
Learning a Tracking Controller for Rolling µbots

Logan E. Beaver1, Max Sokolich2. Suhail Alsalehi1, Ron Weiss3, Sambeeta Das2, Calin Belta1

Abstract— Micron-scale robots (µbots) have recently shown
great promise for emerging medical applications. Accurate
controlling µbots, while critical to their successful deployment,
is challenging. In this work, we consider the problem of
tracking a reference trajectory using a µbot in the presence of
disturbances and uncertainty. The disturbances primarily come
from Brownian motion and other environmental phenomena,
while the uncertainty originates from errors in the model
parameters. We model the µbot as an uncertain unicycle
that is controlled by a global magnetic field. To compensate
for disturbances and uncertainties, we develop a nonlinear
mismatch controller. We define the model mismatch error as
the difference between our model’s predicted velocity and the
actual velocity of the µbot. We employ a Gaussian Process to
learn the model mismatch error as a function of the applied
control input. Then we use a least-squares minimization to
select a control action that minimizes the difference between
the actual velocity of the µbot and a reference velocity. We
demonstrate the online performance of our joint learning and
control algorithm in simulation, where our approach accurately
learns the model mismatch and improves tracking performance.
We also validate our approach in an experiment and show that
certain error metrics are reduced by up to 40%.

I. INTRODUCTION

Interest in micron-scale robots (µbots) has grown exponen-
tially in recent decades [1]. Medical applications have been
of particular interest, including drug delivery [2], [3], biopsy
[4], microsurgery [5], and cellular manipulation [6], [7], [8],
[9]. Despite these advances, there are numerous challenges
associated with the control of µbots. The extremely small
scale of µbots incentivizes novel actuation techniques, such
as electrophoretic [10], optical [11], magnetic [12], thermal
[13], or by attachment to swimming microorganisms [14].

Our µbot is controlled by a rotating 3D magnetic field. The
field induces a rotating moment on the µbot, which causes
it to roll along the substrate surface during experiments. As
a consequence, this method uses significantly less energy
than other actuation methods, e.g., translating particles using
strong magnetic gradients. A similar control technique has
been previously used to control the micron scale “rod-bot”
[15] for micron-scale manipulation. The µbot we control is
spherical, non-toxic to living cells, and can be embedded
within cells without damaging them [16]. This makes it an
ideal candidate for emerging medical applications involving

*This work was supported by the National Science Foundation under
grant GCR 2219101 and by the National Institute of Health under grant
R35GM147451.

1Division of Systems Engineering, Boston University, Boston, MA
02215, USA {lebeaver,alsalehi,cbelta}@bu.edu

2Department of Mechanical Engineering, University of Delaware,
Newark, DE 29716, USA {sokolich,samdas}@udel.org

2Department of Biological Engineering, Massachusetts Institute of Tech-
nology, Cambridge, MA 02142, USA rweiss@mit.edu

cellular manipulation. However, the small size of the µbot
also implies that Brownian motion plays a significant role in
its dynamics (see [17], [18]), and modeling error makes the
µbot difficult to control accurately. The readers are referred
to [19] for further details on different actuation techniques
and motion control strategies for robots at the micron scale,
.

In this article, we develop a joint learning and control ap-
proach to improve the tracking capabilities of rolling µbots.
A related vision-based control system to manipulate rolling
µbots was presented in [20], where the authors used closed-
loop visual feedback to navigate through an environment
with impurities and obstacles. In contrast, we propose an
open-loop strategy that takes the desired velocity as an input
and yields a corrected control signal that minimizes the
difference between the desired and actual velocities of the
µbot. As a consequence, our approach is straightforward
to include as an integral step for receding horizon control
and other closed-loop feedback strategies. Compared to re-
lated learning-based approaches, e.g., controlling swimming
micron-scale robots [21], our approach is model-based and
explicitly embeds the learning within the controller.

