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Attitude-Estimation-Free GNSS and IMU
Integration

Taro Suzuki1

Abstract—A global navigation satellite system (GNSS) is a
sensor that can acquire 3D position and velocity in an earth-fixed
coordinate system and is widely used for outdoor position estima-
tion of robots and vehicles. Various GNSS/inertial measurement
unit (IMU) integration methods have been proposed to improve
the accuracy and availability of GNSS positioning. However,
all these methods require the addition of a 3D attitude to the
estimated state to fuse the IMU data. In this study, we propose a
new optimization-based positioning method for combining GNSS
and IMU that does not require attitude estimation. The proposed
method uses two types of constraints: one is a constraint between
states using only the magnitude of the 3D acceleration observed
by an accelerometer, and the other is a constraint on the angle
between the velocity vectors using the angular change measured
by a gyroscope. The evaluation results with the simulation
data show that the proposed method maintains the position
estimation accuracy even when the IMU mounting position error
increases and improves the accuracy when the GNSS observations
contain multipath errors or missing data. The proposed method
could improve positioning accuracy in experiments using IMUs
acquired in real environments.

Index Terms—Localization, GNSS, IMU, Odometry

I. INTRODUCTION

GLOBAL navigation satellite systems (GNSS), repre-
sented by global positioning systems, have become an

indispensable infrastructure in today’s society to estimate
locations in outdoor environments. For example, it plays an
important role in various applications, such as the navigation
of people and vehicles in cities, unmanned delivery robots,
autonomous flight of drones, and automated driving of vehi-
cles. However, GNSS alone is difficult to use for positioning
in environments such as tunnels, under trees, and elevated
structures, where signals from GNSS satellites are blocked.
In urban environments, GNSS signals enter the antenna after
reflection or diffraction. This phenomenon, which is known
as multipath, considerably reduces positioning accuracy [1],
[2]. Consequently, studies have been conducted to improve
the availability and accuracy of the GNSS [3].

The availability and accuracy of GNSS positioning in urban
environments can be improved by combining 3D velocity
computed from GNSS Doppler shift measurements. The ve-
locity from Doppler measurements can be estimated with
centimeter-level accuracy in an ideal open-sky environment,
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which is considerably higher than that calculated from the
GNSS pseudorange measurements [4]. In addition, Doppler
measurements are more robust than the GNSS pseudorange
because of its resistance to multipath error and instantaneous
signal blocking [5]. However, when there is prolonged signal
blocking, or when only reflected signals are incident on the
antenna, the combined Doppler velocity is not expected to
improve the accuracy of the estimated position.

To solve this problem, several studies have combined the
GNSS and inertial measurement units (IMUs) [6]. Accelera-
tion and angular velocity IMU measurements are independent
of the environment for measurement accuracy. Therefore,
GNSS and IMU are complementary, and their combination
improves the accuracy and availability of position estimation.
Filtering methods, such as complementary filters [7] and
Kalman filters (KFs) [6], and more recently, optimization-
based methods, such as graph optimization [8], are often used
to combine GNSS and IMU.

However, GNSS/IMU integration has the following limita-
tions

• IMU integration requires 3D attitude estimation, and even
in applications where only the position is required, the 6-
DOF pose estimation problem must be solved.

• The position and attitude of the IMU relative to the
vehicle frame must be rigorously measured or calibrated
in advance. Any error in the IMU mounting position
will degrade the position estimation accuracy after GNSS
integration.

This paper proposes a new GNSS/IMU integration method
that does not require attitude estimation. We propose a state-
to-state constraint using only the magnitude of the acceleration
vector of the IMU output and a velocity vector direction
constraint by integrating the angular velocities. Because the
proposed method does not estimate the 3D attitude, the effect
of the IMU mounting angle and position on the accuracy is
small and calibration is not necessary. Therefore, the proposed
method is effective for problems where sensors (e.g., smart-
phones) containing GNSS and IMU are mounted on a vehicle
or robot in different positions and orientations each time
and used for navigation. It can also simplify the system for
navigation applications in which only the position is required.

