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Abstract— The ability to detect slip, particularly incipient slip,
enables robotic systems to take corrective measures to prevent
a grasped object from being dropped. Therefore, slip detection
can enhance the overall security of robotic gripping. However,
accurately detecting incipient slip remains a significant challenge.
In this paper, we propose a novel learning-based approach to
detect incipient slip using the PapillArray (Contactile, Australia)
tactile sensor. The resulting model is highly effective in identifying
patterns associated with incipient slip, achieving a detection success
rate of 95.6% when tested with an offline dataset. Furthermore,
we introduce several data augmentation methods to enhance the
robustness of our model. When transferring the trained model to a
robotic gripping environment distinct from where the training data
was collected, our model maintained robust performance, with a
success rate of 96.8%, providing timely feedback for stabilizing
several practical gripping tasks. Our project website: https://
sites.google.com/view/incipient-slip-detection.

I. INTRODUCTION

A. Background

Autonomous robots have yet to achieve human-like dexterity
when performing gripping tasks, mainly due to a lack of
satisfactory tactile perception and processing abilities. Studies
have shown that even humans struggle with simple gripping
tasks in the absence of tactile sensation [1], [2]. The palm
of the human hand contains ∼17,000 mechanoreceptors, i.e.,
specialized nerve endings that respond to mechanical stimuli
such as deformation, pressure, and displacement [3], [4]. These
receptors play a crucial role in sensing and relaying tactile
information to the nervous system [5], allowing humans to
adjust their grip in real-time to account for slipperiness and
other factors. Building on these insights, researchers have
designed tactile sensors replicating part of human hand sensing
capabilities and explored slip detection techniques using these
sensors to enhance robotic manipulation performance [6]–[8].

1) Types of slip: The two main types of slip are gross slip
and incipient slip. Gross slip refers to the occurrence of slip
across the entire contact surface, where the relative motion
between the gripper or tactile sensor and the gripped object is
typically observable at a macro level [9], [10]. On the other
hand, incipient slip refers to the initial stage of slip, when
parts of the contact surface slip while others remain stuck [9],
[10]. For example, when an object is held by elastic fingertips,
and an external force is applied to the object in a direction
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tangential to the contact surface, some parts of the fingertips
will stretch while others will compress, causing incipient slip
at the periphery of the contact surface while the central part
remains stuck. As the applied force increases, the slip will
finally spread across the entire contact surface, leading to gross
slip. Throughout the incipient slip phase, there may not be any
observable relative motion between the object and the finger.

2) Slip detection and challenges: Previous studies have
proposed techniques to detect gross slip and apply corrective
measures when the slip is detected to prevent objects from
dropping out of the grasp [7], [8], [11]. Detecting gross slip
may not always be a wise strategy, as it occurs when the
entire contact has already started slipping. On the other hand,
detecting incipient slip can provide an early warning of an
impending and more dangerous gross slip, allowing corrective
measures to be applied earlier, and increasing the likelihood of
maintaining a safe grip. However, detecting incipient slip is not
trivial because it requires the contact interface of the sensor
to possess adequate elasticity, enabling one part to undergo
sufficient and detectable deformation, resulting in slip, while
the other part remains stuck. Furthermore, validating incipient
slip can be challenging since it is not generally associated with
macro-level relative movement between the sensor/finger and
the object. To verify the occurrence of incipient slip, researchers
commonly utilize a camera to monitor the contact surface;
by examining the camera images, they can visually confirm
the presence of incipient slip events [12], [13]. However, this
method of relying on cameras may not be feasible in real-world
situations, such as when gripping everyday objects.

B. Our contribution

Our study presents a new technique for detecting incipient
slip using the PapillArray (Contactile, Australia) tactile sensor.
This sensor features a square array of nine elastic silicone pillars
with varying unloaded heights, promoting different normal
forces on the pillars when pressed against a surface. This
design enhances the likelihood of inducing incipient slip on
shorter pillars when a tangential force is applied.

