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Abstract— We present LGX (Language-guided Exploration),
a novel algorithm for Language-Driven Zero-Shot Object Goal
Navigation (L-ZSON), where an embodied agent navigates to
an uniquely described target object in a previously unseen envi-
ronment. Our approach makes use of Large Language Models
(LLMs) for this task by leveraging the LLM’s commonsense-
reasoning capabilities for making sequential navigational deci-
sions. Simultaneously, we perform generalized target object de-
tection using a pre-trained Vision-Language grounding model.
We achieve state-of-the-art zero-shot object navigation results
on RoboTHOR with a success rate (SR) improvement of over
27% over the current baseline of the OWL-ViT CLIP on Wheels
(OWL CoW). Furthermore, we study the usage of LLMs for
robot navigation and present an analysis of various prompting
strategies affecting the model output. Finally, we showcase
the benefits of our approach via real-world experiments that
indicate the superior performance of LGX in detecting and
navigating to visually unique objects.

I. INTRODUCTION

Humans do not conform to preset class labels when
referring to objects, instead describing them with free-
flowing natural language. Robot agents performing object
goal navigation in household environments must be able
to comprehend and efficiently navigate to this seemingly
infinite, arbitrary set of objects defined using natural lan-
guage. For instance, a human may ask the robot agent to
find its “cat-shaped mug.” An agent trained on rigid class
labels may interpret this as the human asking for a “cat”
or a “mug” when the human is really referring to a mug in
the shape of a cat. These types of unique objects typically
lie outside the domain of the object categories commonly
found in large image datasets such as ImageNet 21k [1]
and OpenImages V4 [2]. Additionally, agents deployed in
household environments may be required to navigate to these
target objects without explicitly having a map or layout of
the house available.

In our work, we aim to address these issues by tackling
the L-ZSON task [3]. L-ZSON or Language-Driven Zero-
Shot Object Navigation involves the agent using a freeform
natural language description of an object and finding it
in a “zero-shot” manner, without ever having seen the
environment nor the target object beforehand. The conven-
tional Object Goal Navigation task [4], [5] requires the
agent to locate an object from a predetermined category set
within an unseen environment. Zero-Shot Object Navigation
(ZSON) [6], [7] extends this task to identify a target without
any environment-specific training. L-ZSON further extends
ZSON to freeform natural language descriptions.

Simulation environments for object navigation tasks, in-
cluding RoboTHOR [8] and AI Habitat [9], only con-
tain common day-to-day household objects described using
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Fig. 1: LLM-Based Navigation: Our method, LGX approaches
the problem of Language-driven Zero-Shot Object Navigation or
L-ZSON. To navigate to and detect an unseen, arbitrarily described
object class in an unknown environment, we first extract visual
semantic information about the environment. This information
is utilized to develop a prompt for the Large Language Model
(LLM), whose output provides us with either object sub-goals or
cartesian directions to guide the embodied agent towards the target.
Meanwhile, GLIP searches for the environment for the target object,
which in this case is a “cat-shaped mug”.

simple language (eg. Mug, Table, Bed). However, humans
tend to use unconstrained, natural language when talking
to agents [10], leading to potential confusion in the agents’
interpretation [11]. This problem becomes more apparent in
the sim2real transfer of common object navigation models
[12] that fail to understand the humans instructions. In this
work, we seek to address this issue by carrying out real-world
experiments with unique object references (eg. olive-colored
jacket).

Common approaches to solving Object Goal Navigation
are based on fully supervised learning [4], [13], which is
not practical for an agent that is expected to detect arbitrar-
ily described objects and perform consistently in dynamic
real-world environments. While some recent works address
generalizability to new locations via the ZSON task [14],
even fewer address the issue of generalizing to novel objects
[15] with the L-ZSON task, and none study real-world test
cases that contain an abundance of unconstrained language.
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These works utilize large-scale pre-trained models such
as CLIP [16] and GLIP [17] to perform zero-shot open-
vocabulary object detection in the wild. The downstream
transfer of such ‘foundation models’ [18] has shown great
improvement in various vision and language tasks such as
image captioning [19] and question answering [20]. This
transfer to robotics is non-trivial however, as unlike vision
and language, robot tasks usually involve some form of
experiential decision-making as the agent continuously inter-
acts with the environment. Exploiting the implicit knowledge
contained by these models to compose robot actions presents
a unique challenge.
Main Contributions: Motivated by the challenges above,
we present, LGX or Language-Guided Exploration, a novel
approach that leverages the implicit knowledge of large lan-
guage models (LLMs) and pre-trained vision and language
models to tackle the L-ZSON task.

