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Abstract— LiDAR Odometry is an essential component in
many robotic applications. Unlike the mainstreamed ap-
proaches that focus on improving the accuracy by the additional
inertial sensors, this letter explores the capability of LiDAR-
only odometry through a continuous-time perspective. Firstly,
the measurements of LiDAR are regarded as streaming points
continuously captured at high frequency. Secondly, the LiDAR
movement is parameterized by a simple yet effective continuous-
time trajectory. Therefore, our proposed Traj-LO approach
tries to recover the spatial-temporal consistent movement of Li-
DAR by tightly coupling the geometric information from LiDAR
points and kinematic constraints from trajectory smoothness.
This framework is generalized for different kinds of LiDAR
as well as multi-LiDAR systems. Extensive experiments on the
public datasets demonstrate the robustness and effectiveness of
our proposed LiDAR-only approach, even in scenarios where
the kinematic state exceeds the IMU’s measuring range. Our
implementation is open-sourced on GitHub.

I. INTRODUCTION

LiDAR Odometry (LO) plays a crucial role in robot
navigation and path planning within GPS-denied environ-
ments [1] due to its exceptional range sensing ability. Over
the past decade, increasing research efforts have been de-
voted to the aspects like feature selection [2], [3], map
representation [4], [5], and sensor fusion [6], [7] to enhance
the precision, efficiency, and robustness of LO systems.

Currently, tightly-coupled LiDAR-inertial Odometry [6],
[7] (LIO) leverages information from Inertial Measurement
Units (IMUs), which is widely regarded as the optimal
solution in practical applications [8], [9]. Comparing to
the existing dominant LO methods [5], [10]–[13], LIO ap-
proach offers advantages on two folds. One is that the high-
frequency propagated IMU states contribute to more accu-
rate motion compensation. Another advantage is that IMUs
enhance system robustness by directly enforcing kinematic
constraints, either through pre-integration [14] or Kalman
Filters [7]. Unfortunately, a stable LIO heavily relies on the
accurate calibration of IMU parameters, and IMU data are
sensitive to temperature variations and mechanical shocks.
Furthermore, recent research [15] finds that even the state-
of-the-art LIO systems [6], [7] struggle to handle scenarios
depicted in Fig. 1, where the kinematic state surpasses the
IMU measurement range. These challenges motivate us to
investigate the potential of LiDAR-only approach in the ex-
treme situations that are usually considered insurmountable.

Xin Zheng and Jianke Zhu are with the College of Computer Science,
Zhejiang University, Hangzhou, China, 310027.
E-mail: {xinzheng,jkzhu}@zju.edu.cn.

Jianke Zhu is the Corresponding Author.

Fig. 1: The upper figure shows the mapping result in case that
acceleration exceeds IMU measuring range 3G and (a) the camera
sensor is totally blurred in fast motion. (b)FAST-LIO [7] drift
significantly (c) while our method is still valid only using LiDAR.

Indeed, LiDAR is a streaming sensor with continuous
movements in order to capture scene structures. The standard
LO paradigm [10] typically represents the trajectory as a
sequence of discrete-time poses, which severs the inherent
connection between geometry and kinematics. Ideally, the
geometry of continuous scene structures should reflect the
spatial-temporal movement of LiDAR, while kinematics has
motion-coherent constraints [16] for consecutive observed
points. Hence, our proposed odometry approach adopts a
continuous-time trajectory to tightly couple geometric infor-
mation and kinematic prior hiding behind streaming points.

The key of continuous-time trajectory is the ability to
query the reference LiDAR pose of each measured point by
its corresponding timestamp. Therefore, the previously ne-
glected temporal information can be employed to iteratively
adjust the point position without the need of motion compen-
sation. This continuous-time registration technique [12], [17]
ensures not only spatial consistency but also temporal coher-
ence. Moreover, the continuous-time trajectory introduces an
indirect kinematic constraint through its smoothness, which
is vital for preventing divergence during registration. To
overcome the inefficiency of current methods [18]–[20], our
trajectory is composed of multiple linear segments. This
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enables us to approximate continuous movement via the
simplest linear interpolation within each segment. Further-
more, the trajectory is represented in the compact SE(3)
parameterization, which greatly facilitates the derivation of
analytic Jacobians. Additionally, the continuous-time trajec-
tory inherently accommodates the fusion of multiple asyn-
chronous LiDARs into a unified optimization framework,
which presents a natural advantage in scenarios with multiple
LiDAR sensors.

