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Abstract—Amidst the swift advancements in photography
and sensor technologies, high-definition cameras have become
commonplace in the deployment of Unmanned Aerial Vehicles
(UAVs) for diverse operational purposes. Within the domain of
UAV imagery analysis, the segmentation of ultra-high resolution
images emerges as a substantial and intricate challenge, especially
when grappling with the constraints imposed by GPU memory-
restricted computational devices. This paper delves into the
intricate problem of achieving efficient and effective segmentation
of ultra-high resolution UAV imagery, while operating under
stringent GPU memory limitation. The strategy of existing
approaches is to downscale the images to achieve computationally
efficient segmentation. However, this strategy tends to overlook
smaller, thinner, and curvilinear regions. To address this problem,
we propose a GPU memory-efficient and effective framework for
local inference without accessing the context beyond local patches.
In particular, we introduce a novel spatial-guided high-resolution
query module, which predicts pixel-wise segmentation results
with high quality only by querying nearest latent embeddings
with the guidance of high-resolution information. Additionally,
we present an efficient memory-based interaction scheme to
correct potential semantic bias of the underlying high-resolution
information by associating cross-image contextual semantics. For
evaluation of our approach, we perform comprehensive experi-
ments over public benchmarks and achieve superior performance
under both conditions of small and large GPU memory usage
limitations.

Index Terms—Ultra-high resolution image segmentation, im-
plicit neural representation, memory module

I. INTRODUCTION

W ITH the rapid progress of photography and sensor
technologies, high-definition cameras have become

commonplace in the deployment of Unmanned Aerial Vehicles
(UAVs). Thus, there is a growing demand for ultra-high
resolution (i.e., 2K, 4K, or even higher resolution) of UAV
imagery for diverse applications, such as UAV localization [1],
UAV detection [2], and agricultural monitoring [3], [4].

However, handling ultra-high resolution images will cost
unaffordable computing resources, which is a formidable chal-
lenge for robotic systems with limited computation power [5]–
[9]. The strategy of existing UAV imagery analysis approaches
is to first downscale the ultra-high resolution images to achieve
computationally efficient segmentation, but this strategy tends
to overlook smaller, thinner, and curvilinear regions. More
importantly, as input image resolutions continue to increase,
this method demands a substantially greater amount of GPU
memory, rendering it impractical for systems with limited GPU
memory resources. Thus, is it possible to handle semantic
segmentation of arbitrarily large images using limited GPU
memory?

In this paper, we attempt to address such a new ultra-high
resolution segmentation problem under limited GPU memory
constraints. To resolve this problem, it is appropriate to resort
to segmenting local patches instead of the entire ultra-high
resolution image before merging all local segmentation results.
However, this approach often leads to degraded performance,
and thus additional context beyond the local patch needs to
be introduced to address this concern in prior methods [10]–
[12]. Unfortunately, the introduction of additional context also
results in increased GPU memory usage. In this paper, we
propose a novel method for performing local segmentation
without relying on the context beyond local patches. This
approach results in a GPU memory-efficient and effective
framework of ultra-high resolution semantic segmentation.

In particular, we draw inspiration from the idea of im-
plicit neural representation (INR) [13] and design an efficient
spatial-guided high-resolution query module, enabling our
model to infer high-quality pixel-wise segmentation results.
In specific, our model queries the nearest latent embeddings
of the spatial coordinates and the high-resolution spatial
information as guidance, reducing the dependency on extra
contextual information beyond the local patch to the largest
extent. Moreover, we propose to guide the latent embeddings
to supplement the details through high-resolution semantic
masks in a more straightforward manner. However, the high-
resolution spatial information tends to introduce semantic
estimation bias during inference. To address this concern, we
introduce a memory-based interaction scheme that efficiently
facilitates the high-resolution semantics learning from compact
cross-image contextual representation. Compared with previ-
ous memory-based schemes, our designed scheme adds only
1MB of GPU memory computational overhead thanks to its
linear complexity.