We utilized deep neural networks (NN) to develop our
incipient slip detection algorithm, where we made novel use
of the data gathered in a previous study [13] to construct
the dataset for training and evaluating the NN. The primary
objective of the NN was to classify inputs into two distinct
categories: incipient slip and other, functioning as a binary
classifier; other refers to all others states that are not incipient
slip, such as gross slip or being stationary. Furthermore, the
tactile data at hand is presented in the form of a uniformly-
sampled time series. Therefore, to effectively capture the serial
nature of the data, we utilize a recurrent neural network (RNN)
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Fig. 1: (a) Illustration of two versions of the Contactile
PapillArray Dev Kit sensor that were used in this study: the
upper shows version 1 (v1) and the bottom shows v2. (b)
Illustration of robotic gripping rig used to deploy our trained
model for online evaluation.

[14]. The inclusion of historical data in a NN model has the
potential to enhance its performance in real-time prediction
tasks, as it enables the capture of temporal patterns and
dependencies, leading to more robust and accurate forecasts
[14]. We also propose several data augmentation methods
designed to enhance the performance and robustness of our
trained model, making it robust to environmental confounders.

II. RELATED WORK

Similar to the approach we will take in this paper, the
approach proposed in [7] treats slip detection as a classification
task; the authors employed a support vector machine [15]
to detect slip using the velocity of embedded pins on the
inner surface of a TacTip camera-based tactile sensor [16].
Labels of the training data are assigned manually based on the
alignment of pin velocities. In a more recent study [12], the
authors modified the TacTip sensor used in [7] by introducing
raised fingerprint-like ridges, decreasing skin thickness, and
increasing pin spacing to reduce mechanical coupling between
ridges and to create the traction differential and facilitating
the shear displacement required for the occurrence of incipient
slip. This is similar to the behavior seen on the human finger
pad when sheared against an object, thus allowing the sensor
to experience incipient slip. They used an external camera to
monitor the contact in real-time for data labeling, and then
employed a convolutional neural network [17] as a binary
classifier to detect incipient slip.

The GelSight technology is another camera-based tactile
sensing system that uses an elastic body to establish a contact
with an object, with the built-in camera recording the resulting
deformation to obtain tactile data [18]. An approach was
introduced in [19] for detecting incipient slip using the GelSight
sensor. This method determines the degree of incipient slip
by analyzing the inhomogeneity of the displacement field,
which is quantified in terms of entropy. More recently, a
more advanced version of the GelSight technology, called

GelSlim, was proposed in [20]; it employed the deviation
of the deformation field from a 2D planar rigid displacement
field to determine slip.

Compared to camera-based tactile sensors, the distributed
optical sensor used in our work, the PapillArray, is less
complex in terms of instrumentation [21]. It offers several
advantages over other sensor designs, including size, temporal
resolution, and compliance. A heuristic algorithm that employs
the PapillArray tactile sensor to detect incipient slip is proposed
in [6]. The approach is based on the observation that incipient
slip happens when some sensor pillars stop deflecting at the
same rate as the contacted object is moving in the sensor’s frame
of reference. Precisely, this approach detects slip by evaluating
the tangential velocity drop with respect to a reference pillar,
which is the pillar under the highest normal force (usually the
center). In the case of rotational movements, with the center
of rotation at the center pillar, the algorithm cannot detect any
slip since no movement can be detected in the center pillar.
This heuristic approach is further improved in [13] to account
for rotational slips, detecting the deceleration of each pillar by
comparing it to its own recent maximum velocity, and then
it checks if other pillars are still in motion to confirm that
the deceleration indicates an incipient slip. However, these
methods may not be applicable when dealing with deformable
or non-planar surfaces, or when only a subset of the pillars
makes contact with the object. In such cases, establishing a
dependable reference pillar to represent the object’s movement
in [6] becomes challenging; in [13], it is difficult to determine
whether the deceleration of pillars is caused by slip or by the
shape of the object’s surface.

In our work, we are motivated to take a learning-based
approach in developing a dedicated incipient slip detection
algorithm, where we propose domain adaptation techniques to
enhance the robustness of our trained model, enabling it to
effectively detect incipient slip for more realistic objects and
contacts, overcoming the challenges outlined above.

III. MATERIALS AND METHODS

A. Hardware

1) Contactile sensor: Our study employed the commercial
PapillArray sensor from Contactile1, depicted in Fig. 1(a),
which is based on the concept described in [22]. The sensor
outputs the real-time x− y− z force data experienced by each
pillar at a high sampling rate of 1,000 Hz. Our training data was
collected using the Dev Kit v1, while for the online evaluation
of our trained model, we used the Dev Kit v2. Dev Kit v2 and
Dev Kit v1 differ in size and the pillar Shore hardness.

