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Abstract— One of the most important features of tendon-
driven robots is the ease of wire arrangement and the degree
of freedom it affords, enabling the construction of a body
that satisfies the desired characteristics by modifying the wire
arrangement. Various wire arrangement optimization methods
have been proposed, but they have simplified the configuration
by assuming that the moment arm of wires to joints are con-
stant, or by disregarding wire arrangements that span multiple
joints and include relay points. In this study, we formulate a
more flexible wire arrangement optimization problem in which
each wire is represented by a start point, multiple relay points,
and an end point, and achieve the desired physical performance
based on black-box optimization. We consider a multi-objective
optimization which simultaneously takes into account both the
feasible operational force space and velocity space, and discuss
the optimization results obtained from various configurations.

I. INTRODUCTION

A variety of tendon-driven robots have been constructed so
far [1]–[3]. These have various advantages such as variable
stiffness control [4] and robust response to wire breakage
[5]. Among the advantages, we focus on the ease of wire ar-
rangement and the degree of freedom it affords in this study.
Compared to axis-driven robots, tendon-driven robots can
freely select the start, relay, and end points of wires, and can
easily construct bodies with various configurations [3]. By
modifying the wire arrangement, it is possible to construct a
body that satisfies the desired characteristics, and various
wire arrangement design optimization methods have been
proposed so far. [6] numerically optimizes muscle Jacobian
and pulley radius for robot fingers to ensure a torque space
equivalent to that of humans. [7] exploratively optimizes the
distance between joints and wires to enlarge the feasible joint
angle space for a continuum robot. [8] optimizes the spacing
of fingers, wire pulley radius, and pulley spacing based on
genetic algorithm for a two-fingered hand. [9] numerically
optimizes the wire pulley radius, elasticity, and pretension
for the design of asymmetric compliance actuators. [10]
optimizes the wire attachment position for Cable-Driven
Parallel Robots (CDPR) based on evolutionary algorithm.
[11] numerically optimizes the tension and wire attachment
position for CDPR to optimize its stiffness. [12] numerically
optimizes the start and end point positions of muscles for
a musculoskeletal robot with the attached link of each point
fixed. [13] optimizes the presence or absence of moment arm
of each muscle for each joint for a musculoskeletal robot
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Fig. 1. The concept of this study. We prepare design parameters of wire
arrangement, calculate the evaluation value for target and feasible force /
velocity regions regarding each design, and obtain the design parameter with
the best performance by multi-objective black-box optimization.

with brute force search. [14] optimizes muscle Jacobian for
a musculoskeletal robot by genetic algorithm.

Here, the wire arrangement configuration is mainly divided
into two types: a type with constant moment arm using pul-
leys [6], [8], [9], [13], [14], and a type in which the moment
arm changes depending on the joint angle by expressing the
wire route with its start, relay, and end points [7], [10]–
[12]. Note that for the type with constant moment arm, the
moment arm can be designed directly by the pulley radius,
and it is easy to guarantee the moment arm at various joint
angles, but the ease of wire arrangement is lost because it is
difficult to obtain large moment arm due to the large pulleys
placed at all joints. In terms of optimization methods, there
are two types: those that deal mainly with continuous values
and can be optimized analytically [6], [9], [11], [12], and
those that use black-box optimization for discrete values or
other complex settings [7], [8], [10], [13], [14].

On the other hand, these studies have either focused on
optimizing constant moment arms or only the start and end
points of wires, disregarding complex wire configurations
that span multiple joints and include bends with various relay
points. Also, research on complex optimization involving
both continuous and discrete values from multiple objective
functions is scarce. If we can explore the presence or
absence of wire bends, links to which the relay points are
attached, and changes in the attached positions, it should be
possible to create body configurations that can appropriately
perform a wider variety of tasks. Therefore, we propose a
wire arrangement design optimization method that takes into
account variable relay points. We perform multi-objective
black-box optimization by setting up a problem in which
each wire can freely choose which position of each link
it passes through, and by setting the realization of target
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Fig. 2. The design parameters of wire arrangement. The number of wires
M , the number of relay points N , the position of the relay point lmn , and
the link dmn that the relay point is attached to are set as variables.

operational force and velocity spaces as objective functions
(Fig. 1). We show that various target operational force and
velocity spaces can be realized by appropriately selecting the
wire relay points, and discuss how the performance varies
with the number of wires and relay points. We also show
that the performance of this study is equivalent to or better
than that of a configuration with constant moment arm using
pulleys, while maintaining the degree of freedom of wire
arrangement and large moment arm.