Through comprehensive experiments, we demonstrate that
our proposed model outperforms the state-of-the-art ap-
proaches under the condition of small GPU memory limits
over Inria Aerial and DeepGlobe datasets. Besides, our model
also can better trade-off segmentation performance, GPU
memory usage, and computational overhead than the latest
off-the-shelf methods in large GPU memory-limited systems.

Overall, the main contributions of our paper are:
• In this paper, we raise a new research problem on

ultra-high image segmentation under a GPU memory-
constrained condition. We propose a GPU memory-
efficient and effective framework to handle such a chal-
lenging problem.

• A novel spatial-guided high-resolution query module is
introduced to predict semantic masks of local image
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patches without requiring additional contextual cues be-
yond the local region.

• We propose an efficient memory-based interaction
scheme to address the issue of semantic bias arising from
the local nature of image patches, which incorporates
cross-image contextual information for high-resolution
query, and introduces only a mild extra GPU memory
overhead.

• Our model achieves superior performance in ultra-high
resolution image segmentation, surpassing prior methods
by a substantial margin, particularly under small GPU
memory-limited conditions. Moreover, our approach of-
fers a balanced trade-off between segmentation perfor-
mance, GPU memory usage, and computational overhead
under large GPU memory constraints.

II. RELATED WORKS

In this section, we survey the recent progress of ultra-
high resolution semantic segmentation and introduce the re-
lated literatures on implicit neural representation and memory
schemes.

A. Ultra-high Resolution Semantic Segmentation

Semantic segmentation is modeled as a dense prediction
task, many works [14]–[20] based on convolutional neural
network has achieved great success. In recent years, several
methods [21]–[26] use Transformer architecture to conduct
semantic segmentation tasks. However, most of the work is
applied to ultra-high resolution images, which raises the trade-
off between performance and GPU memory. To this end, Chen
et al. [10] integrate global image and local patch each other
in the deep layer to balance performance and GPU memory
usage. Limited by the speed of global and local interaction, Wu
et al. [27] design a classification network to choose important
patches for the feature fusion. To further improve performance,
Huynh et al. [11] progressively refine coarse segmentation
results via a multi-stage processing pipeline. Li et al. [12]
introduce a multi-scale locality-aware contextual correlation
and the adaptive feature fusion scheme to strengthen local
segmentation. These methods are patch-based approaches,
which can save GPU memory but consume time due to
multiple local segmentation. In the latest work, Guo et al.
[28] leverage the shallow-deep network to directly process
the full-scale ultra-high resolution images for accelerating the
inference speed. In addition, some work [29], [30] generates
high-quality semantic results by refining coarse segmentation
maps from a pre-trained model. Comparing with the previous
works, we focus on the systems constrained by limited GPU
memory, by considering a better trade-off between accuracy,
GPU memory, and speed.

B. Implicit Neural Representation

In implicit neural representation (INR), the signals of the
object and scene are maps from coordinates via a multi-
layer perceptron (MLP) applied in modeling 3D reconstruction
[31]–[36]. For example, Mildenhall et al. [35] present NeRF

that learns an implicit representation for a novel scene view
using multiple image views. It can accurately capture the intri-
cate details of the shape with a minimal amount of parameters.
Later, INR is also used in video representation [37]–[39]. Chen
et al. [37] propose a novel neural representation for videos
that takes the time index as input and directly outputs the
corresponding RGB frame. Recently, INR has also made some
progress in 2D tasks [13], [30], [40], [41]. Chen et al. [13]
represent natural and complex images in a continuous manner,
which are trained in the image super-resolution task. Xu et al.
[40] perform the spatial encoding in implicit functions and
further introduce deep coordinate fusion and residual MLP
architecture. Hu et al. [41] propose an alignment function
using multi-level feature fusion for semantic segmentation.
Among them, [41] is most related to our work. The key
difference rests in that we utilize high-resolution spatial masks
as guidance to the query module for the interpretable details
of the ultra-high resolution images, while [41] only utilizes
INR to perform multi-scale feature alignment.

