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Hybrid Trajectory Optimization for Autonomous
Terrain Traversal of Articulated Tracked Robots

Zhengzhe Xu1, Yanbo Chen2, Zhuozhu Jian2, Junbo Tan2, Xueqian Wang2, and Bin Liang2

Abstract—Autonomous terrain traversal of articulated tracked
robots can reduce operator cognitive load to enhance task
efficiency and facilitate extensive deployment. We present a
novel hybrid trajectory optimization method aimed at generating
efficient, stable, and smooth traversal motions. To achieve this,
we develop a planar robot-terrain contact model and divide the
robot’s motion into hybrid modes of driving and traversing.
By using a generalized coordinate description, the configuration
space dimension is reduced, which facilitates real-time planning.
The hybrid trajectory optimization is transcribed into a nonlinear
programming problem and divided into subproblems to be
solved in a receding-horizon planning fashion. Mode switching
is facilitated by associating optimized motion durations with a
predefined traversal sequence. A multi-objective cost function
is formulated to further improve the traversal performance.
Additionally, map sampling, terrain simplification, and track-
ing controller modules are integrated into the autonomous
terrain traversal system. Our approach is validated in simulation
and real-world scenarios with the Searcher robotic platform.
Comparative experiments with expert operator control and state-
of-the-art methods show advantages in terms of time and energy
efficiency, stability, and smoothness of motion.

Index Terms—Field Robots, Autonomous Vehicle Navigation,
Optimization and Optimal Control.

I. INTRODUCTION

MOBILE robots are revolutionizing a wide range of in-
dustries, from emergency response and disaster relief to

environmental exploration and infrastructure maintenance [1]–
[3]. However, their successful deployment is heavily dependent
on the ability to traverse challenging terrain and overcome
obstacles with ease. Articulated tracked robots have emerged
as a promising solution to these challenges, with hybrid
locomotion: they can drive like a wheeled vehicle, with a large
track contact area providing unparalleled stability; in addition,
controllable flippers are used to actively maintain contact with
the ground to traverse faulted terrain. The Searcher that we use
is an example as shown in Fig.1.
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Fig. 1. The Searcher, an articulated tracked robot, can drive through terrain
with minor undulations as well as utilize flippers to support itself, enabling
it to surmount uneven terrain such as high platforms and stairs with ease.

Articulated tracked robots are commonly operated through
remote control, a demanding task that requires skilled op-
erators to simultaneously monitor their surroundings while
controlling the acceleration, steering, and flipper angles,
making stability and efficiency an inherent trade-off. A more
efficient terrain traversal strategy is to maintain a certain speed
while using an appropriate flipper configuration for support,
which utilizes all degrees of freedom (DOFs) simultaneously
rather than separated motions. Autonomous execution of such
optimized motions offers several benefits, including reducing
the cognitive load on human operators and improving task
efficiency. Optimization-based planning methods are partic-
ularly effective in generating efficient motion. However, the
hybrid locomotion introduced by flippers and the complex
contact dynamics arising from the track’s contact-rich nature
pose significant planning challenges. To overcome the chal-
lenges, we propose a planar simplified model to capture
the contact between the robot and the terrain, optimizing
the trajectory based on a predefined traversal sequence to
achieve hybrid mode switching, resulting in efficient, stable,
and smooth motion.
A. Related Work

Autonomous terrain traversal of articulated tracked robots
is a long-studied problem. Early studies [4]–[6] have shown
that preset simple strategies relying on sensor-reflection can
achieve this goal. However, these strategies are limited in
generating complex motions and may not be applicable
to different types of terrain. In recent years, learning-
based approaches have been used to address flipper control
and autonomous traversal, such as neuroevolution [7] and
reinforcement learning (RL) [8], [9]. However, these studies
are conducted solely on a single type of terrain, while our
work focuses on a general terrain traversal scheme.

Many studies emphasize the significance of flipper configu-
ration in terrain traversal and define discrete flipper templates
(or shapes, states, postures) that effectively address config-
uration selection in different terrains. A D*-Lite-based path
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planning method is proposed in [10], where robot position
planning and flipper configuration planning are separated.
Suitable flipper configurations are selected among the four
predefined flipper postures based on the terrain informa-
tion on the path. Similarly, a linear classifier is trained
in [11] to predict the appropriate shape for the terrain
among five predefined flipper shapes. In [12], seven states
are defined, and a learnable soft-differentiable neural state
machine architecture is proposed that considers the probability
of switching between states. However, these approaches do
not consider overall motion coherence, which may lead
to inefficient motion and high energy consumption due to
frequent state switching. In contrast, a continuous traver-
sal sequence is proposed in [5], which enabled cooperation
between the front and rear flippers but lacked a unified
strategy and clear criteria for specific phases. A simplified
robot skeleton model is developed in [13], and flipper motion
is generated by searching a reduced-dimensional configuration
space. However, it prioritizes the transitions between adjacent
configurations over overall motion efficiency, and coordinate
selection is not intuitive.