Inspired by [22], in this work we derive a controller to
minimize the nonlinear mismatch error, that is, the error
between our nonlinear µbot model and the actual dynamics.
We achieve this in three steps. First, we invert an empirically
derived µbot model to convert a desired velocity into a
desired control action. Then, we use the learned nonlinear
mismatch error and least-squares optimization to generate a
corrected control signal. The corrected control signal exploits
the learned error to minimize the difference between the
desired and actual velocity of the µbot. In comparison, [22]
updates the desired velocity of the system before inverting
the dynamics. The contributions of this article are as follows:

• we extend the inverse nonlinear mismatch approach of
[22] from a 1D regression problem with linear dynamics
to a 2D trajectory tracking problem;

• we derive an explicit functional form of the µbot’s
input-output velocity error to demonstrate that model
parameter fitting is insufficient for accurate control -
this also motivates the development of nonlinear control
techniques;

• we derive an novel control strategy to correct the non-
linear model mismatch error by explicitly embedding
a Gaussian Process regression model within a least-
squares optimization problem; and

• we demonstrate improvement in the µbot’s tracking
capability in simulation and experiment, and we show
that our online learning approach is real-time imple-

ar
X

iv
:2

21
2.

00
18

8v
2

 [
cs

.R
O

]
 1

4
A

ug
 2

02
3

mentable.
The remainder of this article is organized as follows: We

present our experimental setup in Section II and formulate
the tracking problem in Section III. We present our learning
approach in Section IV. Simulation and experimental results
are included in Section V, and we draw conclusions and
discuss future work in Section VI.

II. EXPERIMENTAL SETUP

In order to generate the magnetic fields necessary to
actuate the rolling µbots, 6 Helmholtz coils are designed and
arranged in parallel pairs as shown in Fig. 1. The coils are
mounted on a Zeiss Axiovert 100 inverted microscope. To
power the coils, we use an Arduino Mega micro-controller
connected to a Jetson Xavier NX single board computer
similar to a Raspberry Pi. The Jetson Xavier NX is capable
of running a full Linux distribution with the help of a
keyboard, mouse and monitor. A custom tracking and control
program is written in python to read incoming images from a
FLIR BFS-U3-28S5M-C USB 3.1 Blackfly® S Monochrome
Camera. The continuous stream of images is analyzed in
Python’s OpenCV library, which is used to extract position
and velocity data for detected microrobots.

Action commands in the form of a heading angle α to
steer the µbot, a constant attitude angle γ, and a frequency
f to set the speed at which the magnetic field rotates are
sent to the Arduino over a serial communication protocol.
These action/input commands are converted to a 3D rotating
magnetic field. Because current is proportional to the mag-
netic field generated from electromagnets, the magnetic field
B = [Bx, By, Bz]

T is mapped to the heading, attitude, and
frequency signals via

B =

 cos(γ) cos(α) cos(2πft) + sin(α) sin(2πft)
− cos(γ) sin(α) cos(2πft) + cos(α) sin(2πft)

sin(γ) cos(2πft)

 ,

(1)
where γ ∈ [−π, π] is a fixed attitude angle, α ∈ [−π, π] is
the heading angle, and f ∈ R is the rolling frequency. The
angles and coordinate system are depicted in Fig. 2. Note
that since B is 3 Dimensional, half of the required current
is sent to each pair of parallel electromagnets to achieve the
desired magnetic field strength.

The µbots are constructed by plasma cleaning a plain
glass slide on high for 5 minutes, wherein 24 µm paramag-
netic, fluorescent microspheres (Spherotech® FCM-10052-
2) mixed with ethanol are drop casted and left to dry. The
microspheres are coated with a 100 nm thick layer of Nickel
in a dual electron beam deposition chamber, which increases
the µbot’s magnetic moment. Due to the inherent surface
properties of the µbot and the substrate surface, there are
often very large attractive forces that result in the µbot
sticking to the surface, hindering its motion. This is highly
unpredictable and quite common despite adequate cleaning
of the microscope slide surface. As a result, two additions
were made to the experimental procedure to help reduce
the likelihood of sticking. Firstly, the plasma cleaned glass

slide was additionally incubated in a PFOTS (1H,1H,2H,2H-
perfluorooctyltrichlorosilane) vapor at 85°C for 30 minutes.
This results in a hydrophobic surface that allows the µbot
to more easily roll across the surface. Secondly, instead of
suspending the µbot’s in DI water, they are suspended in
a 0.1 % solution of Sodium Dodecyl Sulfate, which is a
surfactant. Although this reduces the rolling speed of the
microrobot due to the increased viscosity, it significantly
reduces the chances of the microrobot sticking.