Object goal navigation including L-ZSON can be broken
down into two key components — Sequential Decision
Making and Target Object Grounding. The former refers
to making exploratory decisions on the go, while the latter
refers to locating and grounding a target object from agent
percepts.

In this work, we make use of Large Language Mod-
els (LLMs) and Vision-Language (VL) Models to address
generalizability issues that hinder the performance of both
these components. As LLM’s rely on the prompts being used
[21], we study the influence of prompt formulation via in-
context learning [22] and present a case-by-case analysis of
the effect of various prompt types. Additionally, we analyze
the usage of VL models for Target Object Grounding and
show improved performance with unique object references.
We make the following contributions:

1) We present LGX, a novel approach to tackle L-ZSON, a
language-guided zero-shot object goal navigation task.
Our approach localizes objects described by uncon-
strained language by making use of large-scale Vision-
Language (VL) models and leverages semantic con-
nections between objects built into Large Language
Models (LLMs). Specifically, we study the implicit
commonsense-reasoning capabilities of LLMs in assist-
ing the sequential navigational decisions necessary to
perform zero-shot object navigation.

2) Our approach utilizes visual scene descriptions of the
environment to formulate prompts for LLM’s, the out-
put of which drives our navigation scheme. We study
various types of prompts and provide insights into
successfully using these prompts for robot navigation.

3) Our approach shows a 27% improvement on the state-
of-the-art zero-shot success rate (SR) and success
weighted by path length (SPL) on RoboTHOR.

4) Finally, we also present a transfer of our method onto
a real-world robotics platform and study the various
complexities involved in this setting. To the best of our
knowledge, ours is the first approach to evaluate the
performance of L-ZSON methods in the real world.

II. RELATED WORK

A. Language-Guided Robotics
Using language to guide robots is a popular task in

literature, with work ranging from using generalized ground-
ing graphs [23] for robot manipulation [24] to performing

language-guided navigation [25], [26]. Thomas et. al in [27]
presents an approach to parse unconstrained natural language
via a systematic probabilistic graph-based approach. More
recent work tackling this problem by Jesse et. al. [28], [29]
and Gao et. al. [30] has explored the use of human-robot
dialogue to gather relevant information for completing tasks.
Parsing unconstrained natural language is very relevant in our
work, and we are motivated by the techniques developed by
these papers.

B. Language-Driven Zero-Shot Navigation
Recent works have attempted to use CLIP [16] for per-

forming zero-shot embodied navigation. CLIP is a large
pre-trained Vision-Language model that is capable of zero-
shot object detection. Dorbala et. al. in [31] use CLIP
to perform Vision-and-Language navigation in a zero-shot
manner, while Gadre et.al in [15] have used it to perform
object goal navigation. Both these works work under the
assumption of unseen environments.

L-ZSON introduced by Gadre et. al in [3] approaches the
problem of zero-shot object navigation, using uncommon
target objects. They obtain a baseline for this task using
OWL-ViT, a finetuned vision transformer for object ground-
ing, and frontier-based exploration (FBE) [32]. In contrast,
our approach uses GLIP [17], a pre-trained VL model for
zero-shot object grounding. To explore the environment,
we incorporate GPT-3 [22], an LLM, to make navigational
decisions.

C. Language-Guided Scene Manipulation
Language-guided scene manipulation is a popular task,

requiring agents to process natural language instructions
to manipulate objects in the environment. The authors of
[33]–[35] present various semantic-segmentation-based ap-
proaches for scene manipulation and object placement using
language prompts as input. There also exist a broad range of
classical approaches for language-guided manipulation [24],
[36]–[39] that utilize different forms of grounding graphs
to perform this task. Raman et. al in [40] tackle a unique
manipulation task, synthesizing language that the robot can
use to explain its failure to the user.

More recently, several works have presented novel ap-
proaches for language-conditioned manipulation task using
pre-trained embeddings [41]–[44]. Our work focuses on
language-guided exploration or LGX, as opposed to these
manipulation tasks.

D. LLMs for High-Level Task Planning
Recent works have established LLM’s as a tool for

creating plans for the agent to execute, in breaking down
high level instructions (such as “Make me breakfast”)
to lower-level tasks for the agent to perform (such as
“Make eggs” and “Bring juice”) [45]–[47]. Note that these
approaches utilize it for generating and planning actions
for the robot, but not explicitly for exploration in the wild.
Information about the environment is already assumed to be
known, and the LLM is used for breaking down complex
tasks for the robot to execute.