Optimization-based approaches excel in generating com-
plex motions. A recent study [14] proposes a geometry-
based flipper motion planning (GFMP) method, using dynamic
programming to optimize flipper motion. This method
exhibits high terrain adaptability and has better stability and
smoothness compared to RL-based methods. However, it can
only perform low-resolution online planning in a limited
horizon due to its high computational demands and lack of
flexibility in imposing actuator constraints. Trajectory opti-
mization (TO) techniques can effectively handle constraints,
and be effective in enhancing the agility of legged robots
[15] as well as achieving kinematically feasible, statically
stable motion for walking excavators in rough terrain [16].
Furthermore, the hybrid trajectory optimization (HTO) method
has been utilized to generate multi-phase motions for hybrid
systems with discontinuous dynamics [17], [18].

For our Searcher robot, which weighs over 200kg and
has a considerable contact area providing sufficient friction,
we focus on kinematically feasible solutions to maintain
static equilibrium. However, the contact-rich nature presents
a significant challenge in developing a robot-terrain contact
(RTC) model suitable for planning purposes. Previous studies
analyze the interaction between the robot and terrain [19], [20],
but the model complexity impedes effective planning.

B. Contributions
This work offers the following contributions:
• We propose a planar RTC model for articulated tracked

robots to simplify the contact patterns. The configuration
space is reduced to three dimensions by generalized
coordinates, facilitating real-time planning capabilities.

• We develop a novel HTO formulation with a multi-
objective cost function to generate hybrid motion and
optimize trajectory in real-time with a receding horizon.

• We validate the integrated terrain traversal system in
both simulation and real-world scenarios. Comparisons
with expert operator control and the state-of-the-art
autonomous method demonstrate the advantages of our
approach in terms of motion time and energy efficiency,
stability, and smoothness.

 

(a)
 

(b)
Fig. 2. Illustration of the simplified models. The flipper length lf = lr = l0
and the track length lt are indicated in Fig. 2(a). θf and θr denote the front
and rear flipper angles, θt is the pitch angle (set the robot head up as positive).
The symbols with tilde indicate the model parameters. Fig. 2(b) shows the
front flipper as an example of a model flipper length consisting of a fixed-
length part l0 cos δ and two variable-length parts lif and lof .

II. MODELING

A. Planar Robot-Terrain Contact Model
The Searcher has coaxial left and right flippers, indicating

its suitability for traversing terrain with little undulation in the
longitudinal section. Therefore, the RTC model is developed
in the longitudinal plane to obtain a reduced configuration
description through the contact between a simplified terrain
and the robot model.

1) Simplified Terrain Model: Due to the large contact area
provided by the track, the robot can traverse terrains with low
undulation and unevenness without relying on the support of
flippers. This insight motivates us to simplify the terrain into
simple planes that are represented in two dimensions by line
segments as shown in Fig. 2(a). The simplified terrain set is
defined as T = {τi}Nt

i=1, where the terrain τi is described by
the start and end point of the line segment. Each terrain can
be parameterized by the inclination α, height h, and length
ℓ. α is the angle of the terrain with respect to the horizontal
plane. h is the vertical distance from the endpoint of the upper
terrain to the lower terrain, and its sign implies an increase or
decrease in elevation. The height of the last terrain is set to 0.
ℓ is the line segment length.

2) Simplified Robot Model: For robots with flippers of
different gear diameters, the skeleton model proposed in [13]
cannot accurately capture the contact situation. To overcome
this limitation, we introduce a planar model that covers the
bottom of the robot with three rods of time-varying length,
as shown in Fig. 2(a). We use the shorthand notation of
(·)f,r to denote the parameters of the front and rear flippers,
respectively. The angle of the model flippers is θ̃f,r = θf,r+δ,
where δ = arcsin ((R− r)/l0) is the angle caused by the gear
diameter difference. This simplification approximates the arc
at the large gear as a fold, and the error can be neglected
when the flipper angle is small. Furthermore, we extended the
flipper length for capturing the outer end of the flippers in
contact with the terrain, as depicted in Fig. 2(b). Specifically,
we have l̃f,r = lf,r cos δ + lif,r + lof,r and l̃t = lt + lif + lir,
wherelif,r=R tan

(
θ̃f,r/2

)
lof,r=max

{
r tan

((
θ̃f,r ∓ (θt + αf,r)

)
/2
)
, 0
} . (1)

For simplicity, we use symbols without tilde to represent the
parameters of the robot model in the subsequent sections.
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(a) Definition of sd at ascent and descent.

(b) Definition of st at ascent and descent.
Fig. 3. Definitions of the generalized coordinates and configuration descrip-
tion, with the robot traveling from left to right. Support points are marked
with red dots. The direction of increasing st is indicated by dashed arrows.

3) Configuration Space Reduction: The robot state in the
2D plane can be expressed as q̄=

[
x z θt θf θr

]⊤∈R5, where
(x, z) denotes the position of the body center. During terrain
traversal, there are at least two contact points between the
robot and the terrain model, which reduces the effective DOFs.
We refer to the traversal as ascending when the robot traverses
adjacent terrains with h > 0, and as descending when h < 0.
When ascending, the support point is defined as the starting
point of the target terrain, and when descending, it is defined as
the end point of the current terrain, which is illustrated in Fig.
3. When the robot’s track is attached to the ground, we define
the distance from the front end of the track to the projection
of the support point on the current terrain as sd, then the
robot state can be reduced to qd=

[
sd θf θr

]⊤∈Qd⊂R3, as
shown in Fig. 3(a). When the robot contacts the support point,
we can describe its configuration by the generalized coordinate
of the distance st that the support point moves along the robot
planar model, and the state is qt=

[
st θf θr

]⊤ ∈ Qt ⊂ R3,
as shown in Fig. 3(b). Qd and Qt are driving and traversing
configuration spaces, respectively, describing the model state
in the two hybrid modes (see Sec. II-B).