III. PROBLEM FORMULATION AND APPROACH

The µbot is a roughly spherical magnetic particle that we
control using a 3D magnetic field. We control the µbot by
continuously rotating the magnetic field using (1), which
induces a rotational moment in the µbot and causes it to roll
along the substrate surface. Varying the frequency f affects
the forward speed of the µbot, while varying the heading
angle α affects its heading direction; these are depicted in
Fig. 2. Based on the rolling motion of the µbot, we model it
as a unicycle subject to a generalized disturbance term [23]:

ṗ = a0f

[
cos(α)
sin(α)

]
+D, (2)

where p ∈ R2 is the position in a given reference frame,
a0 ∈ R>0 is an empirically determined effective radius of
the µbot, and f, α are the µbot’s rotation frequency and
heading angle, respectively. Finally, D ∈ R2 is a disturbance
term that captures Brownian motion and other micron-scale
disturbances. Note that we subsequently justify that 1) the
control actions are identical to the heading angle and rolling
frequency of (1), and 2) the frequency f can be fixed in
practice, and thus we consider only a single control input α.

Our objective is to follow a reference trajectory. Let
v = ṗ denote the velocity of the µbot (see Fig. 2). Given
a desired velocity signal vd(t), we seek to find the optimal
control input α such that the difference between ṗ(α(t))
and vd(t) is minimized. This control achieves our objective
given that the µbot starts on the reference trajectory. This
approach is useful for high-level planners, e.g., those using
RRT* and MPC, as they can generate trajectories using only
the kinematic model ṗ ≈ vd. This decouples trajectory
tracking from high-level motion planning, which is an area
of ongoing research. To achieve this, we present our working
assumptions for our tracking controller next.

Assumption 1. The environmental disturbance D and any
error in our model of the true dynamics (2) are isotropic,
i.e., they do not depend on the µbot’s position p.

Assumption 2. There error in aligning the µbot with the
magnetic field is negligible, i.e., α and f in (1) and (2) are
identical.

Assumptions 1 and 2 simplify the learning process and are
reasonable for the laboratory environment. The disturbance
affecting the µbot is primarily Brownian motion, which acts
uniformly at random to disturb the velocity. Assumption 1
could be relaxed by having the µbots infer hydrodynamic

Fig. 1. Design schematics and image of the 3D Helmholtz-based System

Y

Z

X

p

v

X

α

Ẑ

γ

Z π
2 − γ

Fig. 2. Schematic illustrating the notation. The solid axes X , Y , Z define
the Cartesian coordinate system. The motion of the µbot is the in the (X,Y)
- plane. The fixed attitude angle γ is out of the plane, while the heading
angle α is in plane. The frequency f determines the µbot’s forward speed
along v, which is in the (X,Y) - plane.

disturbances caused by heat, density, and chemical concen-
tration differences, e.g., using an approach similar to [24].
In previous work, we have also found that the alignment of
µbots to the global magnetic field is nearly instantaneous
(see [25]), which justifies Assumption 2.

Assumption 3. The µbot is controlled to roll at a fixed rate,
i.e., f(t) is a known constant selected a priori.

Assumption 3 does not affect the derivation of our con-
troller, as we only employ it when training our machine
learning algorithm and solving the least-squres optimization.
Relaxing this assumption increases the amount of training
data and learning time, but not prohibitively so. Furthermore,
operating µbots with a constant rolling frequency is common
practice [16].

Our technical approach is as follows: First, we parame-
terize the µbot’s dynamics with an approximate model, and
we derive the functional form of the model error. We show
that the domain of the model error function is a subset
of the state space, which we use as the features (inputs)
for a machine learning algorithm. After learning the model
error, we employ least-squares optimization to minimize the

difference between the predicted and actual velocity of the
µbot. Note that we do not minimize the predicted velocity
error directly. Instead, we adjust the control signal sent to
the µbot to compensate for the model error indirectly.