II. DESIGN OPTIMIZATION OF WIRE ARRANGEMENT
WITH VARIABLE RELAY POINTS

First, we set discrete and continuous parameters for wire
arrangement. Next, we define target operational force and
velocity spaces, along with their corresponding objective
functions. Lastly, we conduct multi-objective black-box op-
timization based on these design parameters and objectives.

A. Design Parameters of Wire Arrangement

In this study, the joint structure is predefined and only
the wire arrangement is optimized. All motors and the start
points of wires are located at the root of the robot. This
structure maximizes the advantage of tendon-driven robots,
in that the weight of the movable part can be reduced by
separating the actuators and links. Note that the problem
setting of this study is feasible in hardware, exemplified by
the legs of the kangaroo robot [2] shown in Fig. 1.

An overview of the design parameters is shown in Fig. 2.
We consider a robot with M wires for a given link structure
with D joints. Let LINK0 be the first link that the actuators
are attached to, and LINKD be the last link. We set the
end of LINKD as an end effector. Let N (N ≥ 2) be the
maximum number of relay points (including start and end
points) for each wire. The n-th (1 ≤ n ≤ N ) relay point
on the m-th (1 ≤ m ≤ M ) wire is attached to the link dmn
(0 ≤ dmn ≤ D). The position of the relay point attached to
the link is expressed as lmn (0.0 ≤ lmn ≤ 1.0). For simplicity,
the relay points of LINKd (0 ≤ d ≤ D) are arranged in a
straight line on the link, and the position is within [Ls

d, L
e
d]

(L{s,e}
d is a constant). That is, on LINKd, lmn = 0 represents

the position Ls
d, lmn = 1 represents the position Le

d, and the
actual link position is Ls

d+lmn (Le
d−Ls

d). The first relay point
can be attached to only LINK0, while the rest of the relay
points can be attached to LINKd (0 ≤ d ≤ D). In summary,
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Fig. 3. The definition of variables for calculation of objective function for
feasible operational force space.

the design parameter of each wire m is a continuous value
of lm1 at n = 1, and a continuous value of lmn and a discrete
value of dmn with D + 1 choices at n ≥ 2.

As a comparison, we also perform experiments for the
case with constant moment arm. The design parameters of
each wire m are represented by continuous values of moment
arm rmd (0.0 ≤ rmd ≤ 1.0) for each joint d. Let [Rs

d, R
e
d]

denote the range of possible moment arms at each joint d,
rmd = 0 represents the radius Rs

d, rmd = 1 represents the
radius Re

d, and the actual moment arm is Rs
d + rmd (Re

d −
Rs

d). As described in Section I, while this configuration has
high performance because the moment arm can be designed
directly, the ease of wire arrangement is lost and the large
moment arm becomes difficult to obtain.

B. Calculation of Objective Functions

Objective functions are calculated for the obtained designs.
In this study, we use feasible operational force space (OFS)
and operational velocity space (OVS) as the objective func-
tions. We define the target OFS and OVS, and find design
solutions that realize them as much as possible. We consider
OFS and OVS in a two-dimensional (2D) plane, but this can
be extended to three dimensions (3D) in a similar manner.

First, some basic formulas are described. Let f be wire
tension, τ be joint torque, and F be operational force of
the end effector. Also, let l be wire length, θ be joint angle,
and x be operational position of the end effector. Here, the
following relations generally hold,

l = gm(θ) (1)

l̇ = G(θ)θ̇ (2)

τ = −GT (θ)f (3)
x = gj(θ) (4)

ẋ = J(θ)θ̇ (5)

τ = JT (θ)F (6)

where gm denotes the mapping from θ to l and gj denotes
the mapping from θ to x. Also, G denotes the muscle
Jacobian and J denotes the joint Jacobian. The minimum and
maximum values of wire tension f are denoted by fmin and
fmax, and those of wire velocity l̇ are denoted by l̇min and
l̇max. In this study, we do not change the ranges dynamically
by considering back electromotive force.