B. Hybrid Mode Definition and Traversal Sequence

In this part, we first introduce a stable traversal strategy,
then define two hybrid modes based on the contact situation
and propose a traversal sequence for HTO. This strategy makes
full use of the support of the flippers in traversal, as depicted
in Fig. 4. Specifically, during ascent, the front flipper spreads
to attach to the support point and then climbs up. Then, the
rear flipper supports the lower terrain while the front flipper
supports the higher one, ensuring stability until the center
of mass (COM) reaches the higher terrain. Once the COM
reaches the higher terrain, the robot can lift the flippers and
drive forward to complete the traversal. During descent, the
rear flipper supports to maintain a specific body inclination.
This enables the front flipper to support the lower terrain,
allowing the robot to drive and descend.

Based on the contact of the flippers, we can define two
hybrid modes: driving mode and traversing mode. During the
ascent, traversing mode starts when the front flipper attaches
to the support point until the COM reaches higher terrain and
then the rear flipper is able to detach from the lower terrain;
during the descent, it starts when the front flipper attaches the
lower terrain and ends when the rear flipper detaches from
the higher terrain. Additionally, the robot is considered to be
in driving mode when it can drive without adjusting flippers.

 

Fig. 4. Illustration of our stable traversal strategy for ascent and descent,
involving switching between driving mode and traversing mode. The lower
four key nodes form the traversal sequence, counterclockwise for the
ascending Sasc and clockwise for the descending Sdes. The abbreviations
f.f. and r.f. are for the front flipper and rear flipper respectively.

When using the symbol q, its meaning qd (driving) or qt

(traversing) is determined by the current mode.

The concept of traversal sequence was first proposed in [5],
but lacked a consistent formulation guideline. We propose a
uniform guideline for this sequence to function similarly to
the contact schedule of legged robots. We define the traversal
sequence as S =

(
Q1, · · · ,QNs

)
, where Qi ⊂ Qt and

sit ≤ sjt (i < j). It consists of constrained configuration
space key nodes that the robot must pass through during
traversal. We proposed a traversal sequence with Ns = 4,
as shown in the four ordered blocks at the bottom of Fig.
4. Based on the symmetry of the robot configuration, the
ascending sequence Sasc =

(
Q1

asc,Q2
asc,Q3

asc,Q4
asc

)
and the

descending sequence Sdes =
(
Q1

des,Q2
des,Q3

des,Q4
des

)
are

naturally designed as symmetric processes, which is useful
when formulating configuration descriptions.

The configuration descriptions for Qi
asc can be geometri-

cally derived by projecting the rod onto the vertical direction,
as shown in Table I, where scomt is the COM position
expressed in generalized coordinate st. To simplify the
derivation, α and h refer to the relative inclination and height
between the two terrains, respectively, and θt is the pitch angle
relative to the current terrain. (·)u and (·)l are used to denote
the upper and lower bounds.

By utilizing the symmetry of the robot configuration and
the sequence, we do not need to re-derive the descending
configuration description. We define the dual traversing con-
figuration as q∗

t =
[
lΣ − st θr θf

]⊤
, where lΣ = lf + lt+ lr.

This can be considered as the forward direction of the robot
being flipped. Additionally, the parameters in the ascending
configuration Qasc are replaced with their dual counterparts,
which involves swapping lf and lr, θf and θr, and scomt and
lΣ − scomt to obtain the dual description Q∗

asc. As a result,
the descending configuration qt ∈ Qi

des can be described by
q∗
t ∈

(
Q5−i

asc

)∗
.

Additionally, for the special case of h = 0, we adopt the
descending description when α < 0, as it is compatible with
the descending strategy. For α > 0, we can introduce a height
of hδ > 0 to adopt the ascending description.
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TABLE I: Configuration Descriptions On Key Nodes During Ascending

Node Configuration Description

Q1
asc 0 < st < lf

(lf − st) sin θf = h

0 ≤ θr ≤ θu

Q2
asc st = lf

lt sin θt + lr sin (θt − θr) = h

θt,l ≤ θt ≤ θt,u
θt − α ≤ θf ≤ θu
θl ≤ θr ≤ θt

Q3
asc lf < st < scomt (st − lf ) sin(θt − α)

+lr sin(θt + θf − α) = 0

(lt + lf − st) sin θt
+lr sin(θt − θr) = h

α ≤ θt ≤ θt,u, θl ≤ θr ≤ θt
Q4

asc
scomt ≤ st < lf + lt

III. HYBRID TRAJECTORY OPTIMIZATION

A. Problem Formulation

We formulate the HTO problem for terrain traver-
sal with the multi-objective cost function ((2a), see Sec.
III-D)) weighted by wi (i = 1, 2, 3), and constraints ((2b)-
(2f), see Sec. III-C). The objective is to obtain the trajec-
tory {sd(t) , st(t) , θf (t) , θr(t)}. The driving and traversing
intervals are denoted as Td and Tt, respectively, with
t
(k)
S (k = 1 · · · , nS) and tT representing the mode switching

moments and the end of the planning horizon respectively.

min J = w1Jtime + w2Jcoh + w3Jstab (2a)
s.t. initial state : q (0) = q0, q̇ (0) = q̇0 (2b)

terminal state : q (tT ) = qT (2c)

configuration


q (t ∈ Td) ∈ Qd

q (t ∈ Tt) ∈ Qasc, for asc.

q∗ (t ∈ Tt) ∈ Q∗
asc, for des.