2) Robotic gripping rig: Fig. 1(b) displays the rig used in our
study for the gripping task. The rig features a specialized two-
finger gripper (RG2, OnRobot, Germany) with a blue adapter
fixed to one of its fingers. This adapter serves to couple the
Contactile PapillArray Dev Kit v2 sensor to the gripper finger.
A white 3D-printed cuboid is used to extend another finger,
matching the length of the finger equipped with the sensor.
Moreover, a couple of ArUco markers are attached to this
extended cuboid to track the gripper’s pose. We replaced the

1https://contactile.com/

https://contactile.com/


original motor of the RG2 gripper with a stepper motor (MX-
28, Dynamixel, US) to achieve high-frequency interruptible
control of the gripper. The modified gripper was mounted on
a six-axis robot arm (UR5e, Universal Robots, Denmark).

B. Data preparation

1) Collect slip data and annotate slip events for individual
pillars: Our training dataset is sourced from [13]. In brief,
the training data was acquired using a six-degree-of-freedom
hexapod robot (H-820, Physik Instrumente, Germany) with
the Contactile PapillArray Dev Kit v1 sensor mounted on
the top. A transplant acrylic plate is fixed above the sensor
on a T-slot frame and a video camera (Logitech Streamcam,
Logitech, Switzerland) is positioned above the acrylic plate
to capture videos of the contact between the sensor and the
plate. During the data collection, the hexapod pushes the sensor
vertically against the acrylic place and then moves it laterally to
induce a slip. The horizontal movement could be a translation,
a rotation, or a combination of both. A total of 200 data
sequences were collected, covering a range of compression
levels, hexapod movement velocities, and movement directions.
The recorded videos are processed using the Matlab Computer
Vision Toolbox (MathWorks, USA) to track the pillar tip
position. The tangential pillar tip velocity is then used to label
the slip state (gross slip or not gross slip) of individual pillars.

2) Collect control data: When the sensor is compressed
against a flat surface and moved laterally, the tangential velocity
measured by each pillar will increase at first, as the sensor starts
deforming, before reaching a peak velocity and subsequently
decreasing its speed when the pillar stops deforming (Fig. 2).
If a pillar stops deforming because it is undergoing incipient
slip, at least one other pillar will still be deforming laterally;
this is observed by an asynchronous decrease of the tangential
velocity of the nine pillars (Fig. 2 - Slip). However, if the object
stops moving before any slip occurs, the tangential velocity
magnitude of the nine pillars decreases almost simultaneously
(Fig. 2 - Stop).

Since the stop events display similar temporal feature to
slip events, we collected an additional dataset specifically
focusing on stop events, consisting of a total of 28 data
sequences. We label the data points in these sequences as
other. By incorporating this dataset, the NN is less likely to
misclassify between incipient slip and other, thereby improving
the accuracy and reliability of the NN. The data collection
process was similar to that of the slip events, except that
the hexapod’s movement was abruptly halted before any slip
occurred. Further details on this process can be found in [13].

3) Annotate the incipient slip: Based on the definition of
incipient slip provided in Section I, we annotate the incipient
slip in the dataset as follows: we consider that incipient slip
has occurred when at least one pillar slips with respect to the
contact surface, while at least one other pillar remains stationary
with respect to the contact surface. In other words, we start
annotating incipient slip from the moment the first slip occurs
on any pillar, and this interval continues until the time when
all nine pillars have slipped. The slip label of each pillar is
obtained as described in Section III-B.1. It should be noted that
when annotating incipient slip in the rotational data, we only

Fig. 2: Changes in force and yank (rate of change of force)
over time between slip and stop events. The X area (red) and
Y area (green) represent the respective components in the x
and y directions. The compression of the tallest pillar in these
two examples is 1.3 mm, and the movement direction is at a
45◦ angle in the x− y directions, with a speed of 8 mm.s−1.

consider the outer eight pillars. This is because the rotational
movement is centered around the central pillar, which never
slips by our definition (remains in the same location on the
contact area), for our data set.

