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Abstract— Signal Temporal Logic (STL) is a powerful frame-
work for describing the complex temporal and logical behaviour
of the dynamical system. Numerous studies have attempted
to employ reinforcement learning to learn a controller that
enforces STL specifications; however, they have been unable to
effectively tackle the challenges of ensuring robust satisfaction
in continuous state space and maintaining tractability. In this
paper, leveraging the concept of funnel functions, we propose
a tractable reinforcement learning algorithm to learn a time-
dependent policy for robust satisfaction of STL specification
in continuous state space. We demonstrate the utility of our
approach on several STL tasks using different environments.

I. INTRODUCTION

Temporal logic is an effective method of formally defining
complex tasks involving spatial, temporal, and logical con-
straints [1]. The expressiveness of predicate logic combined
with temporal dimension led to its widespread use of Linear
Temporal Logic (LTL) [2], [3] in designing the specification
of dynamical systems. Signal Temporal Logic (STL) [4]
extends the applicability of LTL by allowing us to specify a
behaviour for a fixed time interval. For example, a warehouse
robot needs to reach particular locations in specific time
intervals. The STL framework proves to be effective in
efficiently capturing and modeling such requirements.

Several works in literature use the dynamics model to
design controllers to enforce STL specifications (see [5]
and references therein). However, they are restricted to a
limited class of systems and a fragment of specifications.
Recently, controller synthesis for STL specification with-
out a mathematical model of systems using Reinforcement
Learning (RL) has started gaining attention. Not only is RL
beneficial in the context of STL specifications, but at the
same time, STL facilitates the designing of rewards for RL
in a structured manner, avoiding the loopholes in developing
rewards in a heuristic manner [3]. [6] used Q-learning [7] to
achieve tasks defined using STL by maximizing the robust-
ness of STL satisfaction. [6] defined the τ−MDP framework
to allow each state to store the history of states. Storing the
history of states is required to check for the satisfaction of
STL formulas and, at the same time, raises doubts about
the tractability of the proposed method. Further, [8] tries
to solve the tractability issue of Q-learning by proposing
the use of flag variables. Flag variables are used to avoid
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storing the history of states and check the satisfaction of
STL formulas. One issue with this work is that it does not
consider robustness values. [9] proposed a solution for multi-
agent system using Deep Q-learning algorithm [10]. The
authors used Deep Q-Network (DQN) to overcome the state-
space explosion in the multi-agent setting. Their approach
considers robustness value for the STL formula but again
suffers from the drawback of storing the history of states.

On the other hand, a funnel-based control approach is
employed to enforce the satisfaction of a fragment of STL
specifications [11] by formulating exponentially decaying
constraint functions referred to as ’funnels’. The authors in
[11] introduce a continuous and closed-form controller con-
struction for enforcing those fragments of STL specifications.
Achieving this objective necessitates making certain assump-
tions about the systems (such as requirements of control-
affine systems, fully/overactuated systems, and unbounded
inputs) and about specifications (such as STL tasks excluding
’OR’ logical operators, convex predicates, and logical oper-
ations over temporal operators). Nevertheless, this approach
holds great promise in effectively separating the temporal
and logical components within an STL specification while
capturing robustness on satisfaction.

Leveraging the advantages of the results in [11], this work
proposes a funnel-based approach for reward shaping in rein-
forcement learning algorithms to enforce STL specification
in a tractable manner. We demonstrated that the proposed
approach resolves the issue of tractability by eliminating
the requirement of storing state history ([6], [9], [12], [13]).
This key enhancement enables the extension of our proposed
approach to continuous-state environments. Furthermore, we
present evidence that, for the first time, the proposed ap-
proach integrates robustness considerations while enforcing
STL specifications in the RL framework in the context of
continuous-state spaces. Moreover, by leveraging a learning
framework, we can relax several assumptions made in [11]
concerning systems and specifications. For instance, we ob-
serve that our approach can handle the logical operator ‘OR’,
any type of predicate, and conjunction between temporal
operators while allowing us to provide results for any general
nonlinear systems with input constraints. It is important to
note that the advantages we observe are based on empirical
findings and lack formal guarantees, unlike the methodology
presented in [11]. Finally, we demonstrated the effectiveness
of the proposed approach with several simulation results on
different environments and real-world sim-to-real transfer.
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II. PRELIMINARIES