(2d)

motion : q̇ (t) = u ∈ U (2e)

switching :

∆c

(
q−(t

(k)
S ),q+(t

(k)
S )

)
= 0

∆m

(
q−(t

(k)
S ),q+(t

(k)
S )

)
≤ 0

(2f)

Compared to the shooting approach [21] with fixed time
steps to plan the hybrid motion, we adopt the direct collocation
method [22] to transcribe 2 into a nonlinear programming
(NLP) problem and plan the durations between nodes, which
has a higher planning flexibility. Since the traversal sequence is
predefined and the hybrid mode is time-dependent switching,
the decision variables are set to the node state (q, q̇), as well as
the durations T (k)

d,i (i=1, · · · , n(k)
d −1), T (k)

t,j (j=1, · · · , n(k)
t −

1). The continuous time trajectory is a smooth piecewise cubic
polynomial curve, generated by Hermite interpolation.

B. Receding-Horizon Planning

The HTO problem (2) describes the complete task of
multi-terrain traversal with possible multiple mode switches,
including a large number of nodes and constraints. In addition,
the configuration constraints involve state-dependent time-
varying parameters (lf , lt, lr), rendering real-time trajectory
optimization arduous and posing challenges to trajectory
robustness and adaptability. To tackle this problem and
facilitate real-time planning, we divide the task into a series of

(a) Planning horizon in driving mode.

(b) Planning horizon in traversing mode.

 

Fig. 5. Planning horizons for the subproblem that contains a single mode
switch. Key nodes in the traversal sequence are represented by circular dots.
Meanwhile, additional insertion nodes can be added, depicted by square
dots, and have geometrically derived configuration constraints. Insertion nodes
influence the trajectory trend and affect the scale of the subproblem.

subproblems that contain only one mode switch, i.e., nS=1,
either from driving to traversing (Fig. 5(a)) or from traversing
to driving (Fig. 5(b)), and the time-varying parameters adopt
fixed values at the time of problem update. The planning
horizon tT is the moment of the next mode switch, guaranteed
by configuration constraints. By employing receding-horizon
planning, the subproblem is updated at a fixed frequency
for continuous replanning to ensure kinematic feasibility and
enhance robustness.

C. Constraints

To ensure that the robot follows the predefined traver-
sal sequence, we impose configuration constraints at each
node. The motion feasibility is guaranteed by the motion
constraints. Moreover, we enforce switching constraints for
mode transitions.

1) Configuration Constraints: At the key nodes of the
driving mode, we enforce the track to be fit to the ground, and
the flippers are constrained as Qd = {qd | 0 ≤ θf,r ≤ θu} .
The traversing mode configuration constraints are given in
Table I, with the pitch angle θt introduced as an auxiliary
variable. For the descent, we impose the dual constraints on
its dual configuration q∗.

2) Motion Constraints: To ensure the motion feasibility,
we apply (2e) to bound the nominal input u = q̇(t), where
U = {u | 0 ≤ v ≤ vu, ωl ≤ ωf,r ≤ ωu} and ωf,r denotes the
flipper angular velocities. The nominal velocity is defined as:

v =

{
−ṡd, if q ∈ Qd

ṡt, if q ∈ Qt

. (3)

3) Switching Constraints: We associate the predefined
traversal sequence with durations to describe the mode
switching events, and determine the switching moment tS
by optimizing durations under the switching constraints. At
t = tS , we impose configuration and motion constraints
to achieve mode transitions between pre- and post-switch
states q− and q+. By projecting st onto the direction of sd,
the configuration switch constraint function from driving to
traversing is formulated as:

∆c(q
−,q+)=

{
(lf−st)cos θf−sd, if q

−∈Qd,q
+∈Q1

asc

(lf−st)cos θt−sd, if q
−∈Qd,q

+∈Q1
des

. (4)
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The motion-switching constraint considers the velocity loss.
By projecting velocity into the st direction, we formulate this
function from driving to traversing as follows:

∆m(q−,q+)=

{
ṡt + ṡd cos θf , if q

−∈ Qd,q
+∈ Q1

asc

ṡt + ṡd cos θt, if q
−∈ Qd,q

+∈ Q1
des

. (5)

The functions for traversing to driving are also formulated
through a similar derivation.

D. Cost Function

The multi-objective cost function combines time, coherence,
and stability costs, to enhance the traversal quality.