A. Related Studies

Combining GNSS with other sensors has been extensively
studied. Although GNSS combined with a camera [9], [10]
and lidar [11], [12] have been proposed, it is most commonly
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combined with an IMU [6], [13]. This study envisions a low-
cost MEMS IMU consisting of a 3-axis accelerometer and
a 3-axis gyroscope, combined with GNSS. Compared with
GNSS, IMU has a high sampling rate (typically 100–200
Hz) and provides highly continuous acceleration and angular
velocity measurements. Although the IMU can measure the
velocity and angular changes by integrating its measurements,
integration errors accumulate. Therefore, by combining IMU
with GNSS, which has a low sampling rate but provides
absolute position and velocity, error accumulation can be
eliminated.

Various methods have been proposed for the combination of
GNSS and IMU, the most common being the use of KF [14],
[15]. Complementary-filter-based algorithms are frequently
used in environments with limited computational resources [7].
Recently, GNSS/IMU integration using optimization methods
has also been studied [16]–[20]. In [17], [19], a method for
integrating GNSS pseudorange observations and IMU with
tight coupling was proposed using pose graph optimization.
In [17], [19], in addition to GNSS and IMU, time differences
in the carrier phase were integrated as precise velocity con-
straints. Compared with the method using KFs, the method
using optimization is advantageous in terms of accuracy [16],
[21].

However, all these methods add a 3D attitude to the state
to be estimated. To decompose and apply the 3D accelera-
tion measurements from the accelerometer to the navigation
coordinate system, the 3D attitude must be estimated. In Ref.
[21], the IMU was integrated without including the attitude as
a state; however, a 3D attitude was obtained directly from the
attitude heading reference system (AHRS). Therefore, errors
in the AHRS affected the accuracy of the position estimation.
Instead of estimating the attitude, Ref. [22] improved the
accuracy of the position estimate using the zero-velocity
observation at the constraint obtained from the IMU. However,
this constraint is only applicable to stationary vehicles.

In addition, the combination of GNSS and IMU requires a
homogeneous transformation matrix from the IMU coordinate
system to the vehicle coordinate system (center of rotation of
the vehicle) [23]. In many cases, the IMU mounting angle
and position with respect to the vehicle frame are accurately
measured in advance, or the IMU mounting error is added
to the estimated state and simultaneously estimated [24].
When the IMUs are frequently removed and replaced, prior
measurements of the IMU mounting angles and positions are
time consuming.

B. Contributions

The contributions of the proposed method are as follows:
• A new IMU constraint that does not require attitude

estimation is proposed, and a combined GNSS/IMU
method that is independent of the IMU mounting angle
and position is developed.

• The proposed method significantly improved position
estimation accuracy in environments where GNSS ob-
servations were unavailable or contained errors owing to
satellite shielding or multipath.

GNSS Position Factor

GNSS Velocity Factor

Motion Factor

Acceleration Factor

Angular Rate Factor

Relative Bias Factor

�

�

�

Fig. 1. Structure of the factor graph of the proposed method. The states are
the 3D position x, velocity v, and IMU bias b. The attitude is not included
in the states. The IMU acceleration and angular velocity factors generate a
constraint between successive velocities.

• We used simulations and real-world experiments to com-
pare the accuracy of the proposed method with that of
the conventional 6-DOF pose estimation method, which
adds attitude to the estimated state. We clarified the
applicability and effectiveness of the proposed method.

II. PROPOSED METHOD

A. Problem Setup

In general, the 3D position x and 3D attitude Φ are
used as the estimated states in a combined GNSS and IMU
system. In addition, the 3D velocity v was estimated from the
acceleration and angular velocity measured by the IMU. As
low-cost IMUs possess large acceleration and angular velocity
bias errors and drifts, the biases of each of the three axes,
namely, bacc and bgyro, are often added to the state. In a
general GNSS/IMU integration, the estimated state at the ith
epoch is as follows:

Xi =
[
xi Φi vi bacc,i bgyro,i

]T
(1)

The local east-north-up (ENU) coordinate system was
adopted as the world frame. This is a 15-dimensional state-
estimation problem. The measured values of the acceleration
ã and angular velocity ω̃ of the IMU in the IMU frame are as
follows:

ãi = ai −CI
W,ig + ωi × (ωi × r) + bacc,i + ηacc (2)

ω̃i = ωi + bgyro,i + ηgyro,i (3)

where a is the translational acceleration measured in the IMU
frame; ω are the theoretical values of the angular velocity
in IMU frame; g is the gravitational acceleration; r is the
lever arm of the IMU from the center of rotation; η represents
Gaussian white noise; and CI

W denotes the rotation matrix
from the world frame to the IMU frame computed from the
3D attitude Φ and IMU mounting angle in the vehicle frame.