A. Deep Q-learning

Reinforcement learning (RL) is a learning paradigm based
on the framework of Markov Decision Processes (MDP)
[14]. An MDP is defined by a tuple M = (S,A, r,P, π, γ),
where S ⊂ Rm refers to the continuous state space, A
refers to the discrete action space and r : S × A 7→ R
is the reward function. Further, P(·|s, a) is the transition
probability function defined as P : S × A 7→ µ(·). µ :
B(S) 7→ [0, 1] is a probability measure and B(S) is the
Borel σ−algebra on state space S. Here, π : S 7→ ∆(A) is a
stochastic policy (controller) and ∆(A) is the probability
simplex over action space A. γ ∈ (0, 1) is the discount
factor. The policy π is obtained by optimizing the long-term
discounted reward objective function η(π) as defined below:

η(π) = E
[ ∞∑
t=0

γtr(st, at)
]
, (1)

where st, at denotes the state and action taken at time t. To
solve the above optimization problem, Q-learning [7] is one
of the most widely used RL algorithms. It uses ϵ−greedy
policy (3) based on the Q-value function (2) to explore and
optimize the objective function in (1).

Qπ(st, at) = E
[ ∞∑
k=t

γk−tr(sk, ak)|st, at
]

= E
[
r(st, at) + γQπ(st+1, at+1)|st, at

]
. (2)

π(a|s) =


1− ϵ+ ϵ

|A|
a = argmaxa′ Q

π(s, a′)

ϵ

|A|
otherwise.

(3)

Here, Qπ(s, a) is the Q-value function (2) for (s, a) ∈ S×A
pair that denotes the long-term discounted reward achieved
after taking action a in state s and following the policy π
after that. The Q-learning finds optimal policy π∗ by finding
solution to Bellman equation

Qπ
∗
(s, a) = E[r(s, a) + γmax

ā∈A
Qπ

∗
(s′, ā)] (4)

that ensures Qπ
∗
(s, a) ≥ Qπ(s, a) ∀π, s ∈ S, and a ∈ A.

Deep Q-learning [10] is a function approximation-based
Q-learning algorithm that uses a neural network to learn
optimal policy online using a replay buffer. The algorithm
uses a neural network with parameters θ to approximate Q-
value function Qθ(s, a) that satisfy the Bellman equation (4).

B. Signal Temporal Logic

Signal temporal logic (STL) [4] provides a formal frame-
work to capture high-level specifications containing spatial,
temporal, and logical constraints. It consists of a set of
predicates φ that are evaluated using predicate functions

h : S → R as φ :=

{
True, if h(s) ≥ 0
False, if h(s) < 0

. The syntax

for an STL formula ϕ is given by:

ϕ ::= True | φ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | F[a,b]ϕ | G[a,b]ϕ,

where a, b ∈ R+
0 with a ≤ b, ϕ1 and ϕ2 are STL formulas,

¬, ∧ and ∨ are logical negation, conjunction and disjunction
operator, respectively; and F and G are temporal eventually
and always operators, respectively. The relation st |= ϕ
indicates that the signal s : R≥0 7→ S satisfies the STL
formula ϕ at time t. The STL semantics for a signal s is
recursively defined as follows:

st |= φ ⇐⇒ φ is True
st |= ¬ϕ ⇐⇒ ¬(st |= ϕ)

st |= ϕ1 ∧ ϕ2 ⇐⇒ st |= ϕ1 ∧ st |= ϕ2

st |= ϕ1 ∨ ϕ2 ⇐⇒ st |= ϕ1 ∨ st |= ϕ2

st |= F[a,b]ϕ ⇐⇒ ∃t′ ∈ [t+ a, t+ b] s.t. st′ |= ϕ

st |= G[a,b]ϕ ⇐⇒ ∀t′ ∈ [t+ a, t+ b] s.t. st′ |= ϕ. (5)

Next, we recall the robust semantics for STL formulas
introduced by [15], which will later be used to construct
rewards.