C. Memory Scheme

Similar to the human brain, deep neural networks encode,
store, and extract information via memory. In the vision tasks
[42]–[48], it can capture cross-image information to serve the
current image. Wang et al. [43] use a cross-batch memory
mechanism to record and update the embeddings of past
iterations for the collection of sufficient hard negative pairs.
Xie et al. [46] relieve the ambiguity of similar objects by
memorizing and tracking the regions of target objects. In [47],
Kim et al.store the domain-agnostic categorical knowledge in
the memory to achieve domain generalization for semantic
segmentation. Jin et al. [48] set up a memory module to
store the dataset-level distribution information of all classes
and perform a coarse-to-fine iterative inference strategy in the
memory. In our work, we introduce a memory-based interac-
tion scheme that stores low-resolution semantic information to
efficiently enhance the spatial semantics of the high-resolution
image. Therefore, it is able to rectify spatial-guided semantic
bias in our query module.

III. METHODOLOGY

In this section, we first describe the overall pipeline of our
framework. Then, we elucidate the core components of our
model, i.e., spatial-guided high-resolution query module and
memory-based interaction scheme.

A. Framework Overview

In this paper, we introduce a semantic segmentation ap-
proach capable of efficiently processing ultra-high resolution
images on systems with limited GPU memory.

In response to the GPU memory constraint, we follow the
patch-based paradigm (e.g., [12]) in which we partition a
large image into local patches, segment them subsequently,
and then merge all the local segmentation results together.
Formally, given an ultra-high resolution image İ with width
Ẇ and height Ḣ , our approach partitions the image into N
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Fig. 1. The pipeline of our model. In specific, the input image is passed into a three-branch architecture to extract the low-resolution latent embedding and
high-resolution spatial mask. They are jointly input to the spatial-guided high-resolution query module to obtain high-quality segmentation results. Besides,
the memory-based interaction scheme is introduced to correct the semantic deviation of guide information.

overlapping local patches (denoted as I in the following) along
both the row and column axes. Then, our model generates the
segmentation results for each local patch, which are merged
to produce an ultra-high resolution segmentation mask.

Given the possibly large resolution of the image patch I
(e.g. 1280 × 1280), there still arises a necessity to mitigate
GPU memory expenses. This, in turn, imposes constraints
on the depth of the encoding network, which consequently
limits its capability to extract an ample amount of semantic
information. Therefore, we downscale I to a properly small
resolution (e.g. 320 × 320) for extracting semantics. To this
end, as illustrated in Fig. 1, our proposed framework is based
on a three-branch architecture, comprising of the semantic
branch, memory-based interaction branch, spatial branch, and
spatial-guided high-resolution query module. Specifically, a
partitioned image patch I and its downscaled version Î is fed
into the encoders for feature extraction. The spatial branch
and semantic branch obtain the visual features and semantic
features, respectively. In addition, the memory-based interac-
tion branch relies on an external memory bank to mitigate the
bias in the guidance information, which associates the cross-
image compact semantic representation with high-resolution
spatial information for regularization. Inspired by [13], the
spatial-guided high-resolution query module is dedicated to
infer the high-resolution semantics in a pixel-by-pixel manner
by querying the corresponding latent embeddings with the
guidance of high-resolution structural information and low-
resolution semantics. In the following, we will elaborate on
the technical details of the two components.

B. Spatial-guided High-resolution Query Module

High-quality local image segmentation relies on contextual
cues beyond local patches. However, incorporating such con-
text can increase computational overhead. To balance seg-
mentation quality and computational efficiency, we propose a

novel spatial-guided high-resolution query module that queries
the nearest latent embedding of a given spatial coordinate to
obtain the corresponding semantic result without the need for
additional context.