In summary, the main contributions of this paper are:
1) the LiDAR-only odometry approach with a simple yet
effective continuous-time trajectory, adaptable to various
LiDAR types and multi-LiDAR systems. The implementation
of the framework will be open-source to benefit the commu-
nity; 2) spatiotemporal consistent registration by leveraging
previously overlooked temporal information from millions
of points and the inherent smoothness of the continuous tra-
jectory; 3) extensive experiments on diverse public datasets
to demonstrate that our LiDAR-only method matches the
performance of state-of-the-art LIO approaches [6], [7] and
even surpasses them in extreme scenarios.

II. RELATED WORKS

A. LO and LIO Using Discrete-time Trajectory

LOAM [10] is the seminal work on LiDAR odometry,
which divided the points into line and planar features based
on the roughness of each point on its respective ring. Then,
a modified Iterative Closest Point (ICP) algorithm [21]
incorporating both point-to-line and point-to-plane metrics
was utilized to estimate poses at a scan rate of 10 Hz. Many
subsequent works [2], [3], [5], [11], [13] aim to enhance
the performance on the KITTI Odometry benchmark [22].
Notably, F-LOAM [11] introduced a lightweight scheme with
efficient optimization. Recently, KISS-ICP [13] achieved the
remarkable performance by adopting simple point-to-point
ICP, complemented by a constant velocity model to mitigate
motion distortion [8], [9]. However, existing LiDAR-only
approaches struggle with the aggressive motions.

Practically, LIO aided by additional IMU measurements
is recognized as a more robust solution. Shan et al. [6]
formulated LIO by a factor graph framework to integrate
various constraints, including loop closure, wheel odometry,
and GPS, into the LIO system. Xu et al. [7] fused LiDAR and
IMU measurements within an iterative error-state Kalman
Filter framework, which corrected distorted points through
back-propagation and directly registered raw points onto an
incremental kd-tree map for fast neighborhood searching.

The above methods represent LiDAR movement by a
series of discrete-time poses. The points collected within
the period of consecutive poses have to be transformed into
the position at a specific timestamp. This is called motion
compensation, which is usually done before registration.

B. LO and LIO Using Continuous-time Trajectory

Indeed, the LiDAR points are streaming data captured
continuously. Previous methods of computing rigid transfor-
mation between two discrete-time poses suffer from motion

distortions, where the reference LiDAR center of each mea-
sured point is not exactly the same as body movement. In
general, the continuous-time trajectory [23] has the ability to
query any state of sensors’ spatial-temporal movement at any
given timestamp. The challenge is how to approximate the
entire trajectory with finite states while preserving accuracy
and ensuring efficiency.

One major class is based on Gaussian Processes (GP) [18],
[24]–[26]. Tong et al. [24] employed GP to model the con-
tinuous movement in SLAM, where Gauss-Netween method
is used for state updating. Barfoot et al. [25] explored the
sparsity by incorporating time-varying prior, which makes
GP regression more efficient. Anderson [27] conducted batch
continuous-time trajectory estimation in SE(3) space, while
Dong [26] extended sparse GP regression to the general Lie
Group. More recently, Wu et al. [18] incorporated Doppler
velocity measurements from FMCW LiDAR into GP-based
trajectory estimation. However, it only achieves 2 Hz, which
is the common limitation of GP methods.

Another solution is the parametric trajectory, especially
B-spline [28]. Quenzel and Behnke introduced a surfel-
based B-spline approach, also known as MARS [19], which
validated across both regular driving and aerial scenarios.
CLINS [20] integrated IMU data into trajectory estimation,
although it struggled to meet real-time requirements. Its
successor, CLIC [29], extended the B-spline representation
to the LiDAR-inertial-camera system.

In contrast to B-splines which are weighted sums of basis
functions, linear interpolation offers a more straightforward
parametric approach to describing trajectories. However,
linear interpolation at a low-frequency scan rate becomes
inaccurate when facing aggressive motion. CT-ICP [12]
simply addressed this issue by attributing the errors to scan
discontinuities and mitigating them through the additional
motion constraints. It has proven effective in ordinary driving
scenarios but is unreliable for handheld devices and aerial
vehicles. Therefore, other approaches such as Zebedee [30],
ElasticSLAM [31], and Wildcat [32] adopted a series of high-
frequency control poses with smaller temporal intervals to
reduce linear errors caused by irregular motions. Nonethe-
less, these methods heavily rely on IMU measurements for
robust estimation and also require a tedious cubic B-spline
fitting procedure to refine the trajectory.