The third term in (2) is the centripetal force, which is
considerably large when the IMU is mounted on a vehicle or
robot away from the center of rotation and generates a large
centripetal force when turning. Accelerations other than grav-
itational acceleration act as disturbances when accelerometers
are used to estimate the attitude. If a lever arm is present at
the mounting position of the GNSS and IMU, the acceleration
generated by the centripetal force significantly affects attitude
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estimation without prior information on the mounting position
[23]. To combine IMU observations with GNSS observations
in the world frame, the 3D attitude Φ and IMU mounting
angle, which represent the transformation from the IMU frame
to the world frame, must be estimated.

B. Estimated State

This study does not estimate the 3D attitude and IMU
mounting angle and position; it combines the IMU and GNSS
observations. The IMU and GNSS observations are exactly the
same as those in the conventional method; however, the state
has the following eight dimensions without attitude.

Xi =
[
xi vi bi

]T
(4)

where the 3D bias error of the accelerometer and gyroscope
is estimated as the bias of the magnitude of the acceleration
and the angular velocity in one dimension, respectively.

bi =
[
bacc,i bgyro,i

]
(5)

C. Graph Structure

In this study, factor graph optimization was used to estimate
the position by combining the GNSS position and velocity,
IMU acceleration, and angular velocity. A factor graph is a
graphical representation of the constraints of a variable node,
expressed at the edges between the variable and factor nodes
[25].

The proposed method assumed that a GNSS and an IMU
were attached to a vehicle; 3D position and velocity observa-
tions were obtained from the GNSS; and three-axis accelera-
tion and angular velocity were obtained from the IMU. The
3D position and 3D velocity were calculated from the GNSS
pseudorange and GNSS Doppler observation, respectively.
Their accuracy was assumed to be a few meters for the position
and 10 cm/s for the velocity as the accuracy of general GNSS.

The graphical structure of the proposed method is shown in
Fig. 1. The graph was constructed using the GNSS observation
timing, which is a lower rate than IMU. The observation rate of
GNSS was assumed to be 1–20 Hz, which is the output rate of
general GNSS receivers, while that of the IMU was assumed to
be 100–200 Hz. We proposed two new factors: (1) a constraint
on the magnitude of the 3D acceleration vector, and (2) an
angular velocity constraint between the velocity vectors based
on the angular change. These IMU-based constraints were
independent of the attitude and did not require the attitude
to be added to the state. In addition, we used a motion factor
that related the velocity to the position, GNSS position factor
that was a 3D position constraint using GNSS pseudorange,
and GNSS velocity factor that was a 3D velocity constraint
using Doppler measurements.

D. Acceleration Factor

The acceleration factor constrained the change in successive
3D velocities using the magnitude of the 3D acceleration
measurement from the accelerometer. Let t1 and t2 be the

times of the i-th and i + 1-th epochs, respectively. The error
function of the acceleration factor is defined as

eacc,i =

∥∥∥∥vi+1 − vi

∆tgnss
− g

∥∥∥∥−
∥∥∥∥∥∆timu

∆tgnss

t2∑
t=t1

at

∥∥∥∥∥+ bacc,i (6)

where ∆tgnss and ∆timu denote the observation time steps
for GNSS and IMU, respectively. The first and second terms
represent the magnitudes of the acceleration computed from
the velocities and average acceleration between the states
calculated from the accelerometers, respectively. This equation
clearly indicates that the magnitude of the 3D acceleration
vector can be used as a constraint to construct a constraint
between states vi and vi+1 that is independent of the attitude
of the IMU. The total minimized error of the acceleration
factor is calculated as follows:

∥eacc,i∥Ωacc
= eacc,i Ωacc eacc,i (7)

where Ωacc is the information matrix, which is empirically
determined from the catalog-specified noise model.

E. Angular Velocity Factor

The direction of the 3D velocity vector was constrained
by the angular velocity observed by the gyroscope. This was
expressed as a constraint that the angle formed by the velocity
vectors between successive states coincided with the angular
change resulting from the integration of the angular velocity
measurements from the gyroscope. The error function of the
angular velocity factor is defined as follows:

egyro,i = arccos

(
vi+1 · vi

∥vi+1∥ ∥vi∥

)
−

∥∥∥∥∥
t2∑

t=t1

ωt ∆timu

∥∥∥∥∥+ bgyro,i

(8)
This equation defines the constraint that the angle between

the velocity vectors is equal to the angular change owing to
the integration of the angular velocity. The error function to
be optimized is as follows:

∥egyro,i∥Ωgyro
= egyro,i Ωgyro egyro,i (9)

where Ωgyro is the information matrix, which is empirically
determined from the specifications of the gyroscope and
accelerometer.