ρφ(st) = h(st)

ρ¬ϕ(st) = −ρϕ(st)
ρϕ1∧ϕ2

(st) = min(ρϕ1
(st), ρϕ2

(st))

ρϕ1∨ϕ2
(st) = max(ρϕ1

(st), ρϕ2
(st))

ρF[a,b]ϕ(st) = max
t′∈[t+a,t+b]

ρϕ(st′)

ρG[a,b]ϕ(st) = min
t′∈[t+a,t+b]

ρϕ(st′).

(6)

In this paper, we consider the following fragment of STL:

ψ := φ | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

ϕ[a,b] := F[a,b]ψ | G[a,b]ψ | F[a,c1]G[c2,b]ψ

Φ :=

k∧
i=1

ϕ[ai,bi] |
k∧
i=1

ϕ[αi,βi],

(7)

where 0 ≤ a ≤ c1, c2 ≤ b, bi < ai+1, ∀i ∈ {1, . . . , k −
1}, ψ and ϕ denote non-temporal and temporal formu-
las, respectively. Further, there may exist temporal formula
with overlapping time intervals such that for some i, j ∈
{1, . . . , k − 1}, αi < βj and αj < βi.
In the next section, we discuss a funnel-based construction
of rewards for deep Q-learning to learn a control policy
enforcing the fragment of STL specifications given in (7).

III. PROPOSED APPROACH

In this section, we describe the utilization of funnel-based
control concepts to construct time-varying rewards capturing
robust satisfaction of STL specifications.

A. Construction of Rewards using Funnel Functions

Funnel based approach was first used by [11] to develop
controllers that satisfy a fragment of STL specifications for
known control systems. Several works in the literature now
build upon this direction [16], [17]. [11] proposed to find a
controller that satisfies the following relation:

∀ t ≥ 0, −γ(t) + ρmax < ρψ(st) < ρmax, (8)



Fig. 1. The funnel for eventually operator with t∗ = c ∈ [a, b] (left) and
funnel for always operator (right).

where γ(t) is a non-increasing and continuously differen-
tiable positive function referred to as funnel and defined as
γ(t) = (γ0−γ∞)e−lt+γ∞, where γ0, γ∞, and l are positive
constants with γ0 ≥ γ∞, and ρmax is the maximum robust-
ness defined for the system for corresponding non-temporal
specification ψ and obtained as ρmax = maxs∈S ρψ(s).

Let us consider the STL fragment defined in (7). The STL
formula Φ can consist of a single eventually (F ) or always
(G) operator, or it could contain these operators combined
using a conjunction operator. The parameter l of funnel
function γ(t) for F[a,b] ψ, G[a,b] ψ, and F[a,c1]G[c2,b]ψ is
chosen as given in Table I, while γ0 = ρmax−mins∈S ρψ(s)
and γ∞ ∈ (0,min(γ0, ρmax)) for all the temporal operators.

t∗ l

G[a,b]ψ t∗ = a 1
t∗ ln γ0−γ∞

ρmax−γ∞
F[a,b]ψ t∗ ∈ [a, b] 1

t∗ ln γ0−γ∞
ρmax−γ∞

F[a,c1]G[c2,b]ψ t∗ ∈ [a+ c2, c1 + c2]
1
t∗ ln γ0−γ∞

ρmax−γ∞

TABLE I
SELECTION OF FUNNEL FUNCTION PARAMETER l.

