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Learning Neural Traffic Rules
Xuan Zhang, Xifeng Gao, Kui Wu, Zherong Pan†

Abstract—Extensive research has been devoted to the field
of multi-agent navigation. Recently, there has been remarkable
progress attributed to the emergence of learning-based techniques
with substantially elevated intelligence and realism. Nonetheless,
prevailing learned models face limitations in terms of scalability
and effectiveness, primarily due to their agent-centric nature,
i.e., the learned neural policy is individually deployed on each
agent. Inspired by the efficiency observed in real-world traffic
networks, we present an environment-centric navigation policy.
Our method learns a set of traffic rules to coordinate a vast
group of unintelligent agents that possess only basic collision-
avoidance capabilities. Our method segments the environment
into distinct blocks and parameterizes the traffic rule using
a Graph Recurrent Neural Network (GRNN) over the block
network. Each GRNN node is trained to modulate the velocities of
agents as they traverse through. Using either Imitation Learning
(IL) or Reinforcement Learning (RL) schemes, we demonstrate
the efficacy of our neural traffic rules in resolving agent con-
gestion, closely resembling real-world traffic regulations. Our
method handles up to 240 agents at real-time and generalizes
across diverse agent and environment configurations.

Index Terms—Traffic Rule, Multi-Agent Navigation, Neural
Navigation Policy

I. INTRODUCTION

Multi-agent navigation forms the cornerstone of numerous
pivotal robotic applications, including domains such as auto-
mated warehousing [1], autonomous driving [2], and realiza-
tion of smart cities [3]. As a consequence, the refinement of
navigation algorithms has garnered substantial research focus
throughout the past decades. An ideal navigation algorithm
should satisfy three desiderata. Scalability: Capable of control-
ling an arbitrarily large crowd of agents; Generality: Capable
of handling arbitrary environment and agent configurations;
Efficacy: A mild growth of computational and deployment cost
with crowd size. Unfortunately, to this day, an ideal navigation
algorithm that satisfies all three attributes continues to be
elusive.

The key to a successful navigation algorithm is the strategy
to mitigate agent congestion. Early research endeavors tackled
congestion through either back-tracking search [4, 5, 6] or lo-
calized collision-avoidance [7, 8]. The search-based algorithms
exhibit notable generality; some even provide assurances of
completeness or optimality. However, they have limitations
with scalability and efficacy. Conversely, the local navigation
policies exhibit ideal scalability, yet their generality is curtailed
due to their myopic nature, oftentimes leading to agents stuck
in congested configurations. Recent strides in this domain have
been achieved through learning-based navigation policies [9,
10, 11]. These innovative algorithms parameterize navigation
policies as deep networks, subsequently fine-tuned through
either IL or RL to address complex, long-term decision-
making challenges. While learning-based policies empirically
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surpass myopic local navigation methods, they necessitate that
each agent possesses the computational resources to execute
intricate neural network inferences. This assumption results
in a substantial deployment cost. In reality, large-scale robot
swarm systems [12, 13] are often equipped with limited
computational capabilities that cannot feasibly accommodate
the demands of neural network inferences.

Examining prevailing learning-based policies [9, 14, 10],
we find a vast majority of them being agent-centric, i.e.,
their deep neural policies are independently deployed on
each individual agent, which inevitably requires non-trivial
computation and communication capabilities. In contrast, real-
world traffic networks exhibit an environment-centric approach
rather than an agent-centric one. At the heart of these networks
resides a collection of human-designed traffic rules driven
solely by the specific characteristics of the environment, such
as highways, crossroads, and T-junctions. The efficacy of
these rules is evidenced in their ability to manage substantial
crowds of pedestrians and vehicles, effortlessly mitigating
congestion by adhering to predefined traffic regulations. In
essence, this approach sidesteps the need for intricate agent-
specific decision-making processes.