Unlike the acceleration factor, the angular velocity factor
shown in Equation (8) requires that the orientation of the
platform be aligned with the direction of the velocity vector.
This is an important limitation that is applicable to general
ground vehicles but not to differential-drive wheeled robots or
quad-rotors. For these platforms, only the acceleration factor
is used. In addition, this constraint is inapplicable when the
velocity is zero or low. Therefore, this constraint is applied
only when the magnitude of the velocity vector exceeds a
certain threshold (1 m/s in this study).
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F. Other Factors

1) GNSS Position Factor: The 3D positioning results from
the least-squares method using GNSS pseudorange were com-
bined for position estimation. The error function of the GNSS
position factor is

epos,i = xi − xgnss,i (10)

where xgnss,i denotes the GNSS positioning solution in the
ENU coordinate system. The information matrix of the GNSS
position factor was computed from the covariance matrix
estimated using the least-squares method. For the GNSS
position error function, the M-estimator was applied as a
robust optimization method owing to the existence of outliers
caused by multipaths. The Huber function was used as the
kernel [26].

2) GNSS Velocity Factor: The 3D velocity was estimated
using the least-squares method with GNSS Doppler shift
measurements. As with the position factor, the 3D velocity
vgnss,i was converted to the ENU coordinate system and added
to the graph as follows:

evel,i = vi − vgnss,i (11)

Similar to the position factor, the covariance matrix esti-
mated using the least-squares method was used to compute
the information matrix. In general, the velocity calculated
from the Doppler velocity is considerably more accurate than
that calculated from the difference in pseudoranges. The M-
estimator is used for the GNSS velocity error function as well
as the GNSS position error function.

3) Motion Factor: The motion factor was used to relate
the 3D velocity and position. Based on the average velocity
and 3D position between successive states, the motion factor
is defined as follows:

em,i =
xi+1 − xi

∆tgnss
− vi+1 + vi

2
(12)

The motion factor is a deterministic factor that relates the
velocity and position. For the variance of its error, it uses a
small fixed value that is adjusted heuristically. The acceleration
and angular velocity constraints between the velocities are also
propagated to the position using the motion factor, thereby
improving the position estimation accuracy.

4) Relative Bias Factor: The relative bias factor between
IMU bias states was used to control the variation in the accel-
eration and angular velocity biases. The following equations
define the error functions for the relative bias factor:

ebias,a,i = bacc,i+1 − bacc,i (13)

ebias,g,i = bgyro,i+1 − bgyro,i (14)

where the information matrix of the relative bias factor is
determined from the random-walk specifications of the ac-
celerometer and gyroscope.

Fig. 2. Trajectory (top) and 3D velocity history (bottom) of the simulation
data. The data was generated from the urban driving data of the vehicle.

G. Optimization

The graph is constructed according to the factor described in
the previous section using all GNSS and IMU observations in
the dataset. In this study, we treated the optimization as a full-
graph optimization problem using the Levenberg-Marquardt
optimizer as a post-processing application. The final objective
function to be optimized is expressed as follows:

X̂ = argmin
X

(∑
i

∥eacc,i∥2Ωacc
+
∑
i

∥egyro,i∥2Ωgyro

+
∑
i

∥epos,i∥2Ωpos,i
+
∑
i

∥evel,i∥2Ωvel,i
+
∑
i

∥em,i∥2Ωm

+
∑
i

∥ebias,a,i∥2Ωbias,a
+
∑
i

∥ebias,g,i∥2Ωbias,g

)
(15)

The proposed method was implemented using GTSAM, a
general-purpose graph optimization library [27].

III. EXPERIMENTS

We compared the proposed method with a conventional gen-
eral 6-DOF GNSS/IMU integration method. To implement the
6-DOF GNSS/IMU integration method, we used a GNSS/IMU
integration algorithm based on the IMU preintegration fac-
tor using GTSAM [28], [29]. The estimated state is a 15-
dimensional vector as shown in (1). The proposed and compar-
ison methods differed only in the graph structure of the IMU
part; the difference lay in the use of the proposed acceleration
factor and angular velocity factor or the conventional IMU
pre-integration factor. We evaluated the proposed method using
two datasets: simulation data and real data obtained by placing
a smartphone on a vehicle.