IV. NONLINEAR MISMATCH CONTROLLER

The unicycle model satisfies the property of differential
flatness with the output variable p, that is, we can change the
coordinates of our unicycle dynamics (2) to only consider the
variable p and its derivative ṗ := v (see [26]). Furthermore,
while the frequency f is fixed under Assumption 3, it is
straightforward to relax this assumption for our analysis. In
fact, allowing a variable frequency f only introduces com-
putational complexity while training the machine learning
model and solving the least-squares optimization problem.
The mapping for our rolling dynamics is

α = arctan

(
vy −Dy

vx −Dx

)
,

f =
||v −D||

a0
,

(3)

where D = [Dx Dy] and v = [vx vy]. In reality we
do not know the actual value of a0, nor do we know the
stochastic disturbance D. Thus, we denote our approximate
model parameters using ·̂. In particular, â0 is a constant scalar
that estimates a0 and D̂ is a constant vector that estimates
the disturbance D. With these estimates, it is possible to
convert a desired velocity vd into a control signal αd using
(3), i.e.,

αd = arctan

(
vdy − D̂y

vdx − D̂x

)
,

fd =
||vd − D̂||

â0
.

(4)

This enables us to convert the desired velocity vd, which is
defined on a Cartesian basis, into control actions for the µbot.
However, due to the inherent inaccuracies of our model,
naı̈vely applying the control input αd leads to tracking error.
Substituting the approximate model (4) into the dynamics

(2) yields the actual velocity of the µbot in the form

v =
a0
â0

vd +D − a0
â0

D̂. (5)

Note that the actual velocity contains the nonlinear product
of a0

â0
and D̂. This explains why a model parameter esti-

mation alone is insufficient to achieve a desired trajectory,
as the error in our model parameters is amplified by this
nonlinearity.

To enhance our ability to track the desired trajectory be-
yond parameter estimation, we follow the approach outlined
by [22] and explicitly define a velocity error ve,

ve := v − vd, (6)

which, using (5), we can write in closed form as

ve = vd
(a0
â0

− 1
)
+D − ao

âo
D̂. (7)

Note that (4) enables us to freely convert between vd and
αd, fd. Thus, the right hand side of (7) is a function of αd,
fd, the domain of D, and the domain of D̂. This implies
that, under Assumptions 1–3, we can completely capture the
behavior of the velocity error as some function ve using
machine learning with αd as the only feature. In particular,
we approximate ve using Gaussian Process (GP) regression.
We train the GP online using experimental data, where the
Cartesian axes of ve are each captured by a GP. In particular,
we use (6) to generate training data by applying a known
sequence of control inputs; we discuss this process further
in Section IV-B.

A GP is completely defined by its mean µ(α) and kernel
(or covariance) K(α, α′) functions for two features α, α′.
The prior of the mean is generally zero, while the kernel
describes a statistical distribution over a function space. For
accurate regression, the kernel should be a basis for the
underlying function ve(α). After learning the velocity error,
the GP takes the heading angle α as an input and produces a
Gaussian distribution over each component of ve. The mean
of this distribution predicts the expected value of ve and
the standard deviation predicts the uncertainty in the action.
Compensating for the nonlinearity of ve is the basis for our
nonlinear mismatch controller, which we present next. A
control block diagram of our control approach is shown in
Fig. 3.

A. Optimization-Based Controller

To construct our optimization-based controller, we start by
replacing the desired velocity vd in our error dynamics (6)
with our model. This yields the actual velocity of the µbot
for any given heading angle α in the form:

â0 f

[
cos(α)
sin(α)

]
+ D̂ + ve(α) = v. (8)

Next, we replace the unknown velocity error ve with the
mean prediction from the GP. This assumes that the GP
has sufficiently learned the velocity error function ve, which
yields

â0 f

[
cos(α)
sin(α)

]
+ D̂ + µ(α) = v(α), (9)

where µ is the GP’s estimate for each component of the
velocity error. To minimize the velocity error of our µbot,
we perform a least squares minimization of (9) from the
desired velocity, i.e.,

min
α

||v(α)− vd||2. (10)

Applying Assumptions 1–3 and expanding (10) yields a one-
dimensional least-squares cost function

J(α) =
(
â0f cos(α) + µx(α) + D̂x − vdx

)2
+
(
â0f sin(α) + µy(α) + D̂y − vdy

)2
. (11)

Expanding the cost function and applying the Pythagorean
identity yields the following least-squares optimization prob-
lem

min
α∈[−π,π]

(â0f)
2 + ||µ(α) + D̂ − vd||2

+ 2â0f
(
µ(α) + D̂ − vd

)
·
[
cos(α)
sin(α)

]
, (12)

which is a differentiable scalar optimization problem over a
compact set.