Main Results: Inspired by the elegance of real-world
traffic networks, we introduce a learnable environment-centric
navigation policy, assuming that our agents are endowed solely
with rudimentary computational capacities, confining their in-
teractions to local navigations. Our neural policy encapsulates
a set of traffic rules based on the environments, which are fol-
lowed by our agents. Specifically, our method decomposes the
environment into discrete blocks, and we represent our neural
policy as a GRNN built on the block network. Each GRNN
node is trained to manipulate the velocities of agents travers-
ing the corresponding block, facilitating the rule-following
behavior. Our GRNN is trained to mitigate agent congestion
via two methodologies: IL, guided by a groundtruth traffic
rule, and RL, guided by a congestion-resolving reward signal.
After the training phase, our neural policy can be deployed
on unseen environment configurations to coordinate up to 240
intelligent agents at real-time in a simulated environment. Our
contributions are summarized below:
● A decentralized agent navigation paradigm utilizing

learned environment-encoded traffic rules.
● Environment-centric navigation policies parameterization

using GRNN.
● Reward design and training algorithms for environment-

centric policies in both IL and RL setting.

II. RELATED WORK

We review related works on multi-agent navigation,
learning-based navigation methods, and traffic-rule modeling.

Multi-Agent Navigation: Over the course of time, re-
searchers have branched into two avenues, yielding centralized
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and decentralized navigation algorithms. Centralized algo-
rithms operate under the premise that a central computational
node coordinates the movements of all agents. This node
employs various search-based algorithms to avert congestion
over a long horizon. One noteworthy example of this paradigm
is the conflict-based search algorithm [6]. It is a variant of the
branch-and-bound approach, designed to resolve motion con-
flicts among agents iteratively converging to the optimal nav-
igation plan. While such methods theoretically accommodate
any environment or agent configuration, their practical compu-
tational demands surge with the number of agents, as analyzed
in [5]. Consequently, real-world centralized algorithms either
compromise optimality for efficiency [15] or lean on additional
assumptions [16]. Despite their comprehensive applicability,
centralized algorithms exert a substantial communication cost,
necessitating synchronization among all agents in each step.

Considering their limitations, research endeavors have
veered towards decentralized algorithms. In this context, each
agent autonomously plans and executes its motion asyn-
chronously. Prominent decentralized techniques [7, 8] only
mandate agents to engage in rudimentary collision avoid-
ance with local neighbors, devoid of extensive long-horizon
decision-making. Astonishingly, these straightforward algo-
rithms capably resolve congestion for sizable agent swarms in
environments replete with expansive open spaces. Nonetheless,
in intricate settings with narrow passages, agents can become
ensnared. Such deadlock configurations can be alleviated
by introducing heuristic congestion-resolving behaviors [17],
such as grouping [18], yielding [19], and local coordina-
tion [20]. Regrettably, while these heuristic approaches ame-
liorate specific types of deadlock scenarios, none possess the
potential to address all scenarios comprehensively. In contrast,
our proposed method presents a cohesive strategy for tackling
congestion issues while preserving the efficiency and scala-
bility inherent in decentralized algorithms. Our neural policy
embeds environment-centric traffic regulations and operates
under the assumption of minimal computational capabilities
on the agents’ part.

Learning-based Navigation Methods: The incorporation
of data-driven techniques has proven highly effective in en-
hancing the performance of navigation algorithms. In the realm
of centralized algorithms, Huang et al. [21] introduced a
method to learn a conflict selection policy, thereby expediting
the conflict-based search process. Another significant advance-
ment comes from the work of Han and Yu [22], who harnessed
a database of small-scale navigation plans to accelerate the
search for larger-scale counterparts. Most other data-driven
approaches are designed to work with decentralized algo-
rithms. The challenge of addressing deadlock concerns in local
navigation [7, 8] prompted Fan et al. [9] to propose a neural
navigation policy, trained through RL, for mitigating long
horizon congestion. However, their neural policy’s reliance
solely on local environmental information precludes it from
surpassing the performance of conventional local navigation
algorithms.

Enhancements to neural policies have subsequently
emerged, including the use of global environment maps [23]
and the facilitation of inter-agent communication [14, 24].

Notably, these approaches, driven by an agent-centric philos-
ophy, mandate each agent to possess the non-trivial capability
of network inference. In this manner, the more sophisticated
network architectures of [23, 14, 24] inevitably introduce a
heavier computational overhead.