Next, we describe the objective function for the feasible
OFS (Fig. 3). Defining the target OFS in a 2D plane as
an ellipse, its parameters are the center point of the ellipse
F c =

(
F c
x F c

y

)T
and the radius of the ellipse for the x-

and y-axes F r
{x,y}. Note that the feasible OFS and OVS are

always convex. When this ellipse is divided into Nd pieces,
the operational force Fi at each point i (0 ≤ i < Nd) on the
ellipse can be expressed as follows.

wf
i :=

(
F r
x cos(2πi/Nd)

F r
y sin(2πi/Nd)

)
(7)

Fi := wf
i + F c (8)

Here, for each point i, we introduce a value hf
i that expresses

by how much the feasible OFS exceeds the target OFS, and
define the following point F h

i .

F h
i := hf

i w
f
i + F c (9)

We maximize hf
i by the following linear programming.

maximize
hf
i ,f

hf
i (10)

subject to −GT (θ)f = JT (θ)F h
i (11)

fmin ≤ f ≤ fmax (12)

When hf
i = 1, the target and feasible OFS coincide for the

direction wf
i , and hf

i ≥ 1 should be satisfied. Therefore, we
compute hf

i for each point i, set the following Eforce as the
objective function, and minimize it.

Eforce :=
∑
i

max(1− hf
i , 0) (13)

If gravity compensation is considered, F c should be obtained
by the following quadratic programming,

minimize
F c

||F c||22 (14)

subject to τg = JT (θ)F c (15)

where τg is the gravity compensation torque required at the
current joint angle θ and || · ||2 is the L2 norm. Note that in
practice, since JT (θ)F c = τg in Eq. 11, the calculation of
Fc is not necessary for optimization, but only for drawing
the elliptic center.

Next, we describe the objective function for the feasible
OVS. Defining the target OVS in a 2D plane as an ellipse,
its parameters are the radius vr{x,y} of the ellipse for the x-
and y-axes. When this ellipse is divided into Nd pieces, the
operational velocity vi at each point i (0 ≤ i < Nd) on the
ellipse can be expressed as follows.

wv
i :=

(
vrx cos(2πi/Nd)
vry sin(2πi/Nd)

)
(16)

vi := wv
i (17)

Here, for each point i, we introduce a value hv
i that expresses

by how much the feasible OVS exceeds the target OVS, and
define the following point vh

i .

vh
i := hv

iw
v
i (18)

We maximize hv
i by the following linear programming.

maximize
hv
i ,θ̇

hv
i (19)

subject to J(θ)θ̇ = vh
i (20)

l̇min ≤ G(θ)θ̇ ≤ l̇max (21)

Similarly to Eforce, we set the following Evelocity as the
objective function, and minimize it.

Evelocity :=
∑
i

max(1− hv
i , 0) (22)

Note that we can define target spaces of various shapes other
than ellipsoids, and can freely define various objective func-
tions such as operational wrench force or rotation velocity.

C. Design of Wire Arrangement Using Multi-Objective
Black-Box Optimization

We have formulated the design parameters and the objec-
tive functions. By using them, multi-objective optimization is
performed to determine the design parameters. In this study,
we use NSGA-II, a multi-objective optimization method
implemented in optuna [15], a black box optimization li-
brary. NSGA-II was chosen for its ability to perform multi-
objective optimization, handle both continuous and discrete
parameters, and handle a relatively large number of samples.
Note that if no solution is found for the linear programming
problem in Eq. 10–Eq. 12 or Eq. 19–Eq. 21, the design
is pruned. In the experiments, we illustrate the obtained
Pareto solutions with Nsample as the number of samples,
and discuss the wire arrangement and the feasible OFS and
OVS of the design. Although only two objective functions are
used, multi-objective optimization is also possible by using
other objective functions such as minimizing the wire length
to suppress elongation or adding constraints on the number
and positions of relay points.

III. EXPERIMENTS

The experimental setup is shown in Fig. 4. We focus on a
two-joint and three-link mechanism in a 2D plane for detailed
experiments and comparisons. The robot model used in this
study is shown under “Robot Configuration” in Fig. 4, where
LINK0 has a length of 0.4 m and LINK{1,2} has a length
of 0.6 m. Relay points can be attached to any of three links
from one end to the other. LINK0 is fixed and the weight of
LINK{1,2} is set to 4 kg assuming the density of aluminum.
The total value of E{force,velocity} for the four joint angles
( 1⃝– 4⃝) is used as the actual objective function, where the
angle of each joint is changed by 15 deg as shown under
“Evaluated Joint Angles” in Fig. 4. Note that we have chosen
this configuration for reasons of computational complexity,
visualization, and the desire to emphasize significant changes
in joint Jacobian due to the change in θ1 + θ2, though a
wider range of joint angle states should be considered. As a
comparison, several experiments are conducted by changing
the design parameters and settings. First, as shown under
“Design Parameters” in Fig. 4, we conduct experiments for
two types: Variable in which each relay point can be freely
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Fig. 4. The experimental setup of this study. The robot configuration for L
{s,e}
d and the evaluated joint angles are shown. The design parameters were

changed to Variable or Constant, gravity configuration to w/o-Gravity or w-Gravity, and target operational force / velocity space to Target-1 or Target-2.