III. METHODOLOGY

A. Preliminary

To facilitate subsequent derivations, we firstly clarify the
notations in the following. We define the continuous-time
trajectory as T(t) over the interval [t0, tK). For a specific
pose at timestamp t, we denote it as Tt. All poses are
represented in world coordinates, where the world frame
is the starting location of LiDAR. The concrete LiDAR

pose T =

[
R t
0 1

]
lies on SE(3) manifold [33], where

t ∈ R3 represents the translation and R ∈ SO(3) denotes
the rotation. The introduction of SE(3) enables to formulate
the 3D rigid transformation into matrix multiplication.



Fig. 2: Trajectory T(t) shows the continuous movement of LiDAR
over interval [t0, tK). The bottom is a range image [5] of point
cloud collected by a 64-line LiDAR in a 360◦ circular motion.
Only points in the same column are measured simultaneously

As in [33], we employ the right plus ⊕ and minus ⊖
to establish a connection between the vector τ ∈ R6 in
tangent space se(3) and transformation matrix T ∈ SE(3).
Incrementing a transformation matrix by a vector is denoted
asT ⊕ τ = TExp(τ ), while difference between two trans-
formation matrix is given by T1 ⊖ T2 = Log(T−1

2 T1).
Exp : R6 → SE(3) and Log : SE(3)→ R6 are the mapping
functions.

B. Continuous-Time Trajectory Parameterization

In this letter, we introduce the continuous-time trajectory
parameterization which serves as the foundation. As depicted
in Fig. 2, LiDAR is a streaming sensor typically with
continuous movement. Points in different columns of the
range image are indeed collected at distinct LiDAR poses.
By employing a continuous-time trajectory, we can perform
registration using the precise LiDAR pose without requiring
prior motion compensation. The challenge is how to repre-
sent continuous-time trajectories accurately and efficiently.

To tackle this issue, we propose a straightforward yet
effective scheme. Specifically, the simplest linear interpo-
lation [12] of the trajectory over the temporal window
[t0, tK) can be modeled by the beginning pose T0 and
end pose TK . Unfortunately, linear approximation fails to
obtain satisfactory results in case of aggressive motions such
as handheld devices or aerial vehicles. Indeed, the body’s
movement becomes more linear as tK − t0 → 0. However, a
short interval implies fewer accumulated points, which may
potentially lead to under-constrained situations during the
registration process.

To account for rapid motion, we divide the tempo-
ral window into K equidistant small-resolution segments
{[tk−1, tk)}Kk=1. In each segment [tk−1, tk), the movement is
still parameterized with two control poses, the initial Tk−1

and final Tk. We represent the continuous-time trajectory
over this segment as function ϕk(t). For a measured point
with timestamp ti in this segment, we retrieve its associated
reference LiDAR pose as Tti = ϕk(ti)

ϕk(ti) = Tk−1 ⊕ (αiτk), (1)

where αi = (ti − tk−1)/∆tk, and τk = Tk ⊖ Tk−1. The
interval length of each segment ∆tk = tk−tk−1 is a hyperpa-
rameter that depends on the motion profile. Then, the entire
trajectory T(t) over temporal window [t0, tK) consist of

Fig. 3: A trajectory T(t) consisted with 4 segments, where each
segment ϕk(t) is modeled by linear interpolation in Sec. III-B.
There are three kinds of constraints, including geometry, kinematics,
and marginalization.

K piecewise functions {ϕ1(t), . . . , ϕk(t), . . . , ϕK(t)}. The
trajectory T(t) during the k-th temporal interval [tk−1, tk)
corresponds to the k-th segment function, where T(t) =
ϕk(t). Thus, we can narrow the interval to hold an accurate
linear approximation in each segment in case of aggressive
motion. Meanwhile, the abundant measurements collected
over the entire window provide the necessary geometric
constraints for robust trajectory estimation.

Finally, the continuous-time trajectory T(t) within the
temporal window [t0, tK) actually depends on K + 1 con-
trol poses {T0, . . . ,Tk, . . . ,TK}. Unlike the discrete-time
trajectory that only indicates the LiDAR position at K + 1
moments, our proposed approach employs these K + 1
control poses to model the entire continuous-time trajectory.
At the first glance, our piecewise continuous-time trajectory
is quite simple to implement. By properly handling three
parts in Sec. III-C, LiDAR-only odometry using such pa-
rameterization performs on par with the state-of-the-art LIO
methods [6], [7].