In concrete, we first define a query function fθ (θ is
learnable parameters) over the feature maps to achieve the
high-resolution semantic mask S (S ∈ RC×H×W ) where C
denotes the number of semantic classes. Here, the feature maps
are viewed as latent embeddings evenly distributed in spatial
dimensions and we assign corresponding coordinates to them.
Hence, the value at the coordinate xq of the high-resolution
semantic mask S can be queried as below:

S(xq) = fθ(z
∗, xq − x∗), (1)

where z∗ is the nearest latent embedding from xq and x∗ is
the low-resolution coordinate of the latent embedding z∗ in
the spatial domain. Given the relative coordinates, the high-
resolution query function fθ can query the nearest semantic
result set of the latent embedding z∗.

To this end, we adopt a vanilla MLP as the query function
shared by each latent embedding. However, the previous study
[40] implies that neural networks are insensitive to high-
frequency signals and are inclined to learn low-frequency
signals. This may lead to undesirable artifacts for intricate
ultra-high resolution images. Consequently, we encode the
relative coordinates via a periodic function ϕ to enhance the
capability of the network in the high-frequency domain. Thus,
the encoding function of the relative coordinates (i.e., xq−x∗)
is defined as:

ϕ(xq − x∗) = [ω1sin(xq − x∗), ω1cos(xq − x∗), ...,

ωnsin(xq − x∗), ωncos(xq − x∗)], (2)

where ω1, ..., ωn are initially set to 2ei (i ∈ [1, ..., n]) as the
frequency parameters that will be fine-tuned on the training
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stage. As such, ϕ(·) maps the relative coordinate to a 2n-
dimensional positional information. Eq. 1 can be rewritten as:

S(xq) = fθ(z
∗, xq − x∗, ϕ(xq − x∗)). (3)

In general, the spatial resolution of the latent embedding
is much smaller than that of a semantic map, which results
in the loss of spatial details during the query. To this end,
we propose to utilize the higher resolution masks to provide
spatial guidance for the latent embeddings. Specifically, the
high-resolution segmentation masks Mb (Mb ∈ RC×H

2 ×W
2 )

and Ml (Ml ∈ RC×H×W ) are computed by the memory-based
interaction branch and spatial branch, respectively, which
modifies the high-resolution query function as below:

S(xq) = fθ(z
∗, xq − x∗, ϕ(xq − x∗),

m∗
b , xq − x∗

b , ϕ(xq − x∗
b),

m∗
l , xq − x∗

l , ϕ(xq − x∗
l )), (4)

where m∗
b and m∗

l denote the nearest mask values from xq

in mask Mb and Ml. x∗
b and x∗

l are the corresponding low-
resolution coordinates of mask values m∗

b and m∗
l , separately.

With the cues of high-resolution spatial information, the latent
embeddings can better predict fine semantic results.

C. Memory-based Interaction Scheme

In our model, the high-resolution spatial mask Mb is com-
puted by the last layer of the memory-based interaction branch.
Since this branch is relatively shallow, its estimated high-
resolution mask contains semantic bias that may interfere with
spatial cues for the query function. To mitigate the negative
impact, it requires contextual information for regularization.
Without the need for additional large computation, we pro-
pose an efficient memory-based interaction scheme that adds
semantics to the mask Mb. It involves an external memory
bank M (M ∈ RD×C) that stores the semantic features across
images, where D denotes the feature dimension. To reduce
the computation overhead to the largest extent, our proposed
memory scheme costs linear complexity only.

As the preliminary step, we randomly select an image
sample from the training set. Then, we calculate a mean vector
of the semantic branch features for each category as the initial
value of the memory bank, with the aid of the ground-truth
segmentation maps. During training, the representation of each
category c (c ∈ [1, ..., C]) in the memory bank M is updated
by the moving average method in the t-th iteration.

Mc
t = m · Mc

t−1 + (1−m) · φ(Rt−1), (5)

where the momentum m is set as 0.9, and φ is a transform
function. Rt (Rt ∈ RD×H

4 ×W
4 ) is the semantic branch

features of the current sample in the t-th iteration. In φ, Rt−1

is permuted with the dimension D ×N (N = HW
16 ).