selected, and Constant in which the muscle Jacobian is
kept constant using pulleys. In this comparison, we vary
the number of wires M and the maximum number of relay
points N . For Constant, the range of moment arms of the
wire for each joint is set to [Rs

d, Re
d]=[-0.1, 0.1] [m] (since

the distance between the joints is 0.4 m, the moment arm
can be increased to 0.2, but we set it to 0.1 based on the
feasibility. In some experiments, we set [-0.4, 0.4] [m] in
order to investigate the maximum possible performance). We
also compare two types: w/o-Gravity which is not affected
by gravity, and w/-Gravity which is affected by gravity as in
the human arm as shown under “Gravity Configuration”. In
addition, as shown under “Target Operational Force/Velocity
Space”, we perform experiments by setting types of target
OFS and OVS: Target-1 and Target-2. For other parameters,
we set fmin = 10 [N], fmax = 200 [N], l̇min = −0.4
[m/s], l̇max = 0.4 [m/s], Nd = 8, and Nsample = 10000
(the performance is equivalent to that of a Maxon 90W
BLDC motor with 29:1 gear ratio). For each experiment,
the sampling results and Pareto solutions are shown, and the
target space (blue lines) and the feasible space (red lines)
of force and velocity are shown for the design with the
smallest |Eforce − Evelocity| (the solution in which Eforce

and Evelocity are considered equally). For Variable, its wire
arrangement is shown as a figure, and for Constant, the
moment arm of each wire for each joint is shown since the
wire arrangement is difficult to visualize.

A. Target-1 w/o Gravity

We show the experimental results for Target-1 and w/o-
Gravity. For Variable, the parameters are varied as M =
{3, 4} and N = {2, 3}. For Constant, the parameters are
varied as M = {3, 4}. The results are shown in Fig. 5.

First, we explain how to interpret the results by referring
to the example of Variable when M = 3 and N = 2. The
upper left figure shows the sampling result of optimization,
where Eforce is for the x-axis and Evelocity is for the y-
axis. The further down to the left of the sampling result
graph, the better the solution becomes. Among the sampling
results, the samples represented by the red dots are the Pareto
solutions. The solution with the smallest |Eforce−Evelocity|
is indicated by a red circle, and (Eforce, Evelocity) and its

wire arrangement are shown. As M = 3, there are three
wires, and as N = 2, there are two relay points, a start point
and an end point. Below the figures, the target and feasible
OFS and OVS of this design for 1⃝– 4⃝ in Fig. 4 are shown
with F{x,y} or v{x,y} as {x, y}-axes. If the feasible space (red
line) exceeds the target space (blue line), E{force,velocity}
becomes smaller.

Second, we discuss the overall characteristics of the exper-
iment. Since it is possible to increase the operational velocity
by keeping the moment arm as small as possible, there is
almost certain to be a sampling at Evelocity = 0. On the other
hand, there are many cases where there is no sampling with
Eforce = 0, because the moment arm has a maximum value.
For example, for Variable with N = 2, or for Constant,
there is no sampling at Eforce = 0. In particular, Eforce

is much larger for Constant than for Variable because it
is difficult for Constant to obtain large moment arm (this
will be analyzed in detail in the next experiment). OFS and
OVS show that the velocity takes large values, while the
force takes relatively small values. Next, E{force,velocity}
tends to be smaller as the number of wires and relay points
increase. The larger the number of wires and relay points, the
wider the design range becomes, and the more flexibly the
target OFS and OVS can be covered. For this experimental
setting, it is found that increasing the number of relay points
is more effective than increasing the number of wires. When
N = 2, the feasible OFS and OVS cannot be brought close
to the target space, and the feasible space is sharp in a certain
direction. On the other hand, when N = 3, it is found that
the feasible OFS and OVS are round and close to the target
space. As for the wire arrangement, when N = 2 for both
M = 3 and M = 4, there exist wires that control the first and
second joints independently, as well as a wire that controls
the two joints simultaneously (to control the second joint
independently, the start point of that wire is placed near the
first joint at LINK0). On the other hand, when N = 3, there
are multiple wires that control two joints simultaneously, and
we can see diverse wire arrangements.