Huang et al. in [45] looks at using an LLM to simplify
complex tasks into “actionable sub-tasks”, for a robot then
act upon. Their task involves using pre-trained LLM’s at a
planning level in an interactible environment to determine



Fig. 2: An overview of our approach. We first gather observational data from the environment by performing a 360 degree rotation to
obtain depth and RGB images around the agent. The RGB images give us semantic information about the objects in the agent’s view,
while the depth image allows us to create a costmap. We then synthesize prompts for the LLM by utilizing the extracted object labels.
Finally, the LLM drives the navigational scheme by producing an output from the object list, which tells the agent which direction to head
towards. Simultaneously, we attempt to ground the target object in the scene with GLIP. When the target is found, we exit the decision
making loop and navigate directly to it.

how to interact with a known VirtualHome environment,
and does not use the outcome to explore it.

SayCan in [46] utilizes an LLM in a similar manner to
deduce actions that the agent can take, but additionally also
uses an affordance function to ground the generated actions
to the environment. They assume the object locations in
the map to be known (see section D.2 in said paper) and
solely tackle the “planning problem”, with pick, go to
and place actions already available. They do not consider
a zero-shot exploration case like LGX to navigate in an
unseen environment.

Huang, Xia, and Xiao et al., in [47], also follow a similar
planning objective and utilize the LLM in tandem with
human feedback to accomplish the instruction.

In contrast, our work uses an LLM as a prior not for
planning, but rather to explore an unseen environment to
predict the direction that the robot needs to take without
requiring a map.

E. LLMs for Language-Guided Navigation

The adaptation of Large Language Models in robotics has
recently been garnering interest. Several recent works [45]–
[47] have also used LLMs specifically for their planning
capabilities. Note we are different from these works as they
utilize the LLM for planning objectives while we utilize the
LLM for environment exploration.

A few works have looked at using generative models for

navigation, specifically, LM-Nav [48] and VLMaps [49].
Both these works look at solving the Vision-and-Language
Navigation (VLN) problem, where the input is the uncon-
strained language describing a path to the goal. The latter
uses GPT-3 [22] to obtain “landmarks” or subgoals, while the
former focuses on using an LLM for “code-writing” [50]. In
contrast, our focus is on translating visual scene semantics
into input prompts for the LLM to obtain navigational
guidance in the form of actions. We directly incorporate the
LLM output into a sequential decision-making pipeline to
drive our agent’s navigation scheme.

III. SOLVING L-ZSON USING LANGUAGE-GUIDED
EXPLORATION (LGX)

A. Method Overview
We present an overview of our method in Figure 2. Our

approach uses a Large Language Model (LLM) to predict
where the agent needs to navigate. To do this, we first extract
contextual cues from the scene in the form of object labels
or scene captions. Either of these cues are then used to
devise a prompt asking the LLM about which how the agent
should proceed to explore the environment. The LLM uses
its commonsense knowledge about object relationships in the
environment to provide the agent with a direction or object
for it to move towards.

Simultaneously, we use a Vision-Language model, GLIP
[17] to obtain a target object grounding score, which gives
us the confidence of the described target being in the
scene. Once the confidence meets a threshold Gth, the agent
assumes the target object to be in its egocentric view. An



episode is rendered successful if the target object is in the
agent’s view while performing rotate-in-place.

B. Scene Understanding
In each run, the agent observes the environment, gathering

RGB and depth images for inspection. During each observa-
tion, we have the robot rotate in place 360 degrees, taking
images at a set resolution r. This leaves us with 360/r RGB
images, Ir, and depth images Id . Id is used to construct a 2D
costmap of the environment. Every image in Ir is then fed
into either an object detection or an image captioning model.
Both these models give us different results, which we discuss
in the experimentation section. For object detection, we use
YOLO [51], which contains common household classes,
while BLIP [52] gives us image captions. BLIP produces
descriptive captions C of the environment, while YOLO gives
us a list of objects O around the agent that it can potentially
navigate towards. We chose either C or O to as part of our
prompt to the LLM.

The rotate-in-place at each step allows the agent to fully
observe its surroundings, giving the LLM enough informa-
tion to make a fully informed navigation decision from the
agent’s current position in the environment. Without it, the
agent would proceed toward seen objects over unknown
space, even if none of the seen objects were related to the
goal object, og. For example, if og is a ”blue pillow,” but
it is initialized facing a kitchen and we see objects such
as ”microwave,” ”mug,” and ”table,” the robot will proceed
to explore near those objects because it does not know that
directly behind it is a ”bed” or a ”couch”, which is potentially
where the pillow might be.