The feature representation of each category in the memory
bank can be denoted as Rc (Rc ∈ RD×Nc

) that stores the
representation of the category c, where N c is the number of
the pixels labeled as the category c. GT (GT ∈ RD×N ) stores

the ground-truth category labels of R. Next, we calculate the
cosine similarity Sc (Sc ∈ RNc

) between Rc and Mc:

Sc =
Rc · Mc

∥Rc∥2·∥Mc∥2
. (6)

Finally, the transform function φ outputs:

R̂c =

Nc∑
i=1

1− Sc
i∑Nc

j=1(1− Sc
j )

· Rc
i . (7)

After updating the memory bank, we associate the memory
bank as the compact cross-image semantic representation to
high-resolution information to enhance the mask Mb in the
semantic perspective. Specifically, we read the memory bank
M and extract the features Fb (Fb ∈ RD×H

2 ×W
2 ) from the

memory-based interaction branch. Then, Fb is permuted into
the features with the dimension D× HW

4 . Thus, we calculate
the relation W:

W = Softmax(
M⊤ ⊗Fb√

D
), (8)

where ⊗ is matrix multiplication. The size of W is C × HW
4

and it is reshaped as C × H
2 × W

2 . Last, Mb is refined as
follows:

Mb = (1 +W) ·Mb. (9)

Note that, compared with the previous memory scheme with
quadratic complexity (e.g. [48]), our proposed memory scheme
has a linear computational complexity of O(HWC

4 ). This is be-
cause our scheme does not associate the global pixel memory
for each pixel, which spares the self-attention computation,
contributing significantly to a substantial increase in overall
computational efficiency.

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments over two public
benchmarks to evaluate our problem and the capability of
the proposed model. We first compare our model against the
previous state-of-the-art methods and then perform ablation
studies to delve into our model structure.

A. Datasets

Inria Aerial [49]. This dataset contains large resolution
aerial images of five cities, ranging from dense metropolitan
districts to alpine resorts. It contains 180 aerial images of
5000×5000 pixels with the binary mask for building/non-
building areas. Following the protocol of [10], we split images
into training, validation, and testing sets with 126, 27, and 27
images, respectively.

DeepGlobe [50]. This dataset provides 803 ultra-high reso-
lution aerial images with 2448×2448 pixels. It contains seven
classes of landscape regions, including urban, agriculture,
rangeland, forest, water, barren, and unknown region not
considered in the challenge. We split all images following
[10], i.e., 454 training images, 207 validation images, and 142
testing images.
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Comparison on Inria Aerial Comparison on DeepGlobe

Fig. 2. Comparison of mIoU v.s. GPU Memory cost under small and large GPU memory constraints (denoted as stars and circles).

B. Implementation Details

Training details. We implement our framework using the
mmSegmentation [51] toolbox on a workstation with a single
NVIDIA RTX 3090 GPU. In particular, we adopt DeepLabv3
[52] with ResNet18 [16] as the encoder of the semantic branch
and STDC [53] as the encoder of the memory-based inter-
action branch. During training, we optimize the parameters
adapting Stochastic Gradient Descent (SGD) and set the batch
size to 4 and 8 for Inria Aerial and DeepGlobe, respectively.
The initial learning rate is set to 10−2, which is decayed by
a poly learning rate policy with the power of 0.9. In practice,
it takes 40k and 80k iterations to converge our model for two
datasets, respectively.

Inference details. During inference, we measure the GPU
Memory and Frames-per-second (FPS) on an RTX 2080Ti
GPU and adopt the same environment as [28] (i.e., CUDA
10.1, CuDNN 7.6.5, and Pytorch 1.6.0) for fair comparison.