4) Refine data sequence: The sensor output exhibits variance
due to noise and sporadically produces glitches that deviate
significantly from the mean value, displaying sudden extreme
highs or lows. To address these issues, we apply a median filter
with a window size of 21 samples on the raw sensor signal,
which is sampled at 1,000 Hz.

We divided the raw data sequence into non-overlapping
windows, with each window containing 40 samples. This
division reduced the data rate to 25 Hz. This was done for
practical limitations in the hardware and software of our system.
More precisely, the maximum refresh rate of our gripper servo
is ∼62 Hz, and the computation rate of our classifier is ∼40 Hz.
Moreover, it is worth noting that reliable gripping does not
necessarily require a high sampling frequency. Indeed, humans
have a reaction time of approximately 80-120 ms (equivalent
to 8.3-12.5 Hz) [23], enabling us to perform most everyday
gripping tasks effectively.

Finally, we only consider the x− y forces on the pillars as
input in NN training, while excluding the z force. During the
data collection process, when the hexapod moves tangentially to
induce slip, it remains stationary in the z direction. As a result,
we assume that the z force does not play a significant role in
detecting incipient slip in our case. It should be acknowledged
that in real-world scenarios, the normal force can provide
valuable information for humans to detect slip, and it is likely
to vary appreciably for different gripping objectives. Therefore,
another reason for excluding the z force is to prevent the NN
from incorrectly learning that the z force remains relatively
stable during slip events, as occurs in our data set.

C. Training data augmentation

1) Data augmentation by rotational symmetry: During the
data collection process, the sensor is placed at the origin of
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Fig. 3: (a) Illustration of how sequence data is input into a model to generate classifications for each window. The input is
represented by the red rectangle, which undergoes window reshaping, denoted by the dotted rounded rectangles. T represents the
number of data points in one data sequence, and in our case T = 40 samples at 1,000 Hz. The transparent circles represent
the hidden states; the initial hidden layer, h0, is initialized as a vector of zeros with the same shape as the hidden state of the
GRU cells. The encoder is shown as grey trapezoids connected to blue GRU cells, with purple circles representing recurrent
computations. The orange trapezoids represent the fully connected estimator, and the green items represent the output estimations.
(b) Illustration the aggregation process when the ensemble model is deployed, using Z = 5 classifiers in the emsemble.

the world coordinate frame. Its horizontal surface is parallel
to the x − y plane of the world frame of reference, and the
side edges align with the x− y axis directions. Hence we use
a rotation transformation to augment the data; intuitively, it
can be understood as rotating the initial position of the sensor
around the z axis by a random angle. For each data point in a
sequence, we perform the following mathematical calculations:[

Fx′

Fy′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
·
[
Fx

Fy

]
, θ ∈ [0, 2π), (1)

where Fx and Fy represent the force values along the original
x − y axis, and Fx′ and Fy′ are the augmented force values
after virtual rotation of the sensor by a randomly sampled angle,
θ, from a uniform distribution of [0, 2π).

2) Advanced data augmentation for domain adaptation: The
data used in our study was collected under idealized conditions,
where a hexapod robot was used to compress the sensor against
a flat surface and move laterally in a controled manner. In this
setup, the force was nearly perpendicular or parallel to the
contact surface and the movement speed is nearly constant.
However, in real-world robotic gripping, the conditions are
expected to be quite different from this idealized setup, and
the performance of the model trained on such data is expected
to be poor. We identify several issues that may arise when
transferring the model trained on idealized data to real-world
gripping scenarios, and we propose a range of advanced data
augmentation methods to address these issues in the following
paragraphs. These methods are designed to generate synthetic
data that mimics the real-world variability of the gripping:
• Issue: The slipping velocity in real-world robotic gripping

is not constant, as it is influenced by various factors such as
gravity, friction, and the shape of the object being gripped.
However, during the data collection process, the hexapod
induces slip at a constant velocity. Remedy: We employ
random sampling to sample a percentage of data points

from the raw data sequence, thereby generating a new
data sequence. And we maintain the frequency of the new
sequence at the same rate as the raw sequence (1,000 Hz).
This approach can simulate velocity variations to mimic
real-world gripping scenarios, as it changes the magnitude
differences of some temporally adjacent data points while
keeping the time interval unchanged.