C. LiDAR Odometry Using Continuous-Time Trajectory

We present the LiDAR odometry approach using the
presented trajectory parameterization. Fig. 3 illustrates the
whole pipeline. To facilitate the real-time requirement, our
method works in a sliding window fashion, which consists
of three main components, including continuous-time regis-
tration, kinematic constraint, and marginalization.

To derive the probabilistic formulation of LiDAR odom-
etry, we introduce the control input u(t) and map M .

=
{qm}Mm=1. The continuous-time variable u(t) affects the
system’s dynamics, whileM is constructed by LiDAR points
before the current temporal window. Each map point qm

is defined in the world coordinates, which is discussed
in Sec. III-E. The estimated trajectory T(t) over interval
[t0, tK) depends on a series of LiDAR measurements Z .
Our target is to seek the maximum joint posterior distribution
p(T(t) | u(t),M,Z) over this interval.

Since the control input u(t) does not influence the LiDAR
measurements for the given T(t), we rewrite the posterior
using Bayes’ rule as follows:

p(T(t) | u(t),M,Z) ∝ p(Z | T(t),M)p(T(t) | u(t)).



1) Continuous-Time Geometric Constraint: The first part
p(Z | T(t),M) encodes the geometric relationship. Instead
of just focusing on a specific LiDAR, our method is designed
to accommodate various types of LiDARs, such as multi-
line spinning and non-repetitive LiDARs, as well as different
configurations of LiDAR systems, whether single or multiple.
Given the potential involvement of multiple LiDARs in our
system, we assume the continuous trajectory T(t) rigidly
attached to a reference coordinate system that typically
corresponds to the first LiDAR.

According to our trajectory parameterization, we organize
all measurements Z into K sets, denoted as Z .

= {Zk}Kk=1.
Each set Zk includes measurements collected within the
interval [tk−1, tk) from J LiDARs. The specific form is

Zk
.
=

{{
kz

j
i

}Nj
k

i=1

}J

j=1

, kz
j
i =

{
kp

j
i , kt

j
i

}
. (2)

where N j
k is the point number measured by j-th LiDAR in

k-th segment. Note that each measurement kz
j
i consists of

a pair, i.e., the point’s 3D position kp
j
i = (kx

j
i , ky

j
i , kz

j
i )

and its corresponding timestamp kt
j
i . Additionally, the ex-

trinsic calibration parameter for each LiDAR relative to
the reference coordinate system is represented by TB

Lj
.

These parameters are pre-calibrated and remained to be fixed
throughout the optimization process.

Assuming that all measurements are independent, p(Z |
T(t),M) can be factorized as follows∏K

k=1

∏J
j=1

∏Nj
k

i=1p(
{
kp

j
i , kt

j
i

}
| T(kt

j
i ),M). (3)

Existing LOs [11], [13] that utilize the discrete-time trajecto-
ries often assume that all points are measured simultaneously
at a specific timestamp. Thus, the accuracy of these systems
is highly dependent on the quality of motion compensation.

In contrast, our approach implements a spatial-temporal
consistent registration. We not only consider the 3D point
positions but also pick up the neglected temporal informa-
tion, which allows for iterative updates of the point positions.
Since we can query the reference LiDAR pose for each
point using the continuous-time trajectory, it is unnecessary
to take consideration of motion distortion. Moreover, we use
the point-to-plane criteria for registration without selecting
feature. This makes our approach to be effective for different
types of LiDAR. The geometric error of kz

j
i is

e
kz

j
i
= kn

j
i

⊤
(ϕk(kt

j
i ) ·T

B
Lj
· kpj

i − kq
j
i ). (4)

where ϕk(kt
j
i ) is the pose of reference coordinate system

computed by Equ. 1. kq
j
i is the nearest neighbor of kp

j
i

in the map M. The normal vector kn
j
i is computed by

Principal Component Analysis choosing five closet points
in M like [7], [12].

Ideally, the point-to-plane observation should be close to
zero. We assume that e

kz
j
i
∼ N (0,Qr) accounts for the

LiDAR measurement error. Therefore, we have:

p(
{
kp

j
i , kt

j
i

}
| T(kt

j
i ),M) = N (e

kz
j
i
,Qr) (5)

2) Trajectory Smoothness Constraint: The second part
p(T(t) | u(t)) encodes the kinematic model. It is typically
utilized in LIOs [6], [7] but is often neglected in LO. This
is because the control input u(t) can directly connect to
the IMU data. Indeed, kinematics is an inherent property
of the system, even without the assistance of IMU. Here
we propose an indirect motion constraint from trajectory
smoothness, which is vital for the convergence of continuous-
time registration only depending on LiDAR input.