1) Time Cost: To minimize the time required for traversal,
we formulate the time cost as follows:

Jtime =

nd−1∑
i=1

T 2
d,i +

nt−1∑
i=1

T 2
t,i. (6)

2) Coherence Cost: To enhance motion coherence, this cost
mitigates the unnecessary back-and-forth motion caused by
polynomial interpolation by penalizing the difference between
the average rate of change between adjacent nodes and the
derivatives, thereby improving energy efficiency. We formulate
it as:

Jcoh =
∑

qi∈Qd,Qt

(∥∥¯̇qi − q̇i

∥∥2
Qs

+
∥∥¯̇qi − q̇i+1

∥∥2
Qs

)
, (7)

where ∥x∥Q :=
√

x⊤Qx, ¯̇qi := (qi+1 − qi) /Ti and Qs is a
positive-definite matrix.

3) Stability Cost: The stability cost, inspired by the stra-
tegy selector in [23], enables the robot to adjust its flipper
configurations based on terrain conditions to maintain stability.
In sparse terrains such as stairs, the flippers tend to flatten
to increase the contact area and lower the COM to improve
stability; whereas in dense terrains, the flippers can lift to
balance motor workload. This cost penalizes the deviations
between the angles of the flippers and the terrain on which
they are located in sparse terrains, aiming to lower the COM
and increase the contact area. We formulate it as:

Jstab=

nd+nt−1∑
i=1

(
wf,i (θt,i+θf,i−αf,i)

2
+wr,i (θt,i−θr,i)

2
)
, (8)

where αf takes 0 in driving mode and the relative angle α in
traversing mode. The weights wf and wr depend on the terrain
sparsity, which will be defined in Sec. IV-B. Considering the
sparsity of the current terrain c(τ1) and the target terrain c(τ2),
we have wr = c(τ1) and wf as follows:

wf =


c(τ1), if q ∈ Qd

0, if q ∈ Q1
asc or q ∈ Q4

des

c(τ2), if q ∈ Qasc\Q1
asc or q ∈ Qdes\Q4

des

. (9)

IV. TERRAIN TRAVERSAL SYSTEM

A. Overview

Our proposed terrain traversal system comprises four
modules: map sampling, terrain simplification, hybrid trajec-
tory optimization, and tracking controller. Fig. 6 provides a
schematic overview of the workflow for terrain traversal.

Reference 
Path

Tracking Controller

3D 
Occupancy 
Grid Map

Reference 
Trajectory

Control
Command

Sampled 
Points

Map Sampling Terrain Simplification
Searcher

Parameterized Terrain

Hybrid Trajectory 
Optimization

…

Measured State

Fig. 6. Workflow of the terrain traversal system. The map sampling module
operates on a 3D occupancy grid map and samples each waypoint along
the normal of the reference path to obtain a sampled strip. Subsequently,
the sampled strip is filtered on the normal to mitigate the effects of map
sparsity and random noise. Afterward, the mean height of each normal is
projected onto the distance-height plane, generating a point set P , which is
then passed to the terrain simplification module (Sec. IV-B). The simplified
terrain and measured robot states are sent to the HTO module. Finally, the
tracking controller (Sec. IV-C) utilizes the reference path and trajectory to
generate control commands.

B. Terrain Simplification
To obtain simplified terrains, we use a set of line segments

T to cover a set of sampled points P = {pi = (di, hi)}Ni=1 and
transform the cover problem into an optimal path problem of
graph theory.

The edge of the terrain provides vital support to the robot
during traversal, so large errors in the edge points of the
simplified terrain are unacceptable. Therefore, we choose the
points in P as the start and end points of the line segments,
denoted as τs,e = (ps, pe), ds < de. The line segment needs
to cover the points in its range, i.e., for any pi ∈ P and
ds ≤ di ≤ de, there is dist(pi, τs,e) = pspe×pspi

∥pspe∥ ≤ δm,
where δm is the maximum height difference that the robot can
tolerate in driving mode. pi is considered to be within τs,e
when |dist(pi, τs,e)| ≤ δl, where δl represents tolerance. To
prevent the omission of large potholes, the distance between
adjacent points within τs,e should not exceed lt/2. Terrain
sparsity is defined as

c(τs,e) = 1− PN(τs,e)

(de − ds)/dr + 1
∈ [0, 1], (10)

where PN(τ) is the number of points within τ and dr is the
sampling resolution. Greater sparsity means greater morpho-
logical differences between the simplified and actual terrain.

The set of all simplified terrains that the robot can traverse is
defined as T∗ =

{
τ∗s,e

}
. To find the optimal coverage T ⊂ T∗,

covering the sampled points using the fewest terrains while
keeping as many points within the terrains as possible, we
construct a weighted Directed Acyclic Graph (DAG) G(V,E)
with 2N vertices. V = {v2i−1, v2i}Ni=1, where each vertex
v2i−1 and v2i corresponds to using pi as the start and end
points of a line segment. The edge set E should ensure a
one-to-one correspondence between paths from v1 to v2N and
subsets of T∗. The path’s cost is the count of terrains in
its corresponding subset, while the reward is the number of
sampled points within all subset’s terrains. We use Es→e ={
(v2s−1 → v2e) | ∀τ∗s,e ∈ T∗} to denote simplified line

segment candidates, which have an edge cost of 1 and reward
of PN(τ∗s,e). To ensure connectivity, we add auxiliary edges
Ee→s =