On another front, we are aware of two recent endeavors [10,
25] that bear resemblance to our partially environment-centric
approach. Ji et al. [10] introduced an augmented GNN policy,
introducing environmental router nodes in addition to agent
nodes. However, agents remain modeled as GNN nodes,
necessitating agent-wise network inferences. On the other
hand, Ye et al. [25] proposed a kernel-based neural policy
wherein a small set of kernels dictates all agents’ velocities.
Nevertheless, this approach mandates agents to operate in
a centralized manner, incurring substantial communication
costs anew. In contrast, our method adheres solely to an
environment-centric framework, demanding only rudimentary
computational capabilities from the agents. Moreover, our
method operates in a fully decentralized manner, eliminating
the need for agent coordination and requiring them solely
to consult the environment-centric GRNN policy for velocity
modulation.

Traffic-Rule Modeling: The remarkable versatility, scala-
bility, and efficiency exhibited by real-world traffic networks
have spurred a substantial volume of research aimed at analyz-
ing, emulating, and generalizing these networks to novel con-
texts. One avenue of inquiry revolves around data-driven traffic
simulations and predictions [26, 27, 28]. Guided by real-world
agent trajectory datasets, these methods train a probabilistic
model to forecast agents’ forthcoming trajectories. However,
these probabilistic models remain oblivious to the inherent
physical dynamics governing agents, often failing to ensure
collision-free interactions among them. A complementary line
of work leverages RL to enhance real-world traffic networks
through traffic light control strategies [29].

Amidst these environment-centric approaches, traffic rules
play an important role in agent-centric autonomous driving
algorithms to ensure driving safety. For instance, Greenhalgh
and Mirmehdi [30] introduced a model for text-based traf-
fic sign recognition, while Franklin et al. [31] devised a
framework to detect violations of traffic signals. Additionally,
Lee et al. [32] formulated a method for predicting immi-
nent freeway collisions. When compared with our method,
it becomes evident that all the aforementioned techniques
are heavily engineered toward the specific set of real-world
traffic rules. In contrast, we advocate the utilization of a
neural policy to encode an arbitrary set of unknown traffic
rules, which can be learned to resolve congestion for arbitrary
environmental and agent contexts. This dynamic approach not
only engenders adaptability, but also accommodates scenarios
where conventional, pre-defined rules may not suffice.

III. PROBLEM STATEMENT

In this section, we present the formulation of the multi-
agent navigation problem, addressing a scenario involving a
swarm of agents operating in a 2D environment and we take
the following standard assumption:
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Fig. 1: Two distinct groups of agents (red and blue circles) are engaged in navigation, each with its designated goal positions
(red or blue hollow circles). Our environment-centric technique (a) divides the environment into discrete blocks, upon which
a GRNN (b) is deployed based on the block network. The RGNN inference process is executed just once, preceding the
commencement of the navigation task, where the recurrent units update the internal state of each block and encode the
pertinent traffic rules (c). During each timestep, an agent calculates the shortest path (d) to yield a tentative velocity (e).
The agent then indexes the block it resides within, and proceeds to query the block’s rule-following unit (f), resulting in a
congestion-resolving modulated velocity (g).

Assumption 3.1: All agents are circular-shaped with radius
r. Agents are omnidirectional and capable of instantaneous
change of moving direction. Agents move in a rectangular
static environment with arbitrary interior obstacles, also of
rectangular shapes.
The position of the ith agent at the t-th time step is denoted
as xt

i ∈ R2. The principal objective of each agent is to traverse
from its initial position x0

i to a predefined goal location gi,
while ensuring a trajectory devoid of collisions. Our approach
is built off of the local navigation algorithms [7, 8], which
offer a guarantee of collision-free motion. These algorithms
take as input the desired velocity vti for each agent at each
time step, and then output the positions of the agents in the
subsequent time step by approximating the solution to the
following optimization problem:

argmin
xt+1
i

∑
i

∥xt+1
i − xt

i − v
t
i∥

2

s.t. ∥xt+γ
i − xt+γ

j ∥ ≥ 2r ∀i ≠ j ∧ γ ∈ [0,1],
(1)

where xt+γ
i denotes the interpolated position of an agent at

a fractional time instance t + γ. This optimization moves
agents via the desired velocity as much as possible, while the
associated constraints ensure a minimum separation distance
of 2r is maintained at every time instance.