Given that our trajectory parameterization has divided the
temporal window into several small intervals, the velocity
within each segment is approximately constant. Then, we
define the generalized velocity ϖk(t) in SE(3) over the inter-
val [tk−1, tk) as ϖk(t) = (Tk ⊖Tk−1)/∆k. In the physical
world, a continuous trajectory should exhibit smoothness,
where the velocity between consecutive segments tends to be
coherent. Thus, we introduce a pseudo-velocity measurement
ϖ̌k = (Ťk−1 ⊖ Ťk−2)/∆k−1 from previous segment and
ensure ϖk(t)− ϖ̌k to be close to zero. Ťk−1 and Ťk−2 are
fixed values obtained after the convergence of the previous
sliding window optimization, rather than variables in the
current optimization window. Since the intervals of each
segment are equidistant, we directly define the smoothness
error through control poses as:

evk = Tk ⊖Tk−1 − Ťk−1 ⊖ Ťk−2. (6)

Let evk ∼ N (0,Qv) follows a zero-mean Gaussian distribu-
tion, p(T(t) | u(t)) over the entire trajectory is split into

p(T(t) | u(t)) =
∏K

k=1p(ϕk(t),uk(t))

where p(ϕk(t),uk(t)) = N (evk ,Qv).
3) Joint Optimization and Marginalization: Our target

is to find the optimal continuous-time trajectory T(t) de-
pending on K+1 control poses {Tk}Kk=0 over the temporal
window [t0, tK). Thus, we minimize the negative logarithm
of the posterior likelihood as below

{Tk
∗}Kk=0 = argmin

T(t)

(− log(p(T(t) | u(t),M,Z)). (7)

Since all distributions are Gaussian, it can be transferred
into a non-linear least squares problem, which is equal to
minimize the following energy function

{Tk
∗}Kk=0 = argmin

T(t)

Ereg + Ekine + Emarg, (8)

Ereg =

K∑
k=1

J∑
j=1

Nj
k∑

i=1

e⊤
kz

j
i

Q−1
r e

kz
j
i
, Ekine =

K∑
k=1

e⊤vkQ
−1
v evk .

We have provided the formulation for error terms e
kz

j
i

and
evk , while Emarg represents the marginalization energy re-
sulting from the sliding window optimization. To ensure real-
time performance, we marginalize the oldest segment ϕ1(t),
once the window exceeds the predefined threshold. Instead
of simply discarding measurements collected over [t0, t1),
we employ the marginalization priors to retain information
that falls outside the next temporal window.



As described in [34], the computation of the marginal-
ization priors Hm and bm occurs after the optimization
in the old window has converged. We derive Hm and bm

using Schur complement, considering only the energy terms
that depend on the marginalized variables. For more detailed
procedures, please refer to [34]. The control poses in the
new optimization window can be split into two parts s =
{sm, sn}, where sm is related to marginalized poses, and sn
is irrelevant. The marginalization energy is

Em =
1

2
(sm ⊖ s̄m)⊤Hm(sm ⊖ s̄m) + b⊤

m(sm ⊖ s̄m),

and only influences sm. s̄m is the fixed linearization point
when applying Schur complement. In our presented trajec-
tory representation, segment ϕ1(t) depends on two control
poses, T0 and T1. Since T1 is relevant to the next segment
ϕ2(t), only T0 will be removed during the marginalization.
Besides, the energy term depends on T0, which is related
to T1. Thus, sm in new window includes the poses T1

from the old window. In addition, we apply the first-estimate
Jacobians [35] to keep the consistency of the reduced system.
For the poses connected to marginalization prior, we derived
Jacobin at their fixed linearization point s̄m, while the
residuals are calculated at their current state sm.

D. Analytic Jacobian Derivation

We make use of Gauss-Netwon optimization to solve the
nonlinear least square minimization in Equ. 8. By the first-
order Taylor expansion, the general error term around the
linearized point s is approximated as e(s ⊕ ξ) ≃ e(s) +
∂e
∂sξ, where s is K + 1 poses with its stacked increment
vector ξ ∈ R6(K+1). ∂e/∂s is the Jacobian. The optimal
increment is found by solving the normal equation Hξ =

−b, where the Hessian matrix H =
∑(

∂e
∂s

)⊤
W−1 ∂e

∂s and
b =

∑(
∂e
∂s

)⊤
W−1e. W is the related covariance. Each

control pose of our continuous trajectory iteratively updates
as Tk ← Tk ⊕ ξk, where s =

[
T0 . . . TK

]
and ξ =[

ξ0 . . . ξK
]
.