B. Online Learning

We train the GP during an initial learning phase, where
the µbot is given a sequence of control inputs, either from
a human operator or open-loop control sequence. We collect
position and control action data for the µbot at discrete time
steps tk; we denote the position data by P =

{
p(tk)

}
and

action data as X =
{
α(tk)

}
. We calculate the actual velocity

v(tk) by taking a numerical derivative of P and passing
the result through a low-pass filter; this yields the actual
velocity of the µbot at each step, which we store in the set
V = {v(tk)}.

Once the data is collected, we estimate the model parame-
ters and desired velocity as follows. First, we estimate D by
applying a control input of f(t) = α(t) = 0, which yields

ṗ = D. (13)

Taking the expectation of both sides yields the mean distur-
bance

1

|V|
∑

v(tk)∈V

||v(tk)|| = E
[
D
]
= D̂, (14)

where | · | is set cardinality.
Next, we determine â0 using data from an open loop

control sequence; taking the expectation of (2) and squaring
both sides yields

E
[
||v − D̂||

]2
= a20f

2. (15)

Substituting the expectation of v with the experimental data,
re-arranging, and taking the square root of both sides yields
the best statistical estimate for â0:

â0 =
1

|V|
∑

v(tk)∈V

||v(tk)− D̂||
f

. (16)

Reference
Trajectory

Inverted
Model (3)

Nonlinear
Mismatch

Plant
(µbot)

Sensor +
Observer

vd αd α∗ v v(tk)

Fig. 3. A control block diagram showing how our proposed system (yellow box) transforms the desired velocity signal (vd) into a heading angle (α∗)
such that the difference between vd and v is minimized.

Finally, the resulting set of velocity errors is

Y =
{
ve(tk) : ve = v(tk)− vd(tk)

}
, (17)

where vd(tk) is the desired velocity of the µbot at each time
tk. We use (17) in conjunction with our empirical model (3)
to generate the velocity error and control action at each time
step. With this data, we compute a posterior distribution on
the mean and standard deviation of the GP to determine the
expected velocity error and its uncertainty for each control
input.

V. EXPERIMENTAL RESULTS

We validated our learning approach in silico and in situ1;
we present our simulation results in Subsection V-A and
experimental findings in Subsection V-B. In both cases, we
first perform an online learning step, where we apply a
pre-computed control input to generate training data. Then,
to validate our learning approach, we apply a pre-defined
sequence of control actions in open-loop with and without
the Nonlinear Mismatch module (Fig. 3). This yields the
corrected and baseline cases, respectively, which we use to
explicitly quantify the impact of our approach.

We implemented our GP approach using the Scikit-Learn
toolbox (see [27]) for Python3, which provides an API to
easily select a large number of kernels and train the GP.
Scikit-learn also automatically optimizes the kernel hyperpa-
rameters during training, which provided insights for kernel
selection. In particular, some hyperparameters for the rational
quadratic, Matern, and periodic kernels grew arbitrarily small
during training, which implies that these kernels include
extraneous dynamics that do not describe the true behavior
of the rolling µbot’s velocity error. We found that a linear
combination of a radial basis function and white noise in the
form

K(α, α′) = exp
||α− α′||2

2σ
+ η (18)

yielded a kernel that adequately captured the velocity error of
the rolling µbot. In the equation above, σ is a length hyper-
parameter and η is drawn from a normal distribution where
the mean is zero and the variance is another hyperparameter.