Simultaneously, while performing the full circle rotation,
the agent uses Id to construct a costmap of the environment.
We use RTABMAP [53] that uses visual correspondences
along with depth information from the standard costmap 2d
ROS package [54], to compute the costmap. Once a naviga-
tional decision is made by the LLM by providing either an
object or a direction (depending on if C or O is passed to
the input), we reorient the agent accordingly and randomly
choose a point in the cost map along the agent’s egocentric
field of view. The costmap allows us to avoid obstacles while
exploring the environment.
We use GLIP for target object grounding. During each
rotation step the agent takes, the collected RGB images
are passed through GLIP along with the target object as a
prompt. When the grounding accuracy of GLIP is beyond a
threshold Gth, we assume that the target object is in view
of the agent, which triggers a STOP signal. If not, the agent
continues exploring till nr number of rotate-in-place turns.
The episode is rendered successful if the ground truth target
object lies in the view.

Gth and nr are hyperparameters that are empirically chosen
from ablation experiments. For selecting Gth, we ablate with
various threshold values in an environment, picking the one
with the highest success rate (refer Table I). nr is chosen
based on the size of the environment.

C. Intelligent Exploration with Large Language Models
We utilize the extracted semantics to devise a prompt for

our LLM, GPT-3. There are two scenarios we explore,
1) YOLO → LLM : In this case, we utilize the list

of objects O that YOLO detects around the agent to

synthesize a prompt. For improving object detection,
we set the rotate resolution r to a lower value here.

2) BLIP → LLM: Here, we utilize image captions C
generated from the previous step to create a prompt.
The rotate resolution r is set to 90 here, referring to
either of the 4 directions (Left, Right, Front, Back) that
the agent can take while exploring.

The LLM output upon using the YOLO + LLM approach
gives us an object from O to navigate towards. The agent
then reorients itself towards this object. While using BLIP +
LLM, the output gives us a direction towards which the agent
reorients itself. When the LLM output does not follow these
expected outcomes, the agent chooses a random direction.

D. Goal Detection and Motion Planning
While completing the 360◦ rotation-in-place, we also run

GLIP with the goal object og as its target label. Should GLIP
find the target object og with a high enough confidence Gth,
we terminate the exploration loop with the target in front
of the agent. We then use the simulator as a ground truth
to identify if the target actually lies in front of the agent,
thus determining our success case. If GLIP does not find the
target, we continue the LLM-based exploration.

At each step, we first orient the agent based on the LLM’s
decision. We then use the constructed cost map (refer section
III-B) to pick a point at a fixed exploratory distance ed in the
direction that the agent is facing. We then use the standard
ROS move base package to avoid obstacles.

IV. ANALYZING OUR APPROACH

A. Using GLIP for Zero-Shot Detection
Open-vocabulary (OV) grounding models have demon-

strated strong zero-shot performance to object-level recog-
nition tasks and proved to generalize well across numerous
data sources. In our approach we use GLIP for grounding
target objects of interest. It gives us a bounding box that
allows us to localize a direction for navigation in the agent’s
field of view. GLIP outputs can be defined as

{ot,i,bt,i}= GLIP(It ,Po) (1)

where ot,i and bt,i are the object detections and bounding
boxes respectively. It and Po represent the input image and
the input prompt, defining the objects of interest, respec-
tively.

We chose GLIP as our grounding model, gauging its
outcome to be superior after ablation experiments with other
state-of-the-art OV detection models including OWL-ViT
[55] and Object-Centric OVD [56] and Detectron2 [57].
An example of the usefulness of GLIP for L-ZSON can
be found in figure 3. It can not only identify the object
defined using natural language, the “Cat-shaped mug”, but
differentiate it from related objects. Because of this behavior,
running GLIP during our rotate-in-place procedure allows us
to confidently detect our goal objects og irrespective of how
they are described.

B. Examining LLM Prompts for Exploration
The outcome of GPT-3 is greatly influenced by the

prompts that it is given. Since we directly use its common-
sense reasoning capabilities (a cat-shaped mug is more likely
to be near a table than a bed) for navigation, it is important



Cat-shaped Mug: 0.81 Cat: 0.79
Mug: 0.68

Fig. 3: An example of GLIP output when fed with the input string
“Cat-shaped mug . Cat . Mug” on the image given. GLIP can
successfully locate a unique object, like a “cat-shaped mug” and
differentiate between it and related objects like a cat or a mug.

for us to consider various prompting strategies. Should the
LLM not provide us with a valid response, the agent moves
in a random direction. We compare seven different LLM
prompts which are variations of the following template :

“You are controlling a home robot. The robot wants
to find a og in my house. Which object from {O}
should the robot go towards? Reply with ONE
object from the list of objects.”