The illustration of the funnel for eventually and always
operators is shown in Figure 1. The value for l is chosen
according to the interval for temporal operators. For F[a,b]

operator l is ln((γ0−γ∞)/(ρmax−γ∞))
t∗ , where t∗ ∈ [a, b], so

that γ(t∗) = 0. Note that t∗ lies in [a, b] because for the
eventually operator, we want the robustness to be positive
at least once in the interval [a, b]. For G[a,b] operator l is
ln((γ0−γ∞)/(ρmax−γ∞))

t∗ , where t∗ = a, so that γ(a) = 0
and the robustness is positive throughout the interval [a, b].
Similar reasoning follows for F[a,c1]G[c2,b] operator.

Now we will discuss cases where temporal operators
appear in conjunction. Let us take the STL formula Φ =
F[a1,b1] ψ1 ∧G[a2,b2] ψ2 with b1 < a2, where ψ1 and ψ2 are
as defined in (7). The funnel function for Φ is given as

γ(t) =

{
(γ0 − γ∞)e− ln(

γ0−γ∞
ρmax−γ∞ ) t

c + γ∞, for 0 ≤ t ≤ b1,
(γ0 − γ∞)e− ln(

γ0−γ∞
ρmax−γ∞ )

t−b1
a2−b1 + γ∞, for t > b1,

(9)
and the plot is shown in Figure 2. In (9), t∗ = c lies in
[a1, b1]. For t ≤ b1, the funnel function γ(t) is defined
according to F[a1,b1] operator and for t > b1, the funnel
function is defined according to G[a2,b2] operator. In this

Fig. 2. The funnel function for conjunction of F[a1,b1] and G[a2,b2]
operator.

case, the F operator is considered with G, but the funnel
function can also be designed similarly to handle two F
operators and/or two G operators. Further, this method of
designing funnel function is not limited to two operators but
can be extended to several operators in conjunction.

Given the construction of funnel function γ(t) for the
temporal part and the robustness measure ρψ(st) for the non-
temporal part of the STL formula, we can now define the
reward function for the deep Q-learning algorithm as

r′(st, at, t) = ρψ(st) + γ(t)− ρmax. (10)

The reward function in (10) is positive at time t if the current
state of the system (agent) follows the bounds given in (8);
otherwise, it is negative. Further, the reward is more positive
if ρψ(st) is close to ρmax and more negative as it is farther
away from the lower bound in (8) in the negative direction.

In general, one needs a history of states to check whether
a predicate is satisfied for the time interval of the temporal
operator. However, in the case of a funnel-based reward, the
temporal satisfaction is captured using time-varying funnel
constraints as discussed above. Thus, being inside the funnel
constraints at each time instance indicates that the predicate
is satisfied for the given time interval. Hence, we do not need
to explicitly store the history of the states.

B. Temporal Operator with Overlapping time intervals

Let us consider the STL specification given in (11) using
two temporal operator with overlapping time intervals. Here,
in the specification α1 < β2 and α2 < β1.

Φ = G[α1,β1]ϕ1︸ ︷︷ ︸
ψ1

∧F[α2,β2]ϕ2︸ ︷︷ ︸
ψ2

(11)

Let r′(st, at, t, ψ1) = ρψ1
(st) + γ1(t) − ρmax,1 and

r′(st, at, t, ψ2) = ρψ2
(st) + γ2(t) − ρmax,2. Note that

r′(st, at, t, ψ) denotes the reward for predicate ψ. We design
the reward by defining the reward as earlier in the time inter-
vals with no overlap and taking the minimum of the reward
for different predicates with overlapping time intervals. One
can write a reward for the STL formula (11) as:

r′(st, at, t)

=


r′(st, at, t, ψ1), t ∈ [α1, α2)

min(r′(st, at, t, ψ1), r
′(st, at, t, ψ2)), t ∈ [α2,min(β1, β2))

r′(st, at, t, ψ2), t ∈ [min(β1, β2),max(β1, β2)]



This approach is not limited to handling simultaneous over-
lapping between time intervals of two temporal operators
but can also be used for an arbitrary number of simultane-
ously overlapping temporal operators (Algorithm 1). Further,
in Section IV-B, we show experimentally that the reward
structure proposed for overlapping intervals satisfies the STL
specification robustly.