1Videos of the experiments and supplemental material are available
online: https://sites.google.com/udel.edu/l4ub

A. In Silico Experiment

We developed a µbot simulator as an OpenAI Gym2

environment in Python3. We implemented two simulation
modes using a ‘model-mismatch’ flag, which disturbs the
model parameters and adds stochastic zero-mean noise to
mimic a physical experiment. Omitting this flag uses the
exact model parameters with no noise to generate the desired
system trajectory. We implemented the learning approach of
Section IV as follows. First, we applied zero input over 100
time steps (3 seconds) with the ‘model-mismatch’ flag to
estimate the mean disturbance using (14). Next, we generated
a sequence of control inputs that swept the entire control
domain α ∈ [−π, π] three times over 1800 time steps (60
seconds) with the ‘model-mismatch’ flag, which produced
our training data. In training, we estimated â0 and updated
the GPs using (16) and (17), respectively. Finally, to validate
our approach, we performed three experiments in silico;
1) we generated the desired trajectory without the ‘model-
mismatch’ flag, 2) we generated the baseline trajectory by
repeating the experiment with the ‘model-mismatch’ flag
enabled, and 3) we updated the reference control inputs using
(12) to generate the corrected trajectory with the ‘model
mismatch’ flag.

Fig. 4. The desired, (blue, dashed), corrected (green), and baseline (orange)
trajectories from 100 different trials of the in silico experiment.

Fig. 4 shows the resulting desired, baseline, and corrected
trajectories overlaid for 100 trials with the same initial state.
While the learning component significantly improves the
velocity tracking, it is unable to completely compensate for
the model mismatch–even in an environment with no noise.

2For more information on the Gym environment see: https://github.com/
openai/gym

https://sites.google.com/udel.edu/l4ub
https://github.com/openai/gym
https://github.com/openai/gym

The velocity error estimate for one trial is presented in Figs.
5 and 6, which demonstrates that the GP has captured a
reasonably good estimate of the velocity error at each time
step. This implies that the nonlinear mismatch approach is
unable to achieve perfect tracking for the system, which is
likely related to the reachability of the system’s dynamics
(9). This stems from correcting the x and y components of
the velocity error while only controlling α.

Fig. 5. The GP’s prediction of the x-axis velocity errors at each time
step; the orange band corresponds to one standard deviation (65%), and the
blue band corresponds to two standard deviations (95%) of uncertainty. The
black line is the actual velocity error.

Fig. 6. The GP’s prediction of the y-axis velocity errors at each time step;
orange band corresponds to one standard deviation (65%), and the blue band
corresponds to two standard deviations (95%) of uncertainty. The black line
is the actual velocity error.

B. In Situ Experiment

We repeated the same procedure from Section V-A using
24um µbots over 300 time steps (10 seconds) at the exper-
imental facility at the University of Delaware as described
in Section II. The resulting desired, baseline, and corrected
trajectories are presented in Fig. 7, and the drift error for the
baseline and corrected cases is shown in Fig. 8. Photos of
an experiment with the trajectories overlaid are presented in
Fig. 9.

Fig. 7 shows significant improvement in the µbot’s ability
to track the open-loop trajectory. We translated the normal-
ized and corrected position data to the origin to compare it
with the desired traejctory. As a result, the clear improvement
in the µbot’s position trajectory tracking comes from a

Fig. 7. A comparison of the baseline (orange), corrected (green), and
desired (blue, dashed) trajectories from the in situ experiment.

Fig. 8. Improvement in the cumulative drift of the µbot between the
baseline and corrected cases for the in situ experiment.

combination of our improved tracking controller and random
disturbances. In other words, integrating the µbot’s velocity
using our corrected control signal yields less error than
the uncorrected case. This is shown explicitly in Fig. 8,
which depicts the µbot’s drift throughout the experiment.
To calculate the µbot’s drift, we subtracted the desired and
actual velocity along each axis to calculate the velocity error.
Next, we performed a cumulative trapezoidal integration on
the absolute value of the velocity error, which quantified the
worst-case scenario for how far the µbot could drift from
the reference trajectory. As a result, drift was reduced by at
least 6 pixels (3.7 microns) along each axis for the majority
of the experiment.