Third, a detailed analysis is given for Constant. We relax
the restrictions of R{s,e}

d in Fig. 5 and show the results when
[Rs

d, Re
d]=[-0.4, 0.4], which is not feasible in practice. This

allows us to compare Variable and Constant without design



(8.14, 7.35)

10 15 20 25
0

2

(6.16, 6.13)

(6.77, 6.83)

(3.86, 3.88)

(11.66, 7.92)
(16.65, 8.71)

𝐺 =

1.00 0.98
0.90 −0.87
−1.00 −0.97
−1.00 0.31

× 0.1

𝐺 =
−0.97 −0.99
1.00 0.26
−0.98 0.93

× 0.1

4

6

8

10

12

14
Arrangement

𝑴 = 𝟑 𝑴 = 𝟒

V
ar

ia
b

le
 /

 𝑵
=
𝟐

V
ar

ia
b

le
 /

 𝑵
=
𝟑

C
o

n
st

an
t

Sampling Result

10 15 20 25
0

2

4

6

8

10

12

14

5

ArrangementSampling Result

ArrangementSampling Result

ArrangementSampling Result

5 15 20 25

5

10

15

20

0 10
0

5 15 20

5

10

15

20

0 10
0

ArrangementSampling Result ArrangementSampling Result

20 25 30
0

2

4

6

8

15 20 25
0

2

4

6

8

1

𝐸𝑓𝑜𝑟𝑐𝑒

𝐸
𝑣
𝑒
𝑙𝑜
𝑐
𝑖𝑡
𝑦

𝐸
𝑣
𝑒
𝑙𝑜
𝑐
𝑖𝑡
𝑦

𝐸
𝑣
𝑒
𝑙𝑜
𝑐
𝑖𝑡
𝑦

𝐸𝑓𝑜𝑟𝑐𝑒

𝐸𝑓𝑜𝑟𝑐𝑒

2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

𝐸𝑓𝑜𝑟𝑐𝑒

𝐸𝑓𝑜𝑟𝑐𝑒

𝐸𝑓𝑜𝑟𝑐𝑒

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

𝐹𝑥

𝐹
𝑦

𝑣𝑥

𝑣
𝑦

Fig. 5. The experiment of Target-1 w/o Gravity. For Variable with M = {3, 4} and N = {2, 3} and for Constant with M = {3, 4}, the sampling
results and Pareto solutions are shown. For one Pareto solution with minimized |Eforce − Evelocity |, the wire arrangement and target (blue line) and
feasible (red line) operational force / velocity spaces are shown.

restrictions. Here, we limit the evaluated joint angles to 1⃝
and 4⃝ (the reason will be described later), and Variable with
N = {4, 5, 6} and M = 4 is considered for comparison.
Note that we set Nsample = 50000 for this experiment
because the number of parameters is much larger than in Fig.
5. The results are shown in Fig. 6. It can be seen that for

Variable, better solutions are generated as N is increased.
For the solution with the smallest |Eforce − Evelocity|, the
performance of Variable with N = 5 is almost equal to
that of Constant. In other words, for Constant, performance
without restrictions is much higher than that with restrictions.
Moreover, by increasing N for Variable, we can obtain
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Fig. 6. The detailed analysis of Constant without restrictions for Target-1 w/o Gravity. For Variable with M = 4 and N = {4, 5, 6} and for Constant
with M = 4, the sampling results and Pareto solutions are shown.

higher performance than that of Constant. This is because
the same G is used for each joint angle for Constant, while
different G is used for each joint angle for Variable. On the
other hand, the performance of Variable is not as good as
or better than that of Constant unless the number of relay
points is considerably increased, as in N = {5, 6}. In this
experiment, the evaluated joint angles are limited to 1⃝ and
4⃝, which differ greatly in J . If the evaluated joint angles are

increased to 1⃝– 4⃝, it is difficult to form G that is appropriate
for all of 1⃝– 4⃝, and even if G is always constant or even if
G is varied, the performance does not change significantly.
Therefore, even when N is increased, there is no significant
difference between Constant and Variable.