We first explore how different points of view LLM feedback.
These prompts are below:

• Robot-Prompt: “You are controlling a home robot. The
robot wants to find a og in my house. Which object
from {O} should the robot go towards? Reply with ONE
object from the list of objects.”

• I-Prompt: “I want to find a og in my house. Which
object from {O} should I go towards? Reply in ONE
word.”

• Third-Person-Prompt: “A og is in a house. Which
object from {O} is likely closest to og? Reply with ONE
object from the list of objects.”

Second, we vary the order of the information given to the
prompt.

• {O}-First-Prompt: “You are controlling a home robot.
You must select one object from {O} that the robot
should go towards to try to find og in my house. Reply
with ONE object from the list of objects.”

• Get-Closest-Prompt: “You are controlling a home
robot. The robot wants to find a og in my house. Which
object from {O} is probably the closest to og? Reply
with ONE object from the list of objects.”

• “ONE word”-First-Prompt: “Reply with ONE word.
You are controlling a home robot. The robot wants to
find a og in my house. Which object from {O} should
the robot go towards?”

Last, we create prompts with natural language captions of
the scene.

• BLIP-Prompt: “I want to find a og in my house. In
Front of you there is <caption>. To your Right, there
is <caption>. Behind you there is <caption>. To your
Left there is <caption>. Which direction from Front,
Right, Behind, Left should I go towards? Reply in ONE
word.”

V. EXPERIMENTS AND RESULTS

A. Experiment Setup
Simulation Setup. We use the RoboTHOR [8] validation

set as a simulation environment for our experiments. It

contains 1800 validation episodes with 15 validation envi-
ronments. 12 different goal object categories are present.
Each exploratory turn carries out the scene understanding
procedure described earlier in sections III-B and III-C. For
each episode, we run LGX for nr exploratory turns or until
it detects the target object above the Gth threshold. These
constraints form the STOP condition. nr is set to 5, given the
small environments in RoboTHOR, where the target object
is usually within 10 meters of the spawning point. Gth is set
to 0.85 for RoboTHOR after ablation experiments described
in Table I. The exploratory distance ed described in III-D
is set to 5m, ensuring significant changes to the scenery in
RoboTHOR after motion.

Gth SR (%) SPL (%)
0.6 13.8 7.2
0.75 20.3 10.8
0.8 32.5 18.7
0.85 35.0 21.9
0.95 18.0 11.3

TABLE I: Ablations on Gth on the RoboThor Validation Set:
Gth is thresholded using empirical evidence from ablations. A low
value produces many false positives, leading to poor performance.
Conversely, a high value rejects many potentially successful cases.

Prompt Selection Setup. We run each of the 7 prompts
described in the previous section on a subset of the 500 best
and worst performing episodes.

Metrics. We report and compare Success Rate (SR) and
Success Rate weighted by inverse path length (SPL) [58]. SR
and SPL are the primary metrics used in both the Habitat and
RoboTHOR challenges. For our prompt ablations, we define
a new metric, Prompt Success Rate (PSR) as:

PSR =
psuc

ptotal
(2)

where psuc denotes the number of instances where the LLM
chooses a valid response, and ptotal denotes the total number
of times the agent prompts the LLM. A valid LLM response
is when it chooses either an object detected by the agent
or a direction for navigation, depending on the semantic
extraction scheme used.

Real World Setup. We conduct experiments with a Turtle-
Bot 2 to validate two facets of LGX in the real world — i)
the LLM’s Exploration Capability and ii) the GLIP-based
open-vocabulary Grounding.

To validate i), we look at a two-phase approach where
the agent is required to travel from one room through a
‘hallway’ to reach a room containing the target object. In
Phase 1, the agent performs rotate-in-place in the spawned
room gathering information about objects around it. Since
the target object is not present in this room, the LLM-output
is expected to be ‘hallway’. In Phase 2, the agent is present
in the hallway and is expected to choose the correct room
to navigate to, given a set of common objects found in them
(Refer Table II). The LLM-output is now expected to point
towards the room that is most likely to contain the target
object, based on commonsense knowledge (‘remote control’
near to ‘couch’). This is explained in detail in figure 4.