Algorithm 1 Reward Calculation for Overlapping Interval
1: function REWARD(st, at, t)
2: intervals = {[ai, bi]}ni=0 ▷ [ai, bi] is the time interval

of ith temporal operator
3: reward = 0
4: for i ∈ {0, · · · , n} do
5: if t ∈ interval[i] then
6: reward = min(reward , r’(st, at, t, ψi))

return reward

C. Time-aware Deep Q-learning

Our time-aware Deep Q-learning algorithm uses the
funnel-based time-dependent reward function in (10), which
is not only a function of state and action but also a func-
tion of time t. The modified MDP is defined as M′ =
{S,A, r′,P, π′, γ}, where r′ : S ×A×N∪ {0} 7→ R is the
new reward function. The stochastic policy is now defined
as π′ : S × N ∪ {0} 7→ ∆(A). The Markov property of the
transition probability function is intact because the transition
to st+1 still depends on (st, at) and at depends on st and
the current time t. Now, since the reward depends on time
and consequently Q-value function also depends on time and
is defined as follows:

Qπ(st, at, t) = E
[ ∞∑
k=t

γk−tr(sk, ak, k)|st, at, t
]

= E
[
r(st, at, t) + γQπ(st+1, at+1, t+ 1)|st, at, t

]
.

Further, the policy will depend on time because we use the
ϵ-greedy policy, which depends on the Q-value function (3).
The proposed method is summarized in Algorithm 2. The
next section discusses the results obtained using our time-
aware Deep Q-learning algorithm.

IV. EXPERIMENTAL RESULTS

We performed experiments on three case studies with
various systems and STL properties to demonstrate the merits
of the proposed approach. We trained the RL agent using a
time-aware Q-learning algorithm (Algorithm 2).

A. Pendulum System

Consider an inverted pendulum model defined as:

θt+1 = θt + τωt,

ωt+1 = ωt + τ(
g

l
sin θt −

µ

ml2
ωt +

1

ml2
at),

where θ, ω, and a ∈ {−3,−2.9, . . . , 2.9, 3} are the angle
of the pendulum, angular velocity, and actions representing
torque applied, respectively. τ = 0.01 is the sampling time.

Algorithm 2 Time-aware Deep Q-learning
Initialize Q-value function parameter θ.
Initialize target Q-value function parameter θ ← θ
α is the step size for parameter update.

1: k = 0, s0 = env.reset(),t = 0
2: while k ≤ total steps do
3: at ∼ π(·|st, t) ▷ π is ϵ-greedy policy
4: st+1 ∼ P (·|st, at) and rt = r′(st, at, t)
5: Store {st, at, rt, st+1, t} in Replay Buffer ▷ st+1 =

s′t
6: if k % eval freq == 0 then
7: Evaluate(agent)
8: Sample Bk = {si, ai, ri, s′i, ti}

M−1
i=0 from the Replay

Buffer
9: Update θ ← θ + α∇θ

(
1
M

∑M−1
i=0

(
r′(si, ai, ti) +

γmaxāQθ(s
′
i, ā, ti + 1)−Qθ(si, ai, ti)

)2)
10: if k % target update freq == 0 then
11: Update θ ← θ
12: k = k + 1
13: if st+1 is terminal then
14: st = env.reset(), t = 0
15: else
16: st = st+1, t = t+ 1

The constants g = 9.8m/s2,m = 0.15, l = 0.5m, and µ =
0.05 represent acceleration due to gravity, mass, length of
pendulum and friction coefficient, respectively. We consider
the following STL specification:

Φ =G[400,700] (|θ| ≤ 0.05 ∧ |ω| ≤ 0.05)︸ ︷︷ ︸
ψ1

∧G[1000,1200] (|1.57− θ| ≤ 0.05 ∧ |ω| ≤ 0.05)︸ ︷︷ ︸
ψ2

∧G[1700,2000] (|−1.57− θ| ≤ 0.05 ∧ |ω| ≤ 0.05)︸ ︷︷ ︸
ψ3

.