Notably, local navigation algorithms are limited to ensuring
collision avoidance, leaving the high-level behavior of the
agents to be specified by the desired velocities vti . The primary
objective of our work lies in developing a neural navigation
policy to predict vti for all agents to facilitate navigation
tasks while minimizing instances of congestion. In addition
to the settings outlined above, our study incorporates two
key assumptions, considering the constraints posed by existing
swarm robot hardware [12, 13]. First, we operate under

the assumption that agents possess limited computational re-
sources. Specifically, our requirement is solely for the agents to
compute a local collision-free velocity, and no other substantial
computations are permissible. Second, we consider the agents
to possess restricted communication capabilities. In this con-
text, agents are permitted to independently and asynchronously
gather information from proximate computational nodes, while
coordination of motion between any two agents is not allowed.

IV. NEURAL TRAFFIC RULE MODEL

Our approach is inspired by the inherent resemblance be-
tween real-world traffic networks and the specific challenge
outlined in Section III. Real-world agents execute merely
basic localized collision resolutions, steering clear of close-by
pedestrians or the vehicle immediately ahead. Additionally, the
entire set of agents navigates with minimal coordination. Our
neural navigation policy is designed to mimic this paradigm.
We optimize a parameterized set of traffic rules (Section IV-A)
that are consistently followed by all agents in a decentralized
manner (Section IV-B).

A. Neural Traffic Rule Parameterization

The comprehensive framework of our methodology is il-
lustrated in Figure 1. We begin by recognizing that traffic
rules are dictated solely by the local characteristics of the
environment. For instance, the rules governing a crossroad
remain unaffected by the type of road situated a block away.
We incorporate this principle by segmenting the free space into
square blocks. This arrangement constructs a block network,
where each block maintains connections with its adjacent
neighbors. To facilitate bidirectional traffic within each pas-
sage, we ensure that our block network has a minimum width
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of 2 blocks (Figure 1b). Furthermore, a noteworthy feature is
that traffic rules exhibit independence from individual agents.
This attribute empowers a single set of rules to address
arbitrary agent navigation scenarios without solving intricate
decision-making problems. In view of this, we parameterize
these agent-agnostic traffic rules via a GRNN as introduced
by Ruiz et al. [33].

The core of our GRNN resides in the hidden-state represen-
tation, denoted as hij , for the ijth block. This representation
is continually updated through an Edge Convolution (EConv)
mechanism, iteratively realized as follows (Figure 1f):

hk+1
ij = H(hk

ij ,⊕kl∈N ijEConv(xij − xkl, h
k
kl)). (2)

In this context, xij denotes the spatial coordinates of the center
of the ijth block, and Nij represents its set of neighboring
blocks. The function EConv(●) is parameterized as a Multi-
Layer Perceptron (MLP) that encodes the information from
each neighboring block. The cumulative information propaga-
tion is subsequently summarized via the ⊕ operator. We have
experimented with ⊕ being either concatenation or summation
and the results are satisfactory in both cases. This aggregated
information is then channeled through the hidden state update
function H(●), itself parameterized by another MLP. Starting
with h0

ij = 0, the GRNN progressively refines all hk
ij until

a fixed point hk
ij → h⋆ij is attained. The converged states

implicitly encapsulate the essential traffic rules. In practical
application, we approximate the convergence by performing
K updates.

Since our GRNN is completely independent of agents, a
single inference step is adequate to derive hK

ij prior to the
commencement of navigation tasks, ensuring runtime effi-
ciency. Notably, various design approaches for our traffic rule
network exist, and interested readers can refer to [34] for an
overview of design insights. The main objective of our GRNN
framework is to learn traffic rules from one environment
and generalize them to different environments with distinct
topologies in an agent-agnostic manner.

B. Rule-Following Navigation Policy

With a well-defined set of traffic rules, agents can follow
them to achieve navigation while avoiding congestion. The
real-world agent navigation unfolds in two distinct stages. In
the initial stage, such as a scenario involving a vehicle driver, a
routing algorithm is engaged—examples include popular tools
like Google Maps—to chart a course toward the desired des-
tination. However, these routing algorithms primarily rely on
a coarse estimate of travel time and do not deeply incorporate
knowledge of traffic rules into their decision-making process.
Subsequently, when the driver embarks on the selected route,
the traffic rules take center stage. The driver’s journey is
guided and informed by these regulations, ensuring smooth
and unimpeded passage along the chosen route.