C. Comparison with State-of-the-arts

In practice, segmenting an ultra-high resolution image often
consumes an exceedingly large amount of GPU memory
resources. As a consequence, for the robotic platforms like
UAVs, they usually have limited computation resources and
GPU memory for segmenting and analyzing the large images
on board. To simulate the challenging situations, in the experi-
ments, we compare the segmentation methods under small and
large GPU memory limits. In this experiment, we set 1.5 GB as
the small GPU memory limit. For large GPU memory limits,
we set 7.5 GB for Inria Aerial and 3.5 GB for DeepGlobe,
due to their different image resolutions. In the following, we
conduct the comparison experiments and discuss the results.

Small memory limits. In general, there are two ways
to segment the ultra-high resolution images: 1) segmenting
downsampled global images (denoted as global inference); and
2) cropping, segmenting, and merging local patches (denoted
as local inference). We first consider the methods that adopt
the global inference strategy, which straightforwardly down-
samples the whole input image İ to meet the requirements of

small limited GPU memory. To this end, we retrain and test U-
Net [54], FCN-8s [15], and DeepLab v3+ [19] on Inria Aerial
and DeepGlobe datasets. As shown in Table I and Table II,
these methods can hardly achieve satisfactory accuracy despite
their high FPS, since compressing large images causes severe
detail lost.

Thus, we adopt the local inference strategy for the segmen-
tation methods to meet small GPU memory limits. Table. I and
Table. II show our superior performance than other methods
in the respective datasets. In specific, our model shows similar
GPU memory usage and running time comparing to the state-
of-the-art ISDNet [28], but elevates 2.50% mIoU on Inria
Aerial and 0.87% mIoU on DeepGlobe. It is worth noting
that our model achieves a significant advantage on Inria Aerial
dataset, because our proposed spatial-guided high-resolution
query module can depict delicate objects and this dataset
contains a large number of small buildings. Besides, as a
ResNet-50 based model, PPN [27] is also able to fulfill the
requirement of limiting small GPU memory, but it underper-
forms our method and ISDNet. In Fig. 4, we illustrate several
qualitative comparison results. We observe that our model has
the ability to delineate fine regions (e.g., small urban and
rivers) and stronger semantic discrimination (e.g., large forests
and rangeland). This is attributed to the high-resolution query
and memory-based semantic enhancement.

Large memory limits. To evaluate the capability of our
model under large GPU memory limits, we compare our
model with BiSeNetV1 [55], STDC [53], PointRend [56],
CascadePSP [29], GLNet [10], MagNet [11], FCtL [12], and
ISDNet [28], in terms of mIoU, GPU Memory, and FPS. The
comparison results are depicted in Table. III and Table. IV,
in which we follow most of the results reported by [28].
As observed, our model is comparable to the state-of-the-art
ISDNet on DeepGlobe, but we gain at least 3% improvement
than it on Inria Aerial. This shows that our approach can
further trade off performance, GPU memory, and speed.

Performance-memory trade-off. We quantify and visual-
ize all the state-of-the-art methods based on the small and
large GPU memory limits in Fig. 2. We can see that our
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TABLE I
COMPARISON WITH STATE-OF-THE-ARTS WITH SMALL GPU MEMORY

LIMITS ON INRIA AERIAL. * REPRESENTS OUR IMPLEMENTATION.

Model Backbone Inference mIoU Memory FPS

FCN-8s* [15] ResNet-18 Global 47.74 1412 12.72
DeepLab v3+* [19] ResNet-18 Global 34.73 1532 16.58

FCN-8s* [15] ResNet-18 Local 75.58 1228 1.23
DeepLab v3+* [19] ResNet-18 Local 76.22 1496 1.10

ISDNet* [28] ResNet-18 Local 74.75 1306 3.99
Ours ResNet-18 Local 77.25 1324 3.55

TABLE II
COMPARISON WITH STATE-OF-THE-ARTS WITH SMALL GPU MEMORY

LIMITS ON DEEPGLOBE. * REPRESENTS OUR IMPLEMENTATION.