(12)

In simple words, the specification in (12) says that ”the
pendulum should maintain θ = 0 and ω = 0 in the interval
of 400 to 700 timesteps (which is equivalent to 4 to 7
seconds as τ is 0.01 seconds) with a tolerance value of 0.05.
Subsequently, in the interval of 1000 to 1200 time steps,
the pendulum should be balanced at θ = 1.57 and ω = 0
followed by θ = −1.57 and ω = 0 from 1700 to 2000
time steps with a tolerance value of 0.05”. The funnel-based
reward function for (12) with st = [θt, ωt] is computed as
discussed in Section III-A and given as follows:
r′(st, at, t)

=


ρψ1

(st) + (γ0,1 − γ∞,1)e
−l1t + γ∞,1 − ρmax,1 t ∈ [0, 700]

ρψ2
(st) + (γ0,2 − γ∞,2)e

−l2(t−700) + γ∞,2 − ρmax,2 t ∈ [700, 1200]

ρψ2
(st) + (γ0,2 − γ∞,3)e

−l3(t−1200) + γ∞,3 − ρmax,3 t ∈ [1700, 2000],

(13)
where ρψ1

(st) = 0.05 − min(|θt|, |ωt|), ρψ2
(st) = 0.05 −

min(|1.57 − θt|, |ωt|), ρψ2(st) = 0.05 − min(|−1.57 −
θt|, |ωt|), l1 = 0.0103 l2 = 0.0138 l3 = 0.0083, γ0,i = π,



Fig. 3. The evolution of robustness values (left), angle (middle), and angular velocity (right) of the pendulum.

Fig. 4. The evolution of robustness values (left), the trajectory in the 2-d plane with controller learned using reward function with (middle) and without
(right) funnel for a mobile robot.

γ∞,i = 0.01, ρmax,i = 0, 05, for all i ∈ {1, 2, 3}. Then,
we trained the RL agent using Algorithm 2 to obtain policy
enforcing desired STL specifications. Figure 3 shows the
evolution of robustness values, angle and angular velocity
of the pendulum over time. One can readily observe that the
robustness values are always inside the constructed funnels,
and the property is satisfied. Notice that the dynamics is
under-actuated, so one can not use results in [11].

B. Mobile Robot Navigation

For the second case study, we consider the differen-
tial drive mobile robot described by: xt+1 = xt +
τvt cos θt, yt+1 = yt + τvt sin θt, θt+1 = θt + τωt,
where, x and y represent the location of robot in x − y
plane, θ represents orientation, and τ = 0.01 is the sam-
pling time. The actions vt ∈ {−5,−4.5, . . . , 4.5, 5} and
ωt ∈ {−3,−2.5, . . . , 2.5, 3} represent forward and angular
velocity, respectively. The STL specification considered is

Φ =G[900,1300]

(
∥(x, y)− (25, 25)∥2 ≤ 2

)
∧G[1600,2000]

(
∥(x, y)− (30, 30)∥2 ≤ 2

)
.

To satisfy the above STL specification, the agent has to reach
inside a circle of radius two centered at (25,25) in the interval
from 900 to 1300 timesteps. Further, it should move inside
the circle of radius two centered at (30,30). By constructing
funnel-based reward, we learn the time-dependent policy
using Algorithm 2 to enforce the STL specification. Figure 4
shows the plot of robustness values following the constructed
funnel (left plot) and trajectory followed by the trained RL
agent in the 2-d plane (middle plot).

Fig. 5. The evolution of trajectories from different initial locations for the
discrete-time integrator.

To show the importance of a funnel-based reward struc-
ture, we modified the reward function by eliminating the
funnel part as described below:

r′(st, at, t) =

{
ρψ1

for 0 ≤ t ≤ 1300

ρψ2
for 1300 ≤ t ≤ 2000.

(14)

Our ablation study reveals that using robustness values
without funnel function γ(t) does not help the agent learn the
task. The trajectory in the 2-d plane obtained after using the
reward function given in (14) is shown in Figure 4 (right).