Our approach emulates this process through a two-stage
navigation policy, denoted as vti = π(x

t
i, gi). This policy takes

the agent’s present location xt
i and its designated goal position

gi as inputs and subsequently generates the rule-following,
goal-directed velocity vti .

During the first stage, our policy capitalizes on a visibility
graph algorithm to ascertain the shortest trajectory connecting
xt
i and gi (Figure 1d). The visibility graph precomputes all

pairs of vertices that are visible to each other without being
blocked by other parts of the environment. The computation of
such graph has been well-studied and we use the efficient al-
gorithm proposed in [35]. Subsequent to this precomputation,
a single visibility query is conducted per agent, establishing
connections between xt

i and all visible graph nodes. A final
shortest path query on the graph results in the sought-after
trajectory. We denote this procedure as the shortest path
function v̄ti = SP(xt

i, gi), giving the tentative velocity that
propels the agent along the optimal path.

Following the initial stage, we utilize our GRNN to mod-
ulate v̄ti , transforming it into the rule-compliant velocity vti .
Given that traffic rules are inherently localized, we find it
sufficient to query the nearest block within which our agent
resides, as is indexed by its center position:

I(xt
i) = ⌊x

t
i⌋ + 0.5. (3)

Subsequently, we enact the velocity modulation process via
another MLP, define as the Rule-Following Unit (RFU):

vti = RFU (hK
I(xt

i), x
t
i − I(xt

i), v̄
t
i) , (4)

This MLP incorporates three crucial parameters: the hidden
state hK

I(xt
i) of the underlying block, encoding the local traffic

rule; the relative position between the agent and the block’s
center xt

i − I(xt
i); and the tentative velocity v̄ti . As an optional

measure to ensure training stability and maintain runtime
performance, we have the option to constrain the velocities
v̄ti and vti using the maximum agent velocity vmax via the
clamping function: v = v/max{1, (∥v∥ + ϵ)/vmax} where ϵ is
a small regularization constant.

In real-world scenarios, agents are tasked with route se-
lection, e.g., using Google Maps, followed by adherence to
traffic rules. This paradigm underscores that the function π(●)
is executed on the agent part, with the environment only
storing the hK

ij . However, in the context of a robotic system, a
more nuanced distribution of responsibilities becomes feasible.
For agents with limited computational capabilities, the agent
only needs to store xt

i and gi, and queries the environmental
nodes for the desired vti . For agents endowed with slightly
more computational resources, agents can independently de-
termine routes by running the SP(●) function and command
the environmental nodes to execute the RFU(●) function.
Significantly, regardless of the deployed setting, these agents
operate in a fully decentralized manner, eliminating the need
for inter-agent communication. Essentially, each agent is only
required to identify the block and query the RFU.

C. Policy Optimization

Harnessing the intrinsic locality of traffic rules, our policy
is defined by three compact networks: H, EConv, and RFU.
Nonetheless, optimizing this policy presents a formidable
challenge due to the inherently non-smooth and stochastic
nature of the navigation process. Due to the involvement of
the non-differentiable block indexing operator (Equation 3),
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conventional model-based differentiable policy optimization
techniques such as [25] cannot be applied. Further, we consider
intricate scenarios where agents can enter or exit the environ-
ment at arbitrary time points. Therefore, the collective state
of agents undergoes dimension changes, deviating from the
premises underpinning standard RL algorithms [36]. Finally,
agents can undertake detours to follow traffic rules and avoid
local collisions, making it difficult to assess task accomplish-
ment and gauge the extent of congestion. These challenges are
well-recognized in the realm of RL in the context of sparse
rewards [37].

To confront these issues, we introduce two training ap-
proaches. When groundtruth traffic rules, denoted as π⋆,
are known to the user, we adopt the IL paradigm [38] to
optimize our policy by emulating the expert’s behavior. In
this vein, we assemble a dataset of simulation scenarios,
collectively denoted as S = Si. Each scenario, Si, takes
the form of a tuple: Si =< F,S(●),D(●) >. Here, F rep-
resents the environment’s freespace geometry. The function
{xt

i, gi} = S(xt
1,2,⋯) generates new agents to enter the envi-

ronment with respective goal positions, based on the current
agent configuration. Similarly, {xt

i} = D(xt
1,2,⋯) determines

which subset of agents have reached their goals and should
exit the environment. During each iteration of IL training,
we simulate navigations for a randomly selected scenario,
Si ∈ S over a span of T timesteps. This simulation process
accumulates a collection of agent transition tuples to form the
dataset D = {< xt

i, gi, π(x
t
i, gi), π

⋆(xt
i, gi) >}. IL proceeds by

minimizing the following expert discrepancy:

LIL(Si, θ) =
1

∣D∣
∑

<xt
i,gi>∈D

∣π(xt
i, gi) − π

⋆
(xt

i, gi)∣
2. (5)

Here, xt
i and gi remain fixed variables, so the objective is

differentiable under appropriate parameterization.