To validate ii), we examine GLIP’s accuracy in classifying
unique household object classes. In order to do this, we first
define and pick unique target objects, as well as common
objects belonging to different household rooms. These are
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Fig. 4: To validate the LLM’s exploration capability, we define
a two-phase process. The target object is present in a different
room, requiring the agent to navigate out of the current room into a
‘hallway’. The LLM in LGX takes objects in the current room along
with the hallway as input to the LLM. Not reaching the ‘hallway’
is a Phase 1 failure. For Phase 2, four possible rooms are visible
and the agent must navigate to the room with the goal object. We
pass a set of common objects for each room as shown in Table II
as input to the LLM in LGX. Not choosing the correct room is
considered a Phase 2 failure.

shown in Table II. A success case is defined by a successful
GLIP detection of the target object.

Room Target Objects Common Objects

Kitchen Red Bull can, Stevia sugar packets sink, fridge
Living Room remote control, coffee table couch, tv
Bedroom bust, olive-colored jacket bed, blanket
Office silver pen, whiteboard desk, computer

TABLE II: Object Setup for validating LLM Exploration. We
define four household rooms populated with common and target
objects that are likely to be found in them. Common objects are
regular household items, while target objects are uniquely described
with free-form language.

This experimental setup validates our system against two
main complicating factors of the real world, free-form natural
language, and partially-observable environments. The free-
form natural language problem is addressed through unique
descriptions of each target object, which are not common
visual class labels. The partially-observable environments
component is addressed by conducting a two-phase explo-
ration experiment, where only a few objects are visible in
each room, replicating real-world homes.

RoboTHOR

Model SR (%) ↑ SPL (%) ↑

CoW (FBE + CLIP) [3] 15.2 9.7
OWL-CoW (FBE + OWL-VIT) [3] 27.5 17.2
GLIP on Wheels (FBE + GLIP) 33.2 20.3
LGX (BLIP → LLM + GLIP) 28.46 13.5
LGX (YOLO → LLM + GLIP) 35.0 21.9

TABLE III: RoboTHOR Results: Observe the improvement in
Success Rate (SR) and SPL on both our approaches over the current
SOTAs, CoW and OWL.

Fig. 5: The class breakdown of LGX versus the OWL CoW and
original CoW on RoboTHOR. LGX provides a strong improvement
in localizing the baseball bat, bowl, laptop, spray bottle, and
vase classes. Similar performance is noted on larger classes like
television and garbage can.

B. Baselines and Ablations
We compare our method, LGX with two state-of-the-art

methods and an ablative method:
CLIP-on-Wheels (CoW). [3] use Grad-CAM, a gradient-

based visualization technique with CLIP [16] to localize a
goal object in the egocentric view. CoW employs a Frontier-
based Exploration technique for zero-shot object navigation.

OWL CoW. [3] utilizes the OWL-ViT transformer, in
place of a CLIP model for target object grounding. This
detector then replaces CLIP in the CoW method.

GLIP on Wheels (GoW). Where [3] utilizes the OWL-
ViT transformer for its visual object grounding, we replace
it with our GLIP based grounding system. This is also an
ablation of our method without our LLM-based exploration
mechanism.

Random with GLIP. As a baseline for our real-world
analysis of LGX we also choose a random direction selector
for exploration. The agent takes random decisions, replicat-
ing the behavior of an ‘uninformed’ exploration method.

C. Comparison with Baselines in Simulation
We compare the performance of our method with other

models set up for the L-ZSON task in Table III. Our method
significantly outperforms the OWL CoW and the original
CoW with an improvement in the success rate (SR) and SPL
on both. LGX also showcases an improvement in the SR
over GoW. This can be attributed to our improved LLM-
based exploration scheme on top of using GLIP for target
grounding.



RoboTHOR

Model Success-Rate (%) ↑ PSR (%) ↑

BLIP-Prompt 29.2 100
I-Prompt 33.3 87.7
Robot-Prompt 33.8 71.1
Third-Person 31.3 99.4
{O}first 33.8 95.3
Get-Closest-Object 32.1 95.7
”ONE word” first 28.1 52.3

TABLE IV: Comparison of seven different prompts across three
axis of change on RoboTHOR. The object-based prompts (middle
and bottom) outperform than natural language-based prompts.

In Figure 5 we compare directly with CoW and OWL
across the different target objects in RoboTHOR. Our method
outperformed than both baselines across smaller objects like
’bowl’ and ’vase.’ Our performance was similar to OWL for
larger objects like ’television.’ These results showcase the
performance deficit of CoW that is likely due to the inability
of CLIP to localize the target object in the image effectively.