Specification with convex predicates: To showcase the
applicability of the results for the convex predicate (which
is one of the limitations in [11]), we consider the following



STL specification:

Φ =G[300,2000]

(
∥(x, y)− (5, 5)∥2 ≥ 2︸ ︷︷ ︸
ψ1:(convex predicate)

∧ ∥(x, y)− (5, 5)∥2 ≤ 5
)︸ ︷︷ ︸

ψ2:(concave predicate)

.
(15)

According to specification (15), the robot has to stay inside
an annular region centered at (5,5) with the inner radius
two and the outer radius 5 for the interval of 300 to 2000
time steps. The agent is always reset at a randomly chosen
point in a [0,15]×[0,15] grid. Figure 7 shows the plot of
robustness values and the trajectory followed by the robot
starting from some random point under the policy learned
using our proposed funnel-based STL satisfaction approach
in the 2-d plane. One can readily observe that the trajectory
achieves the best possible robustness by staying in the centre
of the annular region and satisfying the convex predicate ψ1.
Hence our method is capable of handling convex predicate.

Specification with overlapping time intervals: We tried
STL specification with overlapping time intervals of temporal
operator for the differential drive mobile robot and found
that our method is able to satisfy specifications with over-
lapping time intervals as well. The STL specification Φ =

G[0,100]

((
∥(x, y)− (2, 2)∥∞ ≤ 2

)
∧
(
∥(x, y)− (2, 2)∥∞ ≥

0.5
)
∧
(
∥(x, y)− (2, 0.5)∥∞ ≥ 0.5

)
∧
(
∥(x, y)− (3, 3)∥∞ ≥

0.5
))
∧F[0,50]

(
∥(x, y)−(3, 1)∥2 ≤ 0.3

)
∧F[50,90]

(
∥(x, y)−

(1, 3)∥2 ≤ 0.3
)
, and the time intervals are provided in

seconds. The robustness plots obtained are given in Figure
6. We implemented the trained RL agent on hardware, and
a video demonstration* is also available for the same.

C. Discrete-time Integrator for specification with Disjunc-
tion inside Temporal Operator

In this section, we show the applicability of our approach
to learning policy for STL specification with the disjunction
between predicates inside the temporal operator (which is
one of the limitations in [11]). Consider the system (discrete-
time integrator) with dynamics xt+1 = xt + τvt, where xt
is the location at time t and vt ∈ {−3,−2.5, . . . , 2.5, 3} is
the velocity given as input to the system. We train the RL
agent for the STL specification G[0,2000](φ1 ∨ φ2). Here,
φ1 := |x − 5| ≤ 5 and φ2 := |x − 45| ≤ 5. We plotted
trajectories of the system in Figure 5 for different initial
locations and found that the agent has learnt to reach either
x = 5 or x = 45.

D. 7-DoF Fetch Mobile Manipulator

Here we consider a manipulator arm (Figure 8) en-
vironment [18] of ”Gymnasium-Robotics” suite of tasks.
The task of the manipulator is to move to different
points in 3D space according to different time intervals.
The actual task is defined using the STL specification
Φ = G[50,100]

(
∥(x, y, z) − (1.5, 0.43, 0.47)∥2 ≤ 0.1

)
∧

* The video can be found at this YouTube link: https://www.
youtube.com/watch?v=f60-LhD-8PM

Fig. 6. Evolution of robustness value for eventually reaching goals (top),
robustness for always avoiding obstacles (middle) and trajectory followed
by differential drive robot hardware(bottom)

G[150,200]

(
∥(x, y, z) − (1.5, 1.05, 0.47)∥2 ≤ 0.1

)
. Because

of the continuous action space, we used the TD3 algorithm
[19] to train the RL agent. The robustness plot is given as
Figure 9 and a video demonstration* is also available for the
manipulator. The robustness plot shows that our method is
capable of handling both continuous state and action space.
To substantiate our claim we will provide robustness results
on two tasks with continuous action space.