The median velocity error along each axis is presented in
Table I, along with the error in the µbot’s final position for
each case. These results show that despite the poor tracking
in the final 3 seconds, our learning controller significantly re-
duces the drift of the µbot by matching the desired open-loop
control policy and brings the µbot closer to the desired final
position. Due to the nature of the experimental environment,
it is not uncommon for unexpected disturbances, such as
stiction, debris, and nearby magnetic particles, to disturb the
µbot’s trajectory in a way that our tracking controller cannot
compensate for. These exogenous factors are the source of
error in the last 3 seconds of the corrected experiment.

Fig. 9. Snapshots of a different set of baseline (top) and corrected (bottom) experiments, taken approximately 8 seconds apart and showing the µbot
with the position history overlaid.

Baseline Corrected Improvement

Final Position Error 12.56 microns 7.14 microns 43 %
Median vx Error 1.19 microns/s 0.72 microns/s 40 %
Median vy Error 0.80 microns/s 0.61 microns/s 23 %

TABLE I
ERRORS FOR THE in situ µBOT EXPERIMENT; THE MEDIAN USES THE

ABSOLUTE VALUE OF THE ERROR.

VI. CONCLUSION

We developed a nonlinear mismatch controller to improve
the performance of a tracking controller in 2D. We motivated
the use of nonlinear mismatch over a parameter estimation
scheme, and we proposed a least-squares based optimization
problem to minimize the tracking error. Finally, we demon-
strated in simulation and experiments that our approach
significantly improves the tracking performance of rolling
µbots.

Future work includes relaxing Assumption 3 and including
f as parameter in the model mismatch. Deriving guarantees
on the resulting velocity error using fixed-point analysis is
another interesting research direction; employing the GP’s
uncertainty estimate as a measure of robustness in a high-
level planner may also yield useful insights. Embedding our
low-level controller inside of an MPC path planner to avoid
undesired collisions with cells and counteract Brownian
diffusion in-situ is another critical next step for this work.
Finally, expanding our approach to control multiple µbots
simultaneously would advance the state of the art, and bring
us one step closer to solving fundamental challenges in
emerging medical applications.

REFERENCES

[1] T. Honda, K. Arai, and K. Ishiyama, “Micro swimming mechanisms
propelled by external magnetic fields,” IEEE Transactions on Magnet-

ics, vol. 32, no. 5, pp. 5085–5087, 1996.
[2] M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller,

“Biomedical applications of untethered mobile milli/microrobots,”
Proceedings of the IEEE, vol. 103, no. 2, pp. 205–224, 2015.

[3] J. Troccaz and R. Bogue, “The development of medical microrobots: a
review of progress,” Industrial Robot: An International Journal, 2008.

[4] C. Bárcena, A. K. Sra, and J. Gao, “Applications of magnetic
nanoparticles in biomedicine,” in Nanoscale Magnetic Materials and
Applications, 2009.

[5] S. Guo and Q. Pan, “Mechanism and control of a novel type
microrobot for biomedical application,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation, pp. 187–192,
2007.

[6] M. S. Sakar, E. B. Steager, A. Cowley, V. Kumar, and G. J. Pappas,
“Wireless manipulation of single cells using magnetic microtrans-
porters,” in 2011 IEEE International Conference on Robotics and
Automation, pp. 2668–2673, 2011.

[7] E. W. H. Jager, O. Inganäs, and I. S. Lundström, “Microrobots for
micrometer-size objects in aqueous media: potential tools for single-
cell manipulation,” vol. 288, no. 5475, pp. 2335–2338, 2000.

[8] S. Kim, F. Qiu, S. Kim, A. Ghanbari, C. Moon, L. Zhang, B. J. Nelson,
and H. Choi, “Fabrication and characterization of magnetic micro-
robots for three-dimensional cell culture and targeted transportation,”
Advanced Materials, vol. 25, no. 41, pp. 5863–5868, 2013.

[9] E. B. Steager, M. Selman Sakar, C. Magee, M. Kennedy, A. Cowley,
and V. Kumar, “Automated biomanipulation of single cells using
magnetic microrobots,” vol. 32, no. 3, pp. 346–359, 2013.

[10] H. Kim and M. J. Kim, “Electric field control of bacteria-powered
microrobots using a static obstacle avoidance algorithm,” IEEE Trans-
actions on Robotics, vol. 32, no. 1, pp. 125–137, 2015.