D. Influence of Prompt Tuning Strategies
As seen in Table IV, the natural language-based prompts

from BLIP perform worse relative to the object-based
prompts despite a perfect PSR. We believe this is due to the
limited action space when under the BLIP-based prompting
scheme. The object-based prompts gave the LLM many
different pathing options while the BLIP-based prompts were
by definition associated with the four cardinal directions - po-
tentially leading the agent towards a dead end. Additionally,
we noted episodes where the LLM caused the agent to hop
in a loop, continuously picking opposite directions.

No significant difference in task SR was captured over
our second axis of prompt tuning denoting the perspective
of the LLM relative to the robot. This is despite a wide
array of PSRs for the different perspectives. The robot-
perspective prompt exhibited the highest SR, but also the
lowest PSR of the perspectives explored. Notably, when
using the robot-perspective prompt, the LLM responded with
’no’ or ’nothing’ more frequently over the empty responses
more commonly seen in the other prompts.

Across our changes to the structure of the prompt, there
was no significant difference in SR for the object-set-first
prompt or the get-closest-object prompt. However, the “ONE
word” first prompt, denoting the placement of the “reply with
ONE word” phrase before the rest of the prompt exhibited
significantly worse SR and PSR. We believe this is due to the
LLM no longer heeding this instruction when placed before
the remainder of the prompt. The high PSR of the get-closest-
prompt indicates that picking the likely closest object may
be a simpler problem for the LLM to approach. Similarly,
the high PSR of the object-set-first prompt indicates that the
LLM could better reference the object-set when it was placed
at the beginning of the prompt.

We believe that the insignificant performance differences
in task SR, despite large changes in PSR, is another indicator
of RoboTHOR providing a skewed basis for this type of
context dependent, intelligent exploration of the scene.

E. Comparison with Baselines in the Real World
In our real-world experiments, we consider a two-phase

approach as described in the setup earlier. As Table V

True Positive: 87.5%

False Positive: 8.3%

True Negative: 91.7%

False Negative: 12.5%

Red Bull canNo “splenda sugar
 packet” found.

No “silver pen” found.

remote control

Fig. 6: An sampling of GLIP success and failure cases in our real-
world experimentation. When the goal object was present in the
scene, GLIP accurately detected it 87.5% of the time. Conversely,
when the goal object was not present in the scene, GLIP falsely
detected it 8.3% of the time.

Approach (Navigation Decision + Grounding) Success-Rate (%)↑

Random + GLIP 6.9
GLIP-on-Wheels (GOW) 27.8
LGX (YOLO → LLM + GLIP) 54.2

TABLE V: In our real-world experimentation, our model signifi-
cantly outperformed both random and GLIP-on-Wheels baselines.
While all three methods utilize GLIP for target object detection,
neither of the baselines integrates the scene context into the explo-
ration phases of the task.

indicates, LGX significantly outperforms chosen baselines,
improving upon the SR of GoW by 26.4% and the SR
of Random with GLIP by 47.3%. This resulted in GoW
navigating to the correct room 33% of the time while
Random with GLIP explored the objects in the starting scene
with the same frequency as exploring the hallway. All of
the success rates were also effected by the failure cases of
GLIP, specifically false negatives when attempting to detect
the ‘stevia sugar packets’ and false positives for the ‘Red
Bull can’ and the ‘stevia sugar packets’ (see Figure 6).

The LLM behavior in our method during our real world
experimentation is characterized by three potential cases as
shown in Figure 4. The success case occurs 54.2% of the time
and is a result of the robot agent successfully navigating from
the starting room into the hallway, then into the room that
contains the target, before detecting the target with GLIP.

In a Phase 1 failure case, the agent does not enter the
hallway as the LLM believes one of the objects in the starting
scene likely will lead to the target. One example of this
we noted was when the target object is ‘Red Bull can’, the
LLM would output ‘desk’ when the starting scene was the
office. Although the target can is actually in the kitchen,
it is plausible that it would lie on a ’desk,’ explaining this
output from the LLM. In the Phase 2 failure case, the agent



Fig. 7: A comparison of individual object success rates for our
method and the baselines in our real world study. Our method
outperformed the baselines across the majority of targets, but
notably failed to localize the ’bust’ object. None of the methods
could localize the ’stevia sugar packets’ as GLIP failed to detect
them.

enters a room that does not include the target object. This
occurred 20.8% of the time with our method. This case is
associated with the LLM poorly relating the target object
other objects in the target room. One example of this case is
the ’olive-colored jacket’ which the LLM typically believed
would be found near the ’desk.’ A breakdown of the system
performance for each target object is found in Figure 7.
Our method failed to localize the ’bust’ believing it to be
associated with the ’desk.’ However, the relative success of
the baselines indicates that GLIP succeeded in detecting the
’bust’ once inside the correct room.