When an expert rule is not available, we train our policy
using evolutionary RL [39]. Unlike conventional RL, this
methodology bypasses the use of state-dependent rewards.
Instead, it operates based on the assumption of a scenario-
dependent sparse reward, denoted as R(Si, θ), where θ corre-
sponds to our learnable parameters, and aims to maximize the
expected reward:

LRL(Si, θ) = Eϵ∈N(0,I)[R(Si, θ + ϵ)], (6)

which essentially smoothens the reward signal. This technique
iteratively updates θ using a stochastic gradient estimator of
the following form:

∇θLRL(Si, θ) = Eϵ∈N(0,I)[R(Si, θ + ϵ)ϵ]/σ

≈
1

nσ

n

∑
k=1

R(Si, θ + ϵk)ϵk,
(7)

where σ denotes the estimated standard deviation and the
estimator follows from log-likelihood technique and random
sampling [40]. To enhance performance, we adopt fitness
shaping as detailed in [40] and use the following alternative

approximation:

∇θLRL(Si, θ) ≈
1

σ

n

∑
k=1

ukϵk,

uk ≜
max (0, log (n

2
+ 1) − log(k))

∑
n
j=1max (0, log (n

2
+ 1) − log(j))

−
1

n
,

(8)

where {R(Si, θ + ϵk)}
n
k=1 is the descending ordered sequence

derived from {R(Si, θ+ϵk)}
n
k=1. The fitness shaping is known

to improve the convergence as recommended in [39]. Our
overall algorithm follows a sequential routine, iteratively sam-
pling of a batch of scenarios, executing simulations to assess
R(Si, θ), and forming the gradient estimator to update θ.

The efficacy of the optimized policy hinges significantly on
the reward signal R(Si, θ). We discern that a well-constructed
set of traffic rules should universally ensure freedom from
congestion. That is, an agent can traverse from any starting
point to any goal position without encountering congestion.
Inspired by this insight, we tailor our reward to reflect the
worst-case fraction of travel across all agents. In essence, we
begin by identifying the set of agents that emerge during the
simulation of Si, denoted as A(Si) = < xi, gi >. For each
of these agents, we gauge their fraction of travel through
the metric: F(xi, gi) = 1 − SD(xT

i , gi)/SD(x0
i , gi), where

SD(●) signifies the shortest-distance function computed using
the visibility graph, analogous to SP(●). Subsequently, we
approximate the worst F(●) over all agents, employing a soft-
min function:

R(Si, θ) =
∑<xi,gi>∈A(Si) F(xi, gi)e

−αF(xi,gi)

∑<xi,gi>∈A(Si) e−αF(xi,gi) , (9)

where α is a softness-controlling parameter. To ensure training
stability, we further incorporate curriculum learning that inter-
leaves the increase of α with the update of θ. The complete
workflow of our evolutionary RL is outlined in Algorithm 1.

Algorithm 1 Evolutionary RL

Input: A set of scenarios S , initial θ,α, parameter B,η
Output: The universally congestion-free π(●)

1: while θ not converged do
2: D ← ∅, θ0 ← θ, sample Si ∈ S ▷ Batch size = 1
3: for i = 1,⋯,B do
4: ϵ ∈ N(0, I), θ ← θ0 + ϵ, {x0

i , gi} ← ∅
5: ▷ Simulate scenario
6: for t = 0,⋯, T − 1 do
7: Emit {xt

i, gi} ← {x
t
i, gi} ∪ S(xt

1,2,⋯)
8: Delete {xt

i, gi} ← {x
t
i, gi} −D(xt

1,2,⋯)
9: ▷ Local navigation algorithm (LNavi) [7, 8]