{(
v2i, v2(i+j)−1

)
| 1 ≤ i ≤ N − 1, 0 ≤ j ≤ Nign

}
,

where Nign denotes the number of ignored points. The cost
of these edges is 0, as they do not represent line segments
but merely links between the endpoint of the previous line
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segment and the start point of the next one. When j = 0, two
adjacent line segments are directly connected, and the edge
rewards are -1 to avoid double counting of the same point.
When j > 0, the distance between the two line segments does
not exceed Nign · dr. This approach enables the algorithm to
ignore noise that may occur between adjacent planes with large
height differences on the map, thus improving its robustness.
The edge reward for this kind of edge is 0. Finally, for a DAG
with non-negative edge costs, we can obtain the minimum cost
path from v1 to v2N using Dijkstra’s algorithm. Subsequently,
we use a memoization search to efficiently acquire the optimal
path with minimum cost and maximum reward.

C. Tracking Controller
The tracking controller is designed to follow both the

trajectory generated by HTO and the reference path. The
flipper velocity commands are calculated from the reference
angles (the model flipper angles are converted to real angles)
using the PD control law ωf,r = Kpeθf,r + Kdeωf,r

, where
e(·) denotes the deviation between desired and measured.

The nominal velocity input can be computed using the tra-
jectory of generalized coordinates, based on (3). It is essential
to ensure that the robot’s yaw angle aligns with the reference
path while following the nominal velocity. To achieve this,
we calculate the robot’s angular velocity ω by using (11). The
velocity input (12) is a combination of the nominal velocity
feed-forward vdes and position feedback. The deviation es
from the generalized coordinates while driving needs to be
taken as the opposite, since sd decreases.

ω = Kϕ
p eϕ +Kϕ

d ėϕ, (11)

v = vdes +Ks
pes +Ks

i

∫ t

0

es (τ) dτ . (12)

Finally, (v, ω) is converted to the differential input (vl, vr) for
the tracked robot, and the derivation can be found in [23].

V. EXPERIMENTS AND RESULTS

We conduct experiments in both simulation and real-world
scenarios to verify the effectiveness of our work. The NLP
problem for HTO is formulated in CasADi [24] and solved
using IPOPT [25]. A priori 3D occupancy grid map with
a resolution of 0.02m and a predefined reference path are
used in all experiments. We utilize FAST-LIO2 [26] for
localization. The optimization nodes number is set to nt =5
and nd is determined by the terrain length divided by 0.5m,
which facilitates real-time planning (typical computation times
are within 150ms, and the problem is updated at a fixed
frequency of 5Hz). We set the weights in all experiments to
(w1, w2, w3) = (1, 0.3, 350) and Qs = diag (1, 0.8, 0.8). The
reference trajectory is interpolated to 100Hz for execution. The
fast simulation [27] allows us to conduct real-time simulations
of Searcher in Gazebo. Fig. 7 shows the Searcher platform for
real-world experiments. Demonstrations of all the experiments
are available at https://youtu.be/fL8w1WPwDAU.

A. Traversal Quality Comparison in Typical Terrains

The experiment aims to demonstrate the advantages of our
approach in terms of time and energy efficiency, stability,
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Fig. 7. The Searcher is equipped with the RS-Helios 5515 32-beam LiDAR
and IMU. Two Intel NUC 8 (i7-8559U CPU@2.70GHz, 32GB RAM) are
used, one for state estimation and the other for planning and control.

(a) (b) (c)

 

Fig. 8. Snapshot of the simulation experiments and results of map sampling
and terrain simplification. (a) A high platform of 0.4m in height and 1.2m
in length; (b) Straight stairs ascending and descending with each step 0.2m
in height and 0.3m in width; (c) Spiral stairs with a radius of 3.8m, each
step 0.2m in height and 0.38m in average width. The high platform and
straight stairs are used to evaluate the effectiveness of the method in traversing
obstacles with heights close to the flipper length and on sloping, sparse terrain,
respectively. Spiral stairs are used to demonstrate that our RTC model and
methods are still effective on a curved reference path.

and smoothness. We conduct terrain traversal comparative
experiments in three typical scenarios shown in Fig. 8. Our
approach is compared with expert operator control, which
serves as a widely accepted baseline for evaluation [11], [23],
[28], as well as a best-effort reimplementation of the state-of-
the-art GFMP method [14].

Given that the GFMP method faces a trade-off between
computational efficiency and motion quality, we employ two
versions of it: (1) offline full horizon, high-resolution planning
(covers entire reference path; waypoint resolution: 0.05m; flip-
per angle resolution: 1°) and (2) online limited horizon, low-
resolution planning (waypoint number: 4; waypoint resolution:
0.2m; flipper angle resolution: 10°). Parameters for both
versions are based on the specifications outlined in [14] and
tuned to perform best. Notably, the offline version, although
not explicitly proposed in the paper, significantly outperforms
the online version.