A. Simulation Setup

Simulation data of the IMU and GNSS observations were
generated to evaluate the position-estimation performance of
the proposed method. The MATLAB Navigation Toolbox
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Fig. 3. IMU acceleration and angular velocity data generated from driving
scenarios. The IMU mounting angles were matched to data from actual driving
experiments.

TABLE I
SENSOR PARAMETERS FOR IMU AND GNSS DATA SIMULATION.

Sensor Parameter Value Unit

Acceleration

Noise density 1.86× 10−3 (m/s2)/
√
Hz

Random walk 4.33× 10−4 (m/s2)
√
Hz

Constant bias 0.19 m/s2

Sample rate 100 Hz

Angular velocity

Noise density 1.87× 10−4 Unit
Random walk 2.66× 10−5 (rad/s)/

√
Hz

Constant bias 0.0545 (rad/s)
√
Hz

Sample rate 100 rad/s

GNSS position Noise density 1.0 m
Sample rate 1 Hz

GNSS velocity Noise density 0.2 m/s
Sample rate 1 Hz

was used to generate the simulation data for the IMU and
GNSS. To generate sensor data, we used the vehicle trajectory
from the Google Smartphone Decimeter Challenge [30], an
evaluation using real data described below.

Fig. 2 shows the trajectory of the vehicle in the simulation
data. The travel distance is approximately 12 km, including
vehicle stops and starts in an urban environment, and takes
approximately 35 min.

Fig. 3 shows the generated IMU measurements (acceleration
and angular velocity). The parameters of the sensor models
used to generate the simulation data are listed in Table I.
Parameters such as the accelerometer, gyroscope noise density,
and random walk were set using parameter estimates from low-
cost IMUs based on [31]. GNSS observations were generated
by adding Gaussian noise to the 3D position and 3D velocity.
The noise of the GNSS velocity observations was set lower
than that of the position observations. IMU measurements
were generated at 100 Hz, and GNSS observations were
generated at 1 Hz.

Several simulation data points were generated with errors
added to the IMU mounting position to compare the proposed
and conventional methods. An AMD Ryzen 3950X @3.5GHz
CPU was used for the evaluation experiments.

East error m North error m Up error m 3D position error m

GNSS Position Only 1.003 0.990 0.997 1.726

6-DOF IMU 0.293 0.260 0.310 0.499

Proposed Method 0.327 0.299 0.265 0.516

Fig. 4. Cumulative distribution function of the 3D position error for the
proposed (red line) and conventional 6-DOF pose estimation (blue line). The
combined IMU significantly improves the accuracy of position estimation in
both cases.

TABLE II
RMS POSITION ERROR BETWEEN THE PROPOSED METHOD AND
CONVENTIONAL 6-DOF ESTIMATION USING SIMULATION DATA.

East error
m

North error
m

Up error
m

3D position
error m

Total
computation

time ms

Computation
time per

iteration ms

Number of
iterations

GNSS
position 1.003 0.990 0.997 1.726 - - -

6-DOF IMU 0.293 0.260 0.310 0.499 629.9 105.0 6
Proposed
method 0.327 0.299 0.265 0.516 237.0 33.9 7

B. Comparison using the IMU Mounting Position Error

Fig. 4 shows the cumulative distribution functions of the 3D
position error when there is no IMU mounting position error
for the proposed (red line) and conventional 6-DOF pose esti-
mation (blue line). Table II lists the root mean square (RMS)
error of the estimated positions, the total processing time for
the optimization computation, the average processing time per
iteration, and the number of iterations until convergence.

In the absence of the IMU mounting position error (when
the IMU frame was coincident with the vehicle frame), the
proposed method improved the estimation accuracy. However,
the position estimation accuracy was slightly lower than that
of the conventional method. This is because the conventional
method can ideally integrate the GNSS and IMU when the
sensor model parameters are known. In addition, the proposed
method did not maximize the use of the three-axis observations
of the IMU and limited the observations. This degraded the
performance compared to the case where full acceleration
and angular velocity observations were used. The proposed
method is superior to the conventional method in terms of
computational time because it estimates fewer states, which
reduces the time required for an optimization iteration to about
one third of the time required by the conventional method.