[11] D. Palima and J. Glückstad, “Gearing up for optical microrobotics:
micromanipulation and actuation of synthetic microstructures by op-
tical forces,” Laser & Photonics Reviews, vol. 7, no. 4, pp. 478–494,
2013.

[12] S. Chowdhury, W. Jing, and D. J. Cappelleri, “Towards independent
control of multiple magnetic mobile microrobots,” Micromachines,
vol. 7, no. 1, p. 3, 2016.

[13] E. Y. Erdem, Y.-M. Chen, M. Mohebbi, J. W. Suh, G. T. Kovacs, R. B.
Darling, and K. F. Böhringer, “Thermally actuated omnidirectional
walking microrobot,” Journal of Microelectromechanical Systems,
vol. 19, no. 3, pp. 433–442, 2010.

[14] B. Behkam and M. Sitti, “Bacteria integrated swimming microrobots,”
in Lecture Notes in Computer Science, vol. 4850 LNAI, pp. 154–163,
2007.

[15] R. Pieters, H.-W. Tung, S. Charreyron, D. F. Sargent, and B. J.
Nelson, “Rodbot: A rolling microrobot for micromanipulation,” in

2015 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4042–4047, 2015.

[16] D. Rivas, S. Mallick, M. Sokolich, and S. Das, “Cellular manipu-
lation using rolling microrobots,” in 2022 International Conference
on Manipulation, Automation and Robotics at Small Scales (MARSS),
pp. 1–6, 2022.

[17] S. Das, E. B. Steager, M. A. Hsieh, K. J. Stebe, and V. Kumar, “Ex-
periments and open-loop control of multiple catalytic microrobots,”
Journal of Micro-Bio Robotics, vol. 14, no. 1-2, pp. 25–34, 2018.

[18] B. M. Vinagre, I. Tejado, and J. E. Traver, “There’s plenty of fractional
at the bottom, i: Brownian motors and swimming microrobots,”
Fractional Calculus and Applied Analysis, vol. 19, no. 5, p. 1282,
2016.

[19] T. Xu, J. Yu, X. Yan, H. Choi, and L. Zhang, “Magnetic actuation
based motion control for microrobots: An overview,” Micromachines,
vol. 6, no. 9, pp. 1346–1364, 2015.

[20] X. Tang, Y. Li, X. Liu, D. Liu, Z. Chen, and T. Arai, “Vision-based
automated control of magnetic microrobots,” Micromachines, vol. 13,
no. 2, p. 337, 2022.

[21] M. R. Behrens and W. C. Ruder, “Smart magnetic microrobots learn to
swim with deep reinforcement learning,” Advanced Intelligent Systems,
vol. 4, no. 10, p. 2200023, 2022.

[22] M. Greeff and A. P. Schoellig, “Exploiting Differential Flatness for
Robust Learning-Based Tracking Control using Gaussian Processes,”
IEEE Control System Letters, vol. 5, no. 4, pp. 1121–1126, 2021.

[23] L. Yang, Y. Zhang, Q. Wang, K.-F. Chan, and L. Zhang, “Automated
control of magnetic spore-based microrobot using fluorescence imag-
ing for targeted delivery with cellular resolution,” IEEE Transactions
on Automation Science and Engineering, vol. 17, no. 1, pp. 490–501,
2020.

[24] D. Chang, W. Wu, C. R. Edwards, and F. Zhang, “Motion tomography:
Mapping flow fields using autonomous underwater vehicles,” The
International Journal of Robotics Research, vol. 36, no. 3, pp. 320–
336, 2017.

[25] L. E. Beaver, B. Wu, S. Das, and A. A. Malikopoulos, “A first-order
approach to model simultaneous control of multiple microrobots,”
in 2022 International Conference on Manipulation, Automation and
Robotics at Small Scales (MARSS), pp. 1–7, 2022.

[26] H. Sira-Ramirez and S. K. Agrawal, Differentially Flat Systems.
1st ed., 2018.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

	Introduction
	Experimental Setup
	Problem Formulation and Approach
	Nonlinear Mismatch Controller
	Optimization-Based Controller
	Online Learning

	Experimental Results
	In Silico Experiment
	In Situ Experiment

	Conclusion
	References