To quantitatively compare the traversal quality, five metrics
are proposed and evaluated:

(i) T: total traversal time, an indicator of time efficiency;
(ii) RA=

∫ T

0
(|θ̇f | + |θ̇r|)dt: accumulated absolute rotation

angle of flippers. With the same driving distance in the same
scenario, the difference in energy consumption is reflected in
the flipper motion, so RA is a proxy for energy efficiency;

(iii) MP: maximum absolute pitch angle. The larger its
value, the more likely the robot will tip over;

(iv) MPA: maximum absolute pitch angle acceleration. It
reflects the excessive shock suffered by the robot;

https://youtu.be/fL8w1WPwDAU
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(v) RMSA=rms(θ̈f )+rms(θ̈r): root mean squared of flipper
angular acceleration, reflecting the motion smoothness.

We conduct five trials with each method in each scenario,
setting the identical initial and goal positions and the same
maximum track and flipper velocity settings. The results of
the average metrics are presented in Table II.

TABLE II: Results of Typical Terrain Traversal Quality of Different Methods

Scene Method
T
(s)

RA
(°)

MP
(°)

MPA
(°/s2)

RMSA
(°/s2) Score

High
Platform

Operator 43.73 560.38 19.29 83.90 33.95 0.2935

GFMP (offline) 44.42 522.38 11.44 138.92 48.34 0.4117

GFMP (online) 45.15 745.28 17.15 147.86 121.83 0.9291

HTO (ours) 45.61 484.26 16.86 48.20 28.50 0.1650

Straight
Stairs

Operator 75.85 721.15 35.47 93.50 31.27 0.1809

GFMP (offline) 75.13 675.42 37.33 43.58 44.72 0.1336

GFMP (online) 75.61 1110.45 37.73 259.62 104.81 0.9984

HTO (ours) 69.32 617.06 35.18 56.31 28.65 0.0428

Spiral
Stairs

Operator 104.46 566.08 32.34 121.39 22.17 0.1537

GFMP (offline) 111.83 567.64 32.74 92.32 33.47 0.1379

GFMP (online) 94.88 1613.08 35.54 142.36 136.21 0.9230

HTO (ours) 87.51 522.18 31.90 86.67 24.10 0.0131
Note: Bold indicates the best performance and underline indicates the second best.
Evaluation scores range from 0 to 1, calculated using the TOPSIS method, where
a smaller score indicates better performance.

The expert operator is pretrained to reduce unnecessary
flipper adjustments during traversal. However, their time
efficiency is relatively low on stairs due to their prioritized
adjustment of the flippers to ensure stability. In addition, the
analog input of the joystick improves motion smoothness.

For the GFMP method, the offline version performs well
in most metrics, which is attributed to the high resolution
and full horizon planning. However, this comes at the cost
of longer computation times, which take tens of minutes per
computation, compared to only 150 ms for ours. It is important
to emphasize that these extended computation times are simply
unacceptable for physical robots in complex environments.
GFMP aims to minimize flipper adjustments, resulting in a
small RA in the offline version, similar to our approach.
However, the online version is restricted by a limited planning
horizon, neglecting overall motion efficiency and resulting
in the largest RA due to unnecessary flipper motion. In
addition, the online version often fails to ensure the stability of
transitions between planning waypoints due to low waypoint
resolution, leading to tipping over. Such incidents can cause
excessive shocks on the joints, leading to damage to the
mechanism and motors.

In contrast, our HTO method excels in overall motion
quality. It demonstrates significantly shorter traversal times
on stairs and possesses the highest energy efficiency. Also,
it performs notably well in terms of stability with minimal
occurrences of excessive shocks. Moreover, compared to
GFMP, the Hermite interpolation we employ generates a
smoother flipper motion.

B. Evaluation of Multi-Objective Cost Function

To evaluate the effectiveness of each cost term, we con-
duct comparative experiments on straight stairs by removing
each term. After removing the time cost, the robot can not

accelerate and remain stationary, as minimizing the time cost
incentive drives the robot forward. The five-trial average of
the aforementioned five metrics is obtained by removing the
other two cost terms, as shown in table III.

TABLE III: Effects of Cost Terms on the Straight Stairs

Cost Term
T
(s)

RA
(°)

MP
(°)

MPA
(°/s2)

RMSA
(°/s2)

w/o Jcoh 72.62 640.79 36.71 88.48 29.04

w/o Jstab 84.23 659.47 35.00 76.13 30.98

w/o Jcoh, Jstab 80.34 919.12 36.99 125.68 35.55

When the coherence cost is removed, the robot occasionally
exhibits unnecessary back-and-forth flipper motion, thereby
increasing both the T and RA. When the stability cost is
removed, the robot is no longer flat on the simplified terrain of
the stairs. Instead, the extra motion of the flippers brings their
endpoints to contact with the steps. This not only increases the
T and RA compared to the full cost function in Table II, but
it can also result in the robot getting stuck during ascent and
falling vertically during descent. When both stability and co-
herence costs are removed, insufficient support leads to poorer
stability, the extra flipper motion leads to a longer traversal
time, and the overall performance metrics drop significantly.
Its traversal quality significantly diminishes, but overall it
is still superior to GFMP (online). The results of RMSA
show that smoothness is still guaranteed by the interpolated
trajectories. In conclusion, the experiments demonstrate that
time cost is an indispensable cost term, while stability and
coherence cost can significantly improve the time, energy
efficiency, and stability of traversal.