Fig. 5 shows the RMS error in 3D position estimation
when the simulation data is generated by adding a constant
IMU mounting position error from the origin of the vehicle
frame to the lateral direction of the vehicle. As shown in Fig.
5, the position estimation accuracy of the proposed method
is less affected by the IMU mounting position. However,
the conventional method, which is a 6-DOF pose estimation
method, demonstrated that the accuracy of position estimation
decreased with increasing IMU mounting position error. When
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Fig. 5. Comparison of position estimation error with increasing IMU
mounting position error. The proposed method (red line) is less sensitive to the
IMU mounting position error, while the conventional 6-DOF pose estimation
(blue line) exhibits increasing error.

Fig. 6. Comparison of 3D position error between the proposed method and
the conventional method when the IMU mounting position error is 3 m. In
the case of the conventional method, the position estimation error increases
at points where the vehicle travels around curves.

the IMU mounting position error in the direction lateral to the
vehicle exceeded 0.6 m, the proposed method exhibited better
position estimation accuracy and surpassed the conventional
method.

Fig. 6 shows the time series of the 3D position errors for
an IMU mounting position error of 3 m. The conventional 6-
DOF attitude estimation method exhibits a partial increase in
the position estimation error, which coincides with a vehicle
traveling around a turn. When the IMU was mounted far from
the center of rotation and generated a large centripetal force,
the generated centripetal force directly affected the 3D attitude
estimation, which in turn affected the position estimation accu-
racy. However, because the proposed method did not estimate
the 3D attitude, the magnitude of the acceleration generated
by the centripetal force affected the accuracy, although the
effect was smaller than that of the conventional method, which
estimates the 3D attitude.

C. Comparison by Multipath and GNSS Shielding

We evaluated the degradation of the position estimation
accuracy of each method by simulating the cases where the
GNSS observations exhibited large position and velocity errors
owing to multipath and the satellite had a short time loss owing
to shielding. Fig. 7 shows the position estimation errors for the
case without IMU, 6-DOF pose estimation, and the proposed
method. The section ”A” is a randomly observed position and
velocity with errors added by simulating multipath errors. The

A B

Fig. 7. Position estimation errors of the proposed (red line) and conventional
(blue line) methods when multipath is included in GNSS observations (A)
and in the absence of GNSS observations(B).

magnitude of the multipath comprised random errors of up to
10 m and up to 1 m/s for position and velocity observations,
respectively. In the absence of the IMU, the position estimation
accuracy in section ”A” was significantly degraded because of
multipath. The combined use of the IMU and the proposed
method significantly reduced the estimation error for both the
proposed and conventional methods.

In section ”B,” the complete loss of GNSS observations
for 5 seconds was repeated thrice. Even when GNSS signals
were unavailable, the position was calculated using IMU.
Both the proposed and conventional methods suppressed the
increase in the position estimation error. The proposed method
improved the accuracy of position estimation even when the
GNSS observation data contained errors and deficiencies by
combining GNSS and IMU without estimating the attitude.

D. Actual Smartphone Dataset

The GNSS and IMU data collected in a real-world environ-
ment were used to evaluate the proposed method. The Google
Smartphone Decimeter Challenge dataset [30] was used for
the evaluation. For this dataset, a smartphone was mounted on
the vehicle dashboard and data were collected from its built-in
GNSS and IMU. The mounting position and orientation of the
smartphone were not provided. For the evaluation in this study,
the smartphone was assumed to be installed at the center of
rotation of the vehicle.

The vehicle trajectories were the same as those used to gen-
erate the simulation data, and multiple trajectories measured
on different dates and times were evaluated. Fig. 8 shows the
driving trajectory of a vehicle equipped with a smartphone.
The driving environment was an urban environment lined
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Fig. 8. Driving trajectory of a vehicle equipped with a smartphone. The
experimental environment is a downtown area, where GNSS signal shielding
and multipath occur frequently.

Test #1

Fig. 9. Position estimation results using the proposed method, where the
combined use of IMUs provides smooth position estimation regardless of
GNSS errors and observation deficiencies.

