only position control was
utilized, the robot succeeded when the object’s width was close
to that of the learned object but failed otherwise. In contrast,
when force control was employed, the error between the
position command value and object width was compensated
by force control, and a high success rate was achieved for
several objects.

C. Letter-Writing Task

1) Task Design: The writing test was conducted because
such a task requires a tool. This task involved writing a letter
containing numbers from zero to nine on a whiteboard using
a whiteboard marker. The overall environment considered in
this experiment is depicted in Fig. 10 (c).

In total, six demonstration datasets were collected for each
number twice in each of the three settings. These settings
involve different pen arrangements. Each setting shifted the

pen placement by 1 cm along the ruler. Each set was named
according to the length from the hand to the pen tip: 4, 5, 6,
7, and 8 cm, respectively. The length was measured, as shown
in Fig. 10 (d). For imitation learning, 8-layer LSTM and data
collected in the 4, 6, and 8 cm settings were adopted.

The evaluation was conducted in five environments: three
trained settings (4, 6, and 8 cm) and two untrained settings
(5, 7 cm), once per setting. Each trial was checked via image
classification. ResNet18 [26] was employed for classification;
it was trained using MNIST dataset [27] and the validation
success rate was 99.6%. In addition, to verify the need for
force control, trials were also conducted using the F2FL-w/o-
force model.

2) Results: The results obtained from the proposed method
are presented in Fig. 11 (a), whereas the results from adopt-
ing only position control (F2FL-w/o-force) are presented in
Fig. 11 (b). In Fig. 11, “ans” denotes the correct answer to
the classification, whereas “pred” represents the classification
result in failure cases. The area enclosed in red represents
the failure case. The vertical axis represents the position of
the pen. The total success rates of the proposed method and
F2FL-w/o-force were 74% and 26%, respectively.

For the failure cases of the proposed method, many failures
were observed in letters featuring many curved lines, such as
3, 6, and 8. It was difficult to apply strong pressure to letters
with many curves, especially when the pen was held short,
and it was inferred that the pen tended to float.

Regarding position control only (F2FL-w/o-force), there
were many cases where the pen floated; in these cases,
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excessive force was applied at the beginning and the pen
was not applied properly, or the pen was dropped and the
characters could not be written. The successful cases were
often intermediate cases that involved holding the pen at 5 cm,
6 cm, etc. and were considered to be outputting the average
behavior of the training data.

These results indicate that it is possible to learn tool-based
tasks using imitation learning based on the developed hand and
bilateral control; in addition, the effectiveness of employing
force control was verified.

VII. CONCLUSIONS

In this study, we verified that the proposed cross-structure
hand can measure the force of a human’s motion in complex
grasping tasks. Moreover, we demonstrated that the robot
can perform soft and rigid grasping. As a soft grasping
task, the pick-and-place task, including non-rigid and irregular
objects, was tested. The method was applied to several objects,
including non-rigid and irregular objects. Furthermore, as a
rigid grasping task, letter writing was tested. Accordingly,
the method succeeded in writing letters in several situations,
including unlearned ones. More specifically, we demonstrated
that leveraging on high-quality teaching data collected using
bilateral control and a hand capable of force control that can
grasp both thick and thin objects, complicated motion planning
can be achieved even with a simple LSTM. Therefore, the
proposed method is highly practical because it is easy to learn.

However, to achieve further complex tasks, a more sophis-
ticated inference model, such as that in [17], will be essential.
Therefore, we will address these aspects in the future.
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