C. Multi-Terrain Traversal in Real-World Scenarios
We deploy the terrain traversal system on the Searcher

robotic platform to conduct experiments in real-world
scenarios, as shown in the supplemental video, to demonstrate
that our approach can traverse multiple terrains in succession
with receding-horizon planning. Fig. 9 shows a collection of
snapshots from one of the experiments, a scenario involving
a high platform and staircases. As expected, the HTO module
successfully generates the hybrid motion and the controller
can track the reference trajectory, as shown in Fig.10.

1) Results of Mode Switching: Fig.10 shows that the HTO
module is capable of generating motion with mode switching
in a multi-terrain traversal. The whole traversal task contains
10 mode switches, which are efficiently solved by dividing
into subproblems with single mode switches in a receding-
horizon fashion. Specifically, the robot successfully climbs up
the high platform by switching to traversing mode within 18-
29s. Each staircase’s traversal undergoes two traversal modes
and one driving mode since the steps are simplified to a plane
and the planner regards the robot as driving on a plane when
the body is entirely situated on it. A short driving mode occurs
during 129-131s due to the stairs’ brief length.

2) Tracking Performance: The planned trajectory and mea-
surements show that the controller has excellent tracking per-
formance, as evidenced by the mean absolute tracking errors
with standard deviations along the entire traversal, which are
as follows: sd: 3.09 ± 5.80 (cm), st: 2.74 ± 4.28 (cm), θf :
1.31± 1.96 (°), and θr: 1.78± 2.40 (°).
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Fig. 9. Snapshot of one real-world experiment with multiple terrains, with a total distance of about 24m. The robot needs to first pass through a platform with
a height of 0.3m (28s), then traverse six steps (0.16m high and 0.3m wide) (57s and 75s), and climb down four steps of the same size (136s) to reach the
ground (150s) after turning in the corridor.
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Fig. 10. Planned trajectory
{
sd(t), st(t), θf (t), θr(t)

}
and the corresponding measurement for the traversing mode period and driving mode period are

shaded in blue and green, respectively (the measured st for driving and sd for traversing are set to 0). When st surpasses scomt , the robot achieves stability
on the subsequent terrain. During the 108-113s when the robot is tracking the curved path, there is a brief increase in sd due to the tracking error. The last
driving mode period has no sd since the robot has already reached the goal terrain and decelerated without planning.

VI. CONCLUSION AND FUTURE WORK

To the best of our knowledge, this work is the first
application of TO techniques to articulated tracked robots
for terrain traversal. We propose a planar RTC model to
describe configuration and facilitate dimensionality reduction.
A novel HTO formulation with a multi-objective cost function
is presented, divided into subproblems to be solved in real-time
with a receding horizon to generate motions with hybrid mode
switching. In addition, a terrain traversal system containing
map sampling, terrain simplification, HTO, and a tracking
controller is designed and deployed. The effectiveness of
our approach is verified on simulated and physical platforms
and demonstrated through comparative experiments showing
advantages over expert operator control and the state-of-the-art
method in terms of time and energy efficiency, stability, and
motion smoothness. Future work will focus on global path
planning based on online mapping to further improve system
autonomy to perform full-stack autonomous navigation and
complex tasks.

REFERENCES

[1] T. Klamt, D. Rodriguez, L. Baccelliere, X. Chen, D. Chiaradia, T. Cichon
et al., “Flexible disaster response of tomorrow: Final presentation and
evaluation of the centauro system,” IEEE Robot. Autom. Mag., vol. 26,
no. 4, pp. 59–72, 2019.

[2] N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani
et al., “Collaborative mapping of an earthquake-damaged building via
ground and aerial robots,” J. Field Robot., vol. 29, no. 5, pp. 832–841,
2012.

[3] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement
learning robot for search and rescue applications: Exploration in
unknown cluttered environments,” IEEE Robot. Autom. Lett., vol. 4,
no. 2, pp. 610–617, 2019.

[4] S. Steplight, G. Egnal, S.-H. Jung, D. B. Walker, C. J. Taylor, and
J. P. Ostrowski, “A mode-based sensor fusion approach to robotic stair-
climbing,” in IEEE Int. Conf. Intell. Robots Syst., vol. 2. IEEE, 2000,
pp. 1113–1118.

[5] K. Ohno, S. Morimura, S. Tadokoro, E. Koyanagi, and T. Yoshida,
“Semi-autonomous control system of rescue crawler robot having flip-
pers for getting over unknown-steps,” in IEEE Int. Conf. Intell. Robots
Syst. IEEE, 2007, pp. 3012–3018.

[6] Y. Okada, K. Nagatani, K. Yoshida, S. Tadokoro, T. Yoshida, and
E. Koyanagi, “Shared autonomy system for tracked vehicles on rough
terrain based on continuous three-dimensional terrain scanning,” J. Field
Robot., vol. 28, no. 6, pp. 875–893, 2011.

[7] M. Sokolov, I. Afanasyev, A. Klimchik, and N. Mavridis, “Hyperneat-
based flipper control for a crawler robot motion in 3d simulation
environment,” in IEEE Int. Conf. Robot. Biomim. IEEE, 2017, pp.
2652–2656.
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