• Issue: In some gripping scenarios, a portion of the sensor
pillars may not be in contact with the object. For instance,
this can occur when employing sensors to grip an object with
a rounded surface or when gripping an object smaller than
the sensor’s contact area. Remedy: To simulate an unloaded
pillar, we substitute a number of pillar data sequences with
zero sequences. Noise is then added to make the generated
sequence resemble a realistic sensor signal. The noise is
derived from a normal distribution with a mean of 0.0 N and
a standard deviation of 0.001 N.

• Issue: Unlike with the hexapod, the force generated by the
gripper may not be perfectly perpendicular to the x−y plane
of the sensor frame of reference, and the force leading to slip
may not be perfectly in this plane. This can occur when the
gripped object is not flat or the mechanical linkage of the
gripper flexes when applying force to the object. Remedy:
First, we sampled nine individual pillar sequences from raw
sensor sequences with different sensor compression levels
and hexapod movement types, and then combined them to
form a new sensor sequence. Secondly, we scaled (scale
factor ranging from 0.2 to 2.0) the magnitude of values for a
number of pillar sequences. Lastly, we randomly permuted the
position (by pillar index) of a nine-pillar sequence. Employing
these techniques can encourage the NN capture a broader and
more comprehensive pattern of incipient slip (see Section III-
B.3), rather than only learning the limited pattern introduced
by the hexapod.



D. Neural networks

The key decision making component of our incipient slip
detection approach is a binary classifier. Initially, we trained
a NN capable of estimating the probability of incipient slip
for each time point in a sequence. Next, we set a threshold
to convert the continuous probability into a binary output. To
enhance the accuracy of the classifier, we used an ensemble
technique that trains multiple independent classifiers concur-
rently and aggregates their output probabilities to produce the
final decision (shown in Fig. 3(b)).

1) Architecture: Fig. 3(a) illustrates the process of inputting
a data sequence into the NN and obtaining the corresponding
slip classification. The modified data sequence, as explained
in Section III-B.4, is input into an encoder. Subsequently, the
encoder output is passed to a specific type of RNN called a
gated recurrent unit (GRU) [24]. In our approach, we utilize a
single layer of GRU for each propagation step, and we refer
to it as a GRU cell. The hidden output from the GRU cell is
generated as a combination of the current input and historical
information. Moreover, an estimator is included that takes the
hidden layer output from the GRU cell and converts it into a
probability estimation. The ground truth label of each window
is determined by the label of the last sample in the window.

2) Training: The ensemble model consists of Z (Z = 5 in
our case) independently trained classifier models. During each
training iteration of each classifier model, a subset comprising
a proportion of λ sequences (λ = 40% in our case) is randomly
sampled with replacement from the entire training set and used
for NN training. The final layer of the estimator utilizes a two-
class softmax activation function, with its outputs interpreted
as probabilities for the occurrence of incipient slip and other.
Our chosen loss function is binary cross-entropy.

3) Decision making: We aggregate the output probability
from each classifier model in the ensemble to convert the
continuous probability to binary prediction:

f := 1

[∑Z
z=1 Mz(x = [F(n−1)T+1, · · ·, FnT ])

Z
> Pth

]
,

(2)
where 1[·] is an indicator function, Mz donates the zth classifier
model in the ensemble, x donates the input vector, and Pth

denotes the probability threshold, which is 50% in our work.
Z donates the number of classifiers in the ensemble model.

IV. EXPERIMENTS AND RESULTS

We first explicitly display our method’s high success rate in
detecting incipient slip, including offline and online scenarios.
Then, we illustrate the practical benefits of our approach by
showcasing its ability to stabilize an insecure robotic grasp in
a number of practical gripping tasks.