Test #1 Test #2 Test #3

Test #1 Test #2 Test #3

East error 
m

North 
error m

Up error 
m

3D error m East error 
m

North 
error m

Up error 
m

3D error m East error 
m

North 
error m

Up error 
m

3D error m

GNSS 
Only

8.671 11.228 23.808 27.714 9.698 10.495 22.782 26.893 11.920 9.179 15.506 21.605

6-DOF 
IMU

3.674 2.448 3.133 5.413 4.752 3.050 3.239 6.510 3.976 2.860 2.804 5.643

Proposed 
Method

3.739 2.880 2.165 5.193 5.308 3.182 2.492 6.672 3.900 3.060 3.063 5.827

Fig. 10. Comparison of the cumulative distribution function of the proposed (red line) and conventional (blue line) methods for three vehicle driving
experiments. The proposed method performs slightly better than the conventional method.

TABLE III
RMS POSITION ERROR OF THE PROPOSED METHOD AND CONVENTIONAL 6-DOF POSE ESTIMATION FOR THE ACTUAL SMARTPHONE DATASET.

Test #1 Test #2 Test #3

East error m North error m Up error m 3D error m East error m North error m Up error m 3D error m East error m North error m Up error m 3D error m
GNSS position only 8.671 11.228 23.808 27.714 9.698 10.495 22.782 26.893 11.920 9.179 15.506 21.605

6-DOF IMU 3.674 2.448 3.133 5.413 4.752 3.050 3.239 6.510 3.976 2.860 2.804 5.643
Proposed method 3.815 2.754 2.075 5.143 5.008 3.078 2.253 6.295 3.900 3.060 3.063 5.827

with buildings with large multipath errors, where GNSS was
completely blocked for several seconds by tall structures and
buildings.

The IMU and GNSS of smartphones have the problem
of observation time offset. In this study, fixed time offsets
between the GNSS and IMU were manually estimated and
applied [32]. Parameters such as the IMU noise were manually
tuned for both the proposed and conventional methods.

The GNSS 3D position observations were based on the
position information contained in the dataset estimated by the
weighted least-squares method using the pseudorange from
the raw GNSS data of the smartphone. The 3D velocity data
were estimated by the least squares method from the Doppler
observations of the smartphone.

The proposed and conventional methods were compared for
three sets of driving data collected on different dates. Fig. 9
shows an example of a smartphone trajectory estimated by
the proposed method. Although the GNSS position contains a
very large positioning error owing to multipath, the proposed
method estimates a smooth trajectory by combining IMUs.

Fig. 10 compares the cumulative distribution functions of the
proposed (red line) and conventional (blue line) methods for
three vehicle driving experiments. Table III lists the RMS
errors for the 3D position estimation. By combining the IMUs,
both the proposed and conventional methods estimated a con-
tinuous smooth position without increasing the error, even in
areas where the GNSS pseudorange-based position had large
errors in the observations. The proposed and conventional
methods exhibited almost the same level of position-estimation
performance. However, the proposed method performed better
than the conventional method for some runs. This may be
attributed to the influence of mounting errors and degradation
of the IMU data acquired in the real environment by noise and
vibration. The proposed method greatly improves the accuracy
of vertical position estimation. This is because for a ground
moving vehicle, the direction of the acceleration vector occurs
mainly in the horizontal direction, and the vertical velocity is
more easily corrected than the horizontal velocity under the
3D position constraint when the magnitude constraint of the
acceleration vector is used.
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IV. CONCLUSION

In this study, we proposed a combined GNSS and IMU
method that does not require attitude estimation. In the state
estimation problem by graph optimization, we proposed a
constraint between states using the magnitude of the 3D
acceleration vector observed by the IMU and a constraint
on the angle of the velocity vector between states using the
angular change using the gyroscope observation values. We
conducted an evaluation using simulation data and smartphone
observations in a real environment. In the evaluation using
simulation data, the proposed method improved the position
estimation accuracy even when there were large errors or defi-
ciencies in the GNSS observations. The proposed method was
not significantly affected by the IMU mounting position and
the position estimation accuracy did not deteriorate when there
were errors in the IMU mounting position. In the real-world
position estimation using smartphones, the proposed method
improved the positioning accuracy by combining IMUs. In
conclusion, the proposed method was highly effective in the
combined GNSS and IMU scenario where the IMU was
frequently installed and removed.

In this study, we evaluated the performance of the proposed
method by integrating the loosely coupled GNSS position and
velocity with the IMU. In future studies, we will improve the
position estimation performance by evaluating the combination
of the IMU with a tight-coupling GNSS pseudorange and
Doppler, and by including advanced velocity information such
as the time-differenced carrier phase.
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