B. Target-1 w/ Gravity

We show the experimental results for Target-1 and w/-
Gravity. We compare the results between w/o-Gravity and
w/-Gravity for Variable with M = 4 by changing the
parameters as N = {2, 3}. We limit the evaluated joint
angles to 2⃝ and 3⃝ for this experiment (the reason will
be described later). The results are shown in Fig. 7. The
performance of the solutions increases by increasing N , or
with the presence of gravity. In particular, the sampling re-
sults show that the presence of gravity does not significantly
change the minimum value of Eforce, but Evelocity becomes
smaller overall. Gravity always exerts a force in the negative
direction on the y-axis. In the current setup of feasible wire
arrangement, the force in the positive direction on the y-
axis is easily exerted, but the force in the negative direction

is hardly exerted and can be compensated by gravity. In
this experiment, the evaluated joint angles are limited to 2⃝
and 3⃝, which have similar J . If the evaluated joint angles
are increased to 1⃝– 4⃝, the difficulty in forming appropriate
G for all the joint angles increases, and the performance
difference between w/o-Gravity and w-Gravity becomes
smaller.

C. Target-2 w/o Gravity

We show the experimental results for Target-2 and w/o-
Gravity. We perform comparative experiments for Variable
by changing the parameters as M = {3, 4} and N =
{2, 3}. The results are shown in Fig. 8. It can be seen that
the performance of the obtained solutions becomes higher
by increasing M or N . However, increasing N does not
significantly change the performance as in Fig. 5. Compared
to Target-1, for Target-2, the increase in M causes a larger
change in performance than an increase in N . From the result
for N = 3 and M = 4, the feasible OFS and OVS can realize
the sharp target spaces well.

IV. DISCUSSION

The experimental results are summarized and discussed.
First, the multi-objective optimization of this study has
allowed us to obtain a variety of Pareto solutions where
a trade-off exists to achieve the target OFS or OVS. It
is found that the performance of the solution is improved
by increasing the number of wires or the number of relay
points for Variable. Whether it is better to increase the
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number of wires or the number of relay points depends on
the geometry of the target OFS and OVS. Additionally, the
performance of Constant is inferior to that of Variable,
because Constant cannot have large moment arm. On the
other hand, by removing the restrictions of the moment arm,
higher performance can be obtained. Since Constant uses
the same G for all joint angles, Variable theoretically has
better performance as it can change G according to the joint
angle. However, in order for Variable to achieve higher
performance than that of Constant without restrictions, it
is necessary to significantly increase the number of relay
points. This implies that a large degree of freedom in wire
arrangement is necessary to make G nonlinear enough to
accommodate changes in J at each joint angle. Note that by
increasing the gear ratio of the motor, Constant can achieve
high performance without relaxing the restrictions, but at the
cost of backdrivability. For Variable, there is also a trade-
off that the friction at the pulleys should increase as the
number of relay points increases. In addition, the effect of
gravity may have a positive effect depending on the setting.
The wire drive can produce anisotropic torque depending on
the direction of joint rotation, and so gravity can be used
effectively in many cases.

We discuss future issues. First, the design parameters of
the manipulator in this study were relatively simple because
we handled a planar manipulator. When the manipulator
becomes 3D, it is necessary to take into account the inter-
ference of wires during movement, which requires a more
complicated formulation. In addition, the joint structure is not
optimized in this study. Although simultaneous optimization
of link lengths with wire arrangements can be performed in
the same framework, the design parameter space becomes
huge when closed links and branching of links are consid-
ered. Furthermore, it should be noted that aspects such as
wire elongation and friction are not addressed in this study.
Second, although we have considered the feasible OFS and
OVS as the objective function in this study, this framework
can flexibly consider a wider variety of objective functions.
In the future, it is necessary to consider more complex and
realistic settings for objective functions in accordance with
the actual tasks to be realized. In addition, we would like to
develop a tendon-driven robot that actually implements the
obtained solution, and confirm its effectiveness.

V. CONCLUSION

We proposed a design optimization method for wire
arrangement in a tendon-driven robot with variable relay
points. While previous studies have focused on conditions
with constant moment arm or fixed links to attach relay
points to, this study deals with a broader problem and
performs multi-objective black-box optimization aiming at
achieving a target operational force space and velocity space.
Various designs can be represented by setting the links each
wire attaches to and the positions of the relay points as
variables. A body using variable relay points can be designed
more freely in terms of its physical capabilities compared
to a general tendon-driven robot with constant moment arm

using pulleys. We expect that this concept will be a key to
solving various wire arrangement design problems.
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