A. Offline evaluation

The entire dataset is randomly split into two subsets: a
training set (∼80% of the entire dataset, comprising 160 data
sequences of slip event and 23 data sequences of stop event)
for model training, and a test set (∼20% of the entire dataset,
consisting of 40 data sequences of slip event and 5 data
sequences of stop event) for model evaluation. Both subsets are
expanded through the symmetry-based augmentation method

(a)

(b) (c)

Fig. 4: The offline evaluation results. (a) Illustration of two
examples of successfully classified sequences, one correspond-
ing to slip event and the other to stop event. (b) Illustration
of the confusion matrix for the augmented test set, where TP
represent successful detection of incipient slip, FN represents
incipient slip is detected in a sequence of stop event, FP
represents nothing is detected in a sequence of slip event,
and TN represents the absence of detection in stop events,
i.e. successful classification. (c) Illustration of the latency for
successful TP cases in predicting incipient slip. This figure was
created with reference to the moment when the first of the nine
pillars slips (the ground truth for the onset of incipient slip).

described in Section III-C.1, resulting in a five-fold increase
in the size of the training set and test set.

Fig. 4(a) displays two examples comparing the incipient
slip detection results over slip and stop events. As observed,
the algorithm’s confidence in labeling incipient slip increases
rapidly as incipient slip starts and decreases as it progresses
toward gross slip. In comparison, the probability in the stop
case fluctuates slightly but remains well below the threshold.

We define an incipient slip detection as successful if it occurs
within a 0.3 second window preceding the true labeled time
point of incipient slip (to accommodate the error of the ground
truth) and prior to the occurrence of the gross slip. For the
stop event, a successful estimation is defined as a classification
of the entire sequence as other.

Fig. 4(b) presents the confusion matrix, displaying the final
classification results over the entire test set; our algorithm
achieves an overall success rate of ∼95.6%. The results also



demonstrate its effectiveness in differentiating between the slip
and stop events; this indicates that our algorithm is not simply
detecting the changes in the force and yank of the pillars, as
mentioned earlier in Section III-B.2.

Our algorithm can effectively detect incipient slip in its early
stages. In Fig. 4(c), we present the latency between the moment
of incipient slip detected by the algorithm and the ground truth
onset of incipient slip. It is evident that, on average, incipient
slip can be detected within 10 ms of its initiation.

Fig. 5: Everyday objects for our online gripping task.

B. Online evaluation

In the online evaluation stage, we utilized the full data
set for training the final deployed model. Again, to increase
the amount of training data, we applied both symmetry-based
(see Section III-C.1) and advanced data augmentation (see
Section III-C.2) techniques, resulting in a five-fold increase in
data amount (1140 data sequences).

The online evaluation was performed on six everyday objects,
depicted in Fig. 5. We include objects of varying surface
materials, curvatures, and hardness to ensure a broad range of
conditions are represented in our results.

1) Validating incipient slip detections: We cannot easily
validate incipient slip occurrences for everyday objects as
we cannot independently monitor individual pillar contacts.
Hence, we choose to perform the online evaluation based
on following well-founded assumptions. The incipient slip
detection is considered successful if it can be detected at any
time-point between the time when the robot’s movement begins
(Tm) and the time when gross slip occurs (Tg); the criterion for
determining the occurrence of gross slip has been arbitrarily
defined as the occurrence of relative translational movement
greater than 2 mm or relative rotational movement exceeding
2◦ between the object and the robot’s frame of reference.

To induce a slip, the gripper first grips the object with a
constant force. Then the robot moves the gripper downwards
towards a rigid and stationary table surface, eliciting the slip
between the sensor attached to the gripper tip and the object.
In each trial, the gripping force is selected from a range of
8 N to 30 N. The robot movement can be either translational,
rotational or a combination of translational and rotational. The
velocity (v) and acceleration (a) of the robot movement have
three different levels: low (v = 4 mm.s−1, a = 10 mm.s−2),
medium (v = 10 mm.s−1, a = 50 mm.s−2), and high (v =
40 mm.s−1, a = 100 mm.s−2). All robot movements were
performed using the built-in movel function of the UR script.
The tool center position and orientation are obtained using the
built-in getl function of the UR robot. This function employs
forward kinematics calculations based on the read joint angles.