10: Simulate {xt+1
i , gi} ← LNavi({xt

i, gi})

11: Collect A(Si) and D ← D ∪ {< R(Si, θ), ϵ >}

12: Evaluate ∇θLRL(Si, θ) using D
13: Update θ ← θ0 + η∇θLRL
14: Optionally increase α

15: Return θ and π(●)
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V. EVALUATION

Our method is realized through a robust implementation
using C++ and PyTorch. We employ C++ to implement the
implicit crowd algorithm [8], serving as our foundational local
navigation framework. Our simulations run in parallel across
multiple scenarios. For uniformity and consistency across all
our experiments, we adopt a standardized network architecture.
Our policy is parameterized through the integration of three
compact MLPs. The function EConv(●) is parameterized as:
FC32→ReLU→FC32→ReLU→FC32. The function H(●) is
parameterized as: FC32→ReLU→FC32→ReLU and we set
∣hij ∣ = 32. Finally, the function RFU(●) is parameterized
as: FC32→ReLU→FC32→ReLU→FC16→ReLU→FC2. For IL
training, we set T = 500 during each round of IL and run at
least 1000 iterations of Adam to optimize LIL with a learning
rate of 10−4. For RL training, we set T = 500, σ = 0.02,
B = 10, the initial α = 0, which is then reduced by 0.01 every
2000 iterations. Note that we set η = 2 × 10−4 for the first
5000 iterations and η = 2 × 10−5 for the rest. All experiments
are performed on a single desktop machine with an AMD
EPYC 7K62 CPU and we perform all computations on CPU,
on which an IL training takes 48 hours and an RL training
takes one week.

A. Scenario Dataset

Our method requires two datasets: a training scenario
dataset denoted as S and a testing scenario dataset referred
to as S ′, with S ′ specifically comprising scenarios that have
not been encountered during training. We set ∣S∣ to be 85
and 120 for the training dataset of RL and IL, respectively;
We set ∣S ′∣ = 30 for the testing dataset of both IL and RL. To
enable dynamic navigation within each scenario Si, we further
manually create a collection of starting and goal positions.
During each time step, our seeding function S(●) continu-
ally generates new agents, originating from these predefined
starting positions as long as the newly generated agents do
not collide with any existing ones. In addition, we set the
maximum number of agents for each scenario to be 40 in the
experiments. Conversely, our deleting function D(●) removes
agents that have successfully reached the same block as their
respective goal positions reside.

B. Performance

In our evaluation, we conduct a comparative analysis of
our method against a baseline approach that relies solely on
the shortest path without any rule-following modulation. This
baseline policy, denoted as πb, is achieved by setting vti =
v̄ti . We gauge the performance of these policies using two
fundamental metrics: the average fraction of travel R0 and the
worst fraction of travel R∞ defined as follows:

R0 =
1

∣S ′∣
∑

Si∈S′
Rα=0(Si, θ) R∞ =

1

∣S ′∣
∑

Si∈S′
Rα=∞(Si, θ).

Our initial evaluation focuses on the performance of IL-
trained policies, which necessitates a set of groundtruth traffic
rules. To this end, we craft a set of traffic rules emulating

(a)

(b)

(c) (d)

Fig. 2: The set of allowed moving directions Vij for 4 types of
blocks used by our expert policy. We do not label the Vij for
boundary blocks, which depend on the boundary conditions
therein.

real-world road networks. Each lane is designed to accom-
modate travel in only one specific direction. Furthermore, we
incorporate the conventions of real-world roundabouts at road
intersections, wherein all vehicles are constrained to move
in a counter-clockwise direction. This set of rules yields a
predefined collection of allowable moving directions, denoted
as Vij for the ij-th block. A visual representation of these
directions is provided in Figure 2. Our expert policy then
determines the modulated velocity as one of the allowed
moving directions that aligns best with v̄ti as defined through
the following expression:

π⋆(xt
i, gi) = argmax

v∈VI(xt
i)
< v, v̄ti > .