Model Backbone Inference mIoU Memory FPS

U-Net* [54] U-Net Global 20.61 1506 42.16
FCN-8s* [15] ResNet-18 Global 60.41 1438 12.07

DeepLab v3+* [19] ResNet-18 Global 52.43 1532 16.58
U-Net* [54] U-Net Local 69.72 1426 0.65

FCN-8s* [15] ResNet-18 Local 71.09 1354 3.47
DeepLab v3+* [19] ResNet-18 Local 72.53 1250 3.06

PPN [27] ResNet-50 Local 71.90 1193 12.90
ISDNet* [28] ResNet-18 Local 72.79 1440 11.47

Ours ResNet-18 Local 73.66 1472 10.09

model can achieve optimal mIoU regardless of small or large
GPU memory limits. More importantly, our model can obtain
similar performances under small and large GPU memory
limits (77.25% v.s. 77.27% on Inria Aerial and 73.66% v.s.
73.50% on DeepGlobe ), indicating that our robustness to
GPU memory constraints, whereas other methods are greatly
affected due to narrow view of local patches. This still benefits
from our query module, which predicts pixel categories only
by the corresponding relative coordinates and the nearest latent
embeddings.

D. Ablation Study

In the following, we conduct ablation studies on the two
proposed modules. First, we demonstrate the effectiveness
of spatial-guided high-resolution information and memory-
based interaction scheme in our model. Next, we analyze
different strategies for updating and reading the memory bank
in our scheme. Last, we investigate the boundary case of GPU
memory usage.

Model structure. First, we take the naive query module
as our baseline, as shown in Table V, our model just costs
1284MB GPU memory with high FPS, but only gains 69.24%
mIoU. To improve performance, we use STDC [53] to extract
high-resolution spatial information Mb. It is able to boost
the performance from 69.24% to 72.06%, which exceeds
bilinear interpolation with 71.81% mIoU and demonstrates the
effectiveness of the spatial mask guidance. Besides, the GPU
memory increase is only 186MB and the total GPU memory is
still less than 1.5GB. Based on this, we add memory bank M
and higher resolution information Ml, separately. It is observed
that there is a great performance improvement, especially the
guide of spatial information Ml (at least 1.1% boost). Impor-
tantly, the GPU memory and time hardly grow (about 1MB and
less than 0.5 FPS) because both are linear operations. Next,
with the aid of both, our model can achieve the best result
(i.e., 73.66% mIoU and 1472MB GPU Memory). Besides, we

TABLE III
COMPARISON WITH STATE-OF-THE-ARTS WITH LARGE GPU MEMORY

LIMITS ON INRIA AERIAL. * REPRESENTS OUR IMPLEMENTATION.

Model Backbone Inference mIoU Memory FPS

FCN-8s* [15] ResNet-18 Global 75.67 4050 1.96
DeepLab v3+* [19] ResNet-18 Global 76.33 6638 1.75

STDC [53] STDC Global 72.44 7410 4.97
CascadePSP [29] ResNet-50 Local 69.40 3236 0.03

GLNet [10] ResNet-50 Local 71.20 2663 0.05
FCtL [12] VGG-16 Local 72.87 3167 0.04

ISDNet [28] ResNet-18 Global 74.23 4680 6.90
Ours ResNet-18 Global 77.27 4834 5.53

TABLE IV
COMPARISON WITH STATE-OF-THE-ARTS WITH LARGE GPU MEMORY

LIMITS ON DEEPGLOBE. * REPRESENTS OUR IMPLEMENTATION.