More details and ablations are presented in the discussion
section.

VI. LIMITATIONS, CONCLUSIONS, AND FUTURE WORK

In this work we present a novel algorithm for language-
based zero-shot object goal navigation. Our method leverages
the capabilities of Large Language Models (LLMs) for
making navigational decisions and open-vocabulary ground-
ing models for detecting objects described using natural
language. We showcase state of the art results on the
RoboTHOR baseline, study the structure and phrasing of the
LLM prompts that power our exploration, and validate our
approach with real-world experiments.

Our method still includes a number of failure cases,
especially when the LLM incorrectly localizes the target
object. Future work should explore varying the context fed to
the LLM by filtering the list of objects detected or providing
a history of visited objects. Similarly, exploration of which
objects produced an outsized effect would be useful. Future
work should also look into improving the SR and SPL
metrics such that they may be more informative for zero-
shot navigation tasks.

VII. DISCUSSION

We present some additional experiments and analyses in
this section, while also answering some related questions
about the real-world applicability of LGX.

Fig. 8: Ablations on Ambiguity: We ablate on various open-
vocabulary models to assess the ambiguity of natural language when
describing the object. Detectron2 [57], OCOVD [56] and OWL-ViT
[55] (used in OWL-CoW) show false positives and not detecting
the objects sometimes. On the other hand, Detic [59] and GLIP
[17] work well for such open-vocabulary grounding. We decided
to use GLIP for its ease of implementation, and experiments with
using Detic in our framework are part of future work.

A. Real-World Challenges
Free-form natural language descriptions and partially ob-

servable environments make ObjectNav a complex task in the
real-world. In zero-shot settings performance usually comes
down to two main factors; Exploration and Visual Object
Grounding, both of which face challenges in a real-world
implementation. These are presented as follows

• Visual Object Grounding: Object grounding in sim-
ulation environments is significantly more constrained
than in the real world. The simulator has a set number of
available classes, and sometimes characteristics of these
objects are not available to ground their natural language
descriptions. Users in the real world are expected to use
free-form language and the agent must adapt accord-
ingly. We attempt to overcome this challenge by us-
ing an open-vocabulary grounding model, GLIP. GLIP
grounds targets from the language used in the prompt, as
opposed to finding all visual correspondences, allowing
for the detection of objects described in free-form
natural language. We explore GLIP’s performance in the
second part of our real-world experimentation described
in Figures 5 and 6.

• Exploration: While exploring real-world environments,
the agent is bound to a dynamically changing partially
observable environment, where the entire map and asso-
ciated target objects may constantly keep changing. An
uninformed exploration approach such as Frontier Based
Exploration (FBE) can be inefficient, since the assump-
tion of a static environment does not exist, causing the
agent to re-explore regions that it has already seen. We
tackle this issue using the LLM for informed decision-
making, relying on commonsense knowledge to explore
the environment. Unlike FBE which relies on selecting
frontiers in free space, our LLM-based exploration is
mapless, making informed choices about directions that
the agent must take based on the environment surround-
ing it. In our real-world benchmarks, we validate the
decision-making capability of the LLM via a two-phase
approach presented in Section V.A and Figure 4.

B. Why GLIP?
Our approach uses GLIP [60], which is an open-

vocabulary object detector, which rather than proposing every
object from an open-set, only detects objects mentioned in



the text prompt. As an open vocabulary object detector, GLIP
is known to take ambiguous text descriptions and ground
those descriptions in the environment. LGX’s ObjectNav
performance is indeed sensitive to the performance of GLIP.
Figure 3 in the manuscript highlights the superior capability
of GLIP in tackling scenarios which are ambiguous to models
without an open-vocabulary. When the user refers to a “cat-
shaped mug”, GLIP is successfully able to identify this
unique object from a group of images with a cat and a mug.
We present an ablation on the performance of other SoTA
zero-shot open vocabulary object detectors — Detectron2
[57], OCOVD [56], OWL-ViT [55], Detic [59] and GLIP
[60] in Figure 8 below. Figure 8 qualitatively shows a
positive inference in that GLIP is successfully able to tackle
ambiguous situations with free-form language, reinforcing
our usage for open-vocabulary grounding in LGX.
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