In accordance with the offline evaluation, control trails
are also conducted here for each v and a combination and

movement type. The purpose is to validate that the identified
behavior is indeed the incipient slip, rather the event with
similar pattern like the stop event we mentioned above. The
control data involves lifting the robot arm while maintaining a
secure grip using a pre-determined grip force that is sufficient
to prevent any slippage. As a result, when lifting an object,
the pillars in contact undergo downward deformation due to
the force of gravity; subsequently, once the object is securely
held by the gripper and remains relatively motionless, these
pillars will remain stationary. Here, for the sake of convenient
explanation, we will also refer to this event as stop, and we label
the sequence as other. To ensure a fair experiment, we add extra
weight to lightweight objects to enhance their downward motion
when being lifted, aiming to make the pattern of the output
data sequence more like a slip event. In total, our experiment
consisted of 216 trials, including 162 sequences of slip event
(6 objects × 3 movements × 3 forces × 3 velocity/acceleration
combinations) and 54 sequences of stop event (6 objects × 3
movements × 1 force × 3 velocity/acceleration combinations).

Fig. 6 illustrates the final validation results. Fig. 6(a)
shows a confusion matrix, highlighting the high success rate
(∼96.8%) of our method in detecting incipient slip and its
ability to differentiate between slip and stop events. Fig. 6(b)
demonstrates that our algorithm can detect incipient slip almost
immediately upon the initiation of the movement that induces
slip, with a normalized displacement Dnorm range of 0.2 - 0.4,
within which the incipient slip can be detected (refer to the
caption for the definition of Dnorm). These results provide
comprehensive validation of the effectiveness of our approach
in detecting incipient slipping in real-world gripping tasks.

2) Ablation study: This study aims to showcase the effec-
tiveness of our advanced augmentation method in bridging
the domain gap between the idealized data collected with
the hexapod and more realistic data encountered with the
robotic gripper. To accomplish this, we employed the model
training approach described in Section IV-A. However, instead
of splitting the data into separate train and test sets, we
trained the model using the entire dataset here, given the
different objective. Subsequently, we conducted online gripping
experiments, as described in Section IV-B.1, using this trained
model. Our findings, as illustrated in Fig. 7, indicate that the
model trained without our advanced augmentation method
exhibits a notably high false positive rate in the subsequent
online gripping task when compared to the results shown in
Fig. 6(a) where the model was trained using our advanced
augmentation method. In other words, the model trained without
our advanced augmentation is unable to effectively distinguish
patterns between slip and stop events. As a result, it incorrectly
detects incipient slip in many stop events.

C. Grasp stabilization after incipient slip detection

This experiment aims to show the benefit of using our
incipient slip detection method in practical gripping tasks. This
involve lifting the robot arm while gripping the object with
a pre-determined small force to ensure that slip occurs. We
applied our incipient slip detection method and adjusted the
grip when incipient slip was first detected to prevent the object
from slipping further. In this experiment, we simulate two



(a) (b)

Fig. 6: (a) Illustration of a confusion matrix for the classification. (b) Illustration of our validation of incipient slip in online testing.
The x axis in each sub-figure represents the normalized robot translational/angular displacement, calculated as Dnorm = D/Dth,
where D is the displacement before normalizing and Dth (2 mm for translation and 2◦ for rotation) is an assumption that
indicates the reasonable minimum distance at which the gross slip must have happened or is likely to happen. To calculate Dnorm

for the compound Translation + Rotation sequences, we calculate the Dnorm for both the translation and rotation displacements
respectively and then take their mean value. Dnorm facilitates the intuitive visualization of when incipient slip is detected during
movement of the robot and also facilitates comparison across three different types of movement. The blue gradient fill shows
increasing confidence of gross slip, starting at 0.0 when the robot starts moving and reaching 1.0 at Dth.

Fig. 7: The ablation study results are to be compared with
those presented in Fig. 6(a). The model here is trained without
using data augmentation of the training data set leading to an
increased number of misclassifications.

common scenarios that can trigger slips. The first involves
gripping an object at its center of gravity with insufficient
force and lifting it, causing a translational slip between the
gripper and the object. The second involves gripping an object
away from its center of gravity and lifting it, where rotational
slip is likely to occur. We implemented a simple grip force
adaptation that responds to incipient slip detection as follows:
if incipient slip is detected, the robot immediately stops, and
the gripper applies a pre-determined secure force to the object.
The objects used in the experiment are the same as those shown
in Fig. 5. The experiment was conducted 36 times (6 objects
× 2 scenarios (translation or rotation) × 3 repetitions). We
fix ArUco markers on the objects and gripper and use Python
OpenCV to track the positions and orientations of all.