E. DeepMind Cartpole Balance

We test our proposed method using the CartPole-Balance
benchmarking task from the DeepMind control suite ([20]).
In the task considered the RL controller has to balance the
pole at one position on the x-axis during a particular time
interval, and subsequently, the pole has to be balanced at
different positions. The temporal constraints-based task is
described using the STL specification: Φ = G[400,500]

(
|x−

0.5| ≤ 0.2∧ |θ| ≤ 0.1∧ |ω| ≤ 0.5
)
∧G[900,1000]

(
|x+0.5| ≤

https://www.youtube.com/watch?v=f60-LhD-8PM
https://www.youtube.com/watch?v=f60-LhD-8PM


Fig. 7. The evolution of robustness values (top), the trajectory of the agent
in the 2-d plane (bottom), colored area represents the safe region.

Fig. 8. Manipulator arm from the Gymnasium-Robotics suite of tasks

Fig. 9. Evolution of robustness values for manipulator arm

Fig. 10. DeepMind control suite CartPole-Balance task(top). Evolution of
robustness values for cartpole (bottom).

0.2 ∧ |θ| ≤ 0.1 ∧ |ω| ≤ 0.5
)

. Here x is the position of
the cart on the x-axis, θ is the angle made by the pole with
position y-axis, and ω is the angular velocity. The robustness
plot is shown in Figure 10. One can readily observe that the
robustness of learned policy satisfies the funnel constraints
which ensures satisfaction of specifications.

F. DeepMind Ball-in-Cup

We further evaluated our method on the ball-in-cup bench-
marking task from the DeepMind control suite ([20]). In this
task, the RL agent has to move the cup to capture the ball
first, then release the ball, and finally capture the ball again
with specific time constraints. The exact task is described
by the STL specification as: Φ = G[200,300]

(
∥(x, z)ball −

(x, z)cup∥2 ≤ 0.1
)
∧ G[500,600]

(
∥(x, z)ball − (x, z)cup∥2 ≥

0.2
)
∧ G[800,1000]

(
∥(x, z)ball − (x, z)cup∥2 ≤ 0.1

)
. Here,

(x, z)ball and (x, z)cup are the location of the ball and the cup
respectively in a 2-D plane. The robustness plot is available
in Figure 11 which implies satisfaction of specification.

G. Comparative Study

We compare our proposed method for STL satisfaction
with the flag-based method proposed in [8] by training the
RL agent for the differential drive mobile robot (Section IV-
B) considering the STL specification Φ = G[0,200]

(
∥(x, y)−

(2, 2)∥2 ≤ 1
)
. We calculated the robustness value by taking



Fig. 11. DeepMind control suite Ball-in-cup task(top). Evolution of
robustness values for Ball-in-cup task (bottom).

a minimum of robustness for all time steps and obtained a
robustness value of 0.938 for our method and a robustness
value of 0.102 for the method suggested in [8]. Also, from
Figure 12, it is clear that the trajectory generated by using
our approach appears more robust. Further, we obtain an
execution time of 237.72 minutes for our proposed method
as compared to 236.84 minutes for [8] that shows our method
achieves better robustness while consuming almost the same
amount of time as the state-of-the-art method in [8]. We
could not compare our method on infinite state space tasks
with the method proposed in [6] because the method is
proposed for finite state space only.

Fig. 12. Trajectories generated using the flag-based method [8] (left) and
the proposed method (right).

V. CONCLUSION

In this paper, we proposed a tractable method to learn
a controller for robust satisfaction of STL specification
using time-aware deep Q-learning. We described how funnel
functions could be used to design reward functions for rein-
forcement learning algorithms that allow learning controllers
for STL specifications. We showed the performance of our
method on various environments, such as the pendulum and
mobile robot, in accomplishing time-constraint sequential
goals. One of the significant advantages of the proposed
approach is the satisfaction of the STL formulas with convex
predicates. Further, we demonstrated, using a simple environ-
ment, that we can learn the controller for STL formula with
disjunction operator inside temporal operator.
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