To track the convergence of our IL training process, we
present a convergence history plot in Figure 3. Notably, this
plot illustrates that IL rapidly converges often requiring as
few as 50 rounds. Following training, we summarize the
performance of all three policies in Table I. It is evident that
there exists a minor performance gap in terms of R0 between
πIL and π⋆, which provides confirmation that our meticulously
parameterized neural policy possesses the capability to effec-
tively capture and express a subset of real-world traffic rules.
However, πIL is vulnerable to variations in R∞ when evaluated
in new scenarios. This limitation is mitigated by πRL, which
does not strictly adhere to π⋆ and thus has greater flexibility
in adapting to unfamiliar situations. Furthermore, both πIL

and π⋆ exhibit notably superior performance compared to πb,
demonstrating the remarkable effectiveness of incorporating
real-world traffic rules in alleviating congestion-related issues.

TABLE I: Testing score of baseline πb, RL-trained πRL,
IL-trained πIL, and the expert π⋆ in terms of R0 and
R∞. We run all the test scenarios 10 times and report the
average±deviation.

πb πIL πRL π⋆

R0 25.35 ± 3.35 33.97 ± 1.98 38.36 ± 0.52 38.45 ± 0.07
R∞ 5.13 ± 2.33 9.31 ± 6.75 37.78 ± 0.18 38.06 ± 0.10

Moving on, our evaluation proceeds to the RL-trained
policy. Again we plot the convergence history in Figure 3 and
summarize its performance in the second column of Table I.
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Fig. 3: The convergence history in terms of R0 and R∞ plotted
against the index of IL round. We superimpose the history of
3 runs (red/blue/dark red) to highlight the consistency of our
method.
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Fig. 4: The convergence history in terms of R0 and R∞ plotted
against the index of RL iteration. We superimpose the history
of 3 runs (red/blue/dark red) to highlight the consistency of
our method.

Some instability is observed during the training process as we
use smaller values of α leading to progressively non-smooth
reward signals. In addition, this behavior can be attributed to
the small value of B = 10 causing imprecise approximation of
the policy gradient. Conversely, opting for larger values of B
can significantly escalate the training cost. Upon completion
of training, we observe a distinguished improvement in terms
of R∞ compared to πIL. This result is consistent with our
expectations, as RL autonomously searches for optimal traffic
rules without requiring expert guidance, thereby enhancing
robustness. As anticipated, both the IL and RL-trained poli-
cies substantially outperform πb. This underscores not only
the expressiveness of our method but also its capacity to
autonomously discover suitable traffic rules, guided solely by
congestion-resolving reward signals. A visual comparison is
given in Figure 5.

Fig. 5: We show congested scenarios caused by using
the baseline πb (left) and the corresponding congestion-free
scenarios achieved by our πRL (right). Agents are colored
according to their group.
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Fig. 6: The runtime total inference cost profiled in millisec-
onds, which is averaged over the 10 runs on test scenarios.

Ultimately, we evaluate the runtime inference costs of our
approach and the agent-centric method [10] by comparing
them in Figure 6. Both methodologies utilize GNNs to pa-
rameterize the policy. For this comparison, we pick a random
instance from our scenario with a variable number of agents.
We then run the GNN inference of the agent-centric method on
the agent network, using the same parameter setting as [10].
Remarkably, our architecture conducts GRNN inference only
once, leading to significantly enhanced performance. As de-
picted in Figure 6, we attain a peak performance of 400
milliseconds while managing a cohort of 240 agents.

VI. CONCLUSION & FUTURE WORKS

We introduce an environment-centric architecture for neural
navigation policies, designed to replicate real-world traffic
networks. Our approach demonstrates the feasibility of training
such a policy using IL guided by expert traffic rules or RL with
congestion-resolving reward signals. Our approach eliminates
the need for runtime inter-agent communication, resulting in
significantly reduced computational burden compared to agent-
centric navigation policies.

This research opens up a plethora of promising avenues for
future exploration, such as hardware deployment. One notable
aspect to consider is the modeling of time-dependent traffic
rules, such as those associated with traffic lights. Furthermore,
our current method exclusively accounts for homogeneous
traffic rules, yet in the real world, rule variations are contingent
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upon the context of the environment, encompassing scenarios
like parking lots and highway checkpoints. Extending our
approach to encompass these more nuanced factors represents
an intriguing area for future research endeavors. Finally, our
training procedure is time-consuming and CPU-bound. This
is attributed to our collision-free agent simulator Equation 1,
which involves solving a joint optimization problem encom-
passing all agents. We plan to utilize parallel computations to
speed up this procedure and expedite the training process.
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