We report the results in Table I, which demonstrate the
quickly and effective detection of incipient slip using our
algorithm. On average, our algorithm can timely detect incipient
slip and prevent the object from slipping when the relative
translation between the object and the gripper reaches 2.5 mm
and the relative rotation reaches 1.9 ◦. Our algorithm showcases
its ability to facilitate timely corrective action, preventing object
falls; a demonstration video can be seen at our project website
given in the abstract.

TABLE I: The translation and angular displacement between
the object and the gripper after being lifted in our online
gripping and lifting experiment, utilizing our incipient slip
detection and grip correction methods.

Object Translation (mm) Rotation (◦)
Hard paper box 4.5± 0.6 1.9± 0.6
Wooden box 2.4± 0.8 1.5± 0.9
Shampoo bottle 2.8± 1.2 2.1± 0.4
Coffee jar 2.1± 0.5 1.6± 0.2
Pringles can 1.4± 0.4 1.1± 0.3
Thermos flask 2.1± 0.6 1.2± 0.4

Average 2.5± 0.7 1.9± 0.5

V. DISCUSSION

Our developed algorithm enables the NN to effectively learn
the incipient slip pattern from offline data and demonstrates
high accuracy in both offline and online test sets. Furthermore,
our algorithm enhances the security of robotic gripping.

Compared to previous related works [6], [13], our algorithm
offers several advantages. Firstly, our incipient slip detection
algorithm incorporates a data-driven learning-based approach,
minimizing the need for extensive human involvement in
investigating the complex patterns of incipient slip. Secondly,
the improved robustness of our algorithm enables the NN to
effectively adapt to diverse domains with various types of
PapillArray sensors and robotic gripping systems, despite being
trained solely on data lacking heterogeneity. Therefore, our
algorithm is more practical and possesses greater potential for
maximizing the utilization of valuable tactile data in real-world
scenarios. Thirdly, our algorithm has the ability to distinguish
between incipient slip and a closely related tactile pattern that
we refer to as a stop event. Notably, previous related work
[6], [7], [13], [19] has not adequately considered or addressed
the stop event; however, our investigation has revealed the
importance of including stop events when developing incipient
slip detection algorithms due to their similar patterns but entirely
different consequences.

There are limitations to our work that need consideration.



Firstly, the incipient slip detection could be improved by
transitioning from a binary signal to a continuous warning
signal. For instance, if incipient slip is detected in a small
portion of the contact surface, the remaining area may still
possess sufficient fraction to prevent significant slippage. In
such cases, the warning level of incipient slip is low and
corrective actions may not be necessary. Conversely, if a
significant portion of the contact surface exhibits incipient slip,
the warning level should escalate and it becomes important to
for appropriate corrective actions. Moreover, our current choice
of force adaptation method for reacting to incipient slip falls
short when compared to the state-of-the-art gripping control
work [6]. However, it is important to note that force adjustment
is not the primary focus of our research in this paper, which
is focused on improving the incipient slip detection. In future
work, we will develop a more sophisticated force adaptation
technique that incorporates our incipient slip detection method.

VI. CONCLUSION

In conclusion, this paper presents an incipient slip detection
method that employs deep learning and several data augmenta-
tion techniques to improve the robustness of the trained NN.
Our method is highly effective and reaches the state-of-art
performance, it enable a single pre-trained NN model to be
applied across various domains and tasks. In addition, our
method has the potential to be extended to other approaches
that use compliant tactile sensors.

APPENDIX

To train the NN parameters, we use stochastic gradient
descent with a momentum of 0.95 and a learning rate of 10−3,
with a batch size of 512. We also incorporate a weight decay of
10−3 using L2 regularization during training. The encoder NN
consists of one hidden layer with 1024 units, and the output
dimension is 128. The GRU cell has a hidden layer dimension
of 128. The predictor network comprises two hidden layers
with 256 and 128 units, respectively. To all hidden layers, we
apply rectified non-linearity [25] and batch normalization [26].

We implement our NN using PyTorch (Version 1.12.1, Meta,
USA). All our experiments are conducted on a PC with an Intel
7-10875H CPU and an NVIDIA 2060 GPU. During the online
evaluation stage, e utilise ROS [27] to facilitate communication
between various components in our system.
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