Model Backbone Inference mIoU Memory FPS

U-Net* [54] U-Net Global 28.53 3511 9.34
FCN-8s* [15] ResNet-18 Global 68.67 1890 7.98

DeepLab v3+* [19] ResNet-18 Global 72.18 2398 7.22
BiSeNetV1 [55] ResNet-18 Global 53.00 1801 14.20

STDC [53] STDC Global 70.30 2580 14.00
PointRend [56] ResNet-50 Global 71.78 1593 6.25

CascadePSP [29] ResNet-50 Local 68.50 3236 0.11
GLNet [10] ResNet-50 Local 71.60 1865 0.17

MagNet-Fast [11] ResNet-50 Local 71.85 1559 3.40
MagNet [11] ResNet-50 Local 72.96 1559 0.80

FCtL [12] VGG-16 Local 72.76 3167 0.13
ISDNet [28] ResNet-18 Global 73.30 1948 27.70

Ours ResNet-18 Global 73.50 1966 24.33

also try to enhance the semantics of higher resolution masks
Ml using a new memory bank Ml, but the result gets worse,
we think that this mask mainly contains spatial details and
the semantics are too weak to improve. Particularly, we can
also adopt high-resolution features as the spatial information
guide, that is implicit feature alignment (IFA) [41]. Table V
shows IFA is inferior to our method by at least 1.4% mIoU
and uses 270MB more GPU memory than ours. This largely
reflects that our method is more effective and efficient.

Memory-based interaction scheme. In our memory
scheme, we use semantic branch features to update the se-
mantic memory, dubbed cross-branch interaction strategy. To
demonstrate the necessity of this strategy, we perform ablation
experiments with regard to it. Table VI shows performance
barely changes (73.23% v.s. 73.25%) using the features of
the memory-based branch, compared with no memory bank.
For update mode, we ablate the effect of ”Mean” mode (i.e.,
R̂c =

∑Nc

i=1
Rc

i

Nc ). As shown in Table VI, this is only 0.06%
mIoU improvement over no memory bank. Besides, we replace
Concat instead of Softmax (i.e., Mb = Concat(M

T⊗Fb√
D

,Mb))
for the reading mode, it leads to 0.08% mIoU degradation.

Memory usage boundary. To investigate the GPU memory
usage boundary, we attempt to reduce the size of local patches
in order to further decrease GPU memory consumption during
the inference process. We perform this experiment on Inria
Aerial with 5000×5000 pixel images. As shown in Fig. 3, our
model and ISDNet achieve similar minimum GPU memory
usage of approximately 940MB. However, even under the
lowest-bound of GPU memory constraint, our model outper-
forms ISDNet by a significant margin, with comparatively less
degradation in performance. In general, our model demon-
strates superior performance over ISDNet, both under small
and large GPU memory constraints.
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TABLE V
EFFECTIVENESS OF OUR PROPOSED MODEL STRUCTURE.

Up-sampling Spa. Inf. Mem. mIoU Memory FPS

Bilinear - - 71.81 1596 7.99
IFA [41] - - 72.23 1742 8.80

Ours - - 69.24 1284 19.51
Ours Mb - 72.06 1470 10.56
Ours Mb M 72.53 1471 10.24
Ours Mb+Ml - 73.23 1471 10.13
Ours Mb+Ml M 73.66 1472 10.09
Ours Mb+Ml M+Ml 73.09 1474 9.31

TABLE VI
DIFFERENT STRATEGIES FOR MEMORY-BASED INTERACTION SCHEME.

M Cross-Branch Update Read mIoU

× × × × 73.23
✓ × Cosine Softmax 73.25
✓ ✓ Mean Softmax 73.29
✓ ✓ Cosine Concat 73.15
✓ ✓ Cosine Softmax 73.66

V. CONCLUSION AND LIMITATIONS

In this paper, we propose an effective solution segmenting
an ultra-high resolution image in a limited GPU memory
system, which has practical value for robotic systems. In
particular, we propose a spatial-guided high-resolution query
module for local inference. Additionally, we also present a
memory-based interaction scheme that efficiently enhances the
semantics of high-resolution information by bridging cross-
image contextual information. There are several limitations in
our method. First, it can hardly eliminate the noise from high-
resolution information, leading to bias in the query process.
Moreover, how to deploy the memory-efficient model while
preserving high FPS remains a big challenge.
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