To speed up optimization, we derive analytic Jacobian
rather than inefficient automatic differentiation [12]. In-
deed, each error term is only related to several poses. Our
derivation uses the right forms in [33] so that the concrete
Jacobians of continuous-time registration term e

kz
j
i

is

∂e
kz

j
i

∂s
=

∂e
kz

j
i

∂ϕk(kt
j
i )

[
∂ϕk(kt

j
i )

∂Tk−1

∂ϕk(kt
j
i )

∂Tk

]
, (9a)

∂e
kz

j
i

∂ϕk(kt
j
i )

= kn
j
i

⊤ [
R

kt
j
i
−R

kt
j
i

[
TB

Lj
· kpj

i

]
×

]
, (9b)

∂ϕk(kt
j
i )

∂Tk−1
= (1− kα

j
i )Jr((kα

j
i − 1)τk)J

−1
l (τk), (9c)

∂ϕk(kt
j
i )

∂Tk
= kα

j
iJr(kα

j
iτk)J

−1
r (τk). (9d)

R
kt

j
i

is the rotation part of reference coordinate pose T
kt

j
i
=

ϕk(kt
j
i ) at kt

j
i . [·]× denotes the skew symmetric matrix. Jr(·)

and Jl(·) are the right- and left- Jacobians [33] of SE(3),
respectively. The Jacobians of kinematic constraints are

∂evk
∂Tk−1

= −J−1
l (τk),

∂evk
∂Tk

= J−1
r (τk). (10)

E. Map Management
The bottleneck of LiDAR odometry is thousands of

nearest-neighbor searches during point registration. In order
to accelerate this intensive and repetitive operation, our
map adopts a spatial hashing structure from [12], [13].
The voxel size depends on the environment. Each voxel
stores up to 20 points and we explore the closest 7 voxels
during nearest-neighbor searching. Generally, we assume the
LiDAR odometry starts from a stationary state, and use the
points collected within the first 0.3s for map initialization.
The voxel index of each point is computed by its position in
world coordinates. The map points are unchangeable during
registration. Once the optimization is converged, the map will
be updated by the points leaving the window. To reduce the
memory consumption of the map, points located more than
100m away from the current LiDAR center are removed.

IV. EXPERIMENT
In this section, we present the details of our experiments.

To show the effectiveness and generalizability, we evaluate
our approach named ‘Traj-LO’ on three ordinary datasets and
another with extreme motion where IMUs are saturated. The
comparative methods include state-of-the-art LOs and LIOs.

Practically, there exists a trade-off between maintaining a
longer temporal window to cover a larger field of view (FoV)
and ensuring computational efficiency. In our experiments,
we choose 4 segments in the temporal window, with each
interval ∆tk at 0.03s. The noise Qr = σrI1 and Qv = σvI6
are diagonal matrices, where σr = 0.1 and σv = 0.05. The
indoor voxel size is 0.4m and the outdoor is 0.8m.

A. Dataset
KITTI odometry dataset [22] provides driving scenarios,

in which 3D point scans are collected using the Velodyne
HDL-64E S2. This dataset offers a wide range of scenarios
from urban city to highway traffic. However, points in all 22
sequences are motion-corrected where temporal information
is discarded. Although [36] provides raw LiDAR data, it
does not retain the timestamps of individual points. Due to
its popularity in the robotic community, we still report the
evaluation results on this benchmark.

NTU VIRAL [9] is a visual-inertial-ranging-LiDAR
dataset for autonomous aerial vehicles. It has two 16-channel
Ouster LiDARs, which separately equip on the horizontal
and vertical direction. These LiDARs produce point clouds
at 10 Hz rate accompanied by a 9-axis IMU at 385 Hz. The
point cloud contains the timestamp of each point relative to
the scan’s start time, which is crucial for continuous-time
estimation. The ground truth is obtained by a Leica Nova
MS60 in several challenging indoor and outdoor conditions.

Hilti 2021 dataset [8] contains indoor sequences of
offices, labs, and construction environments and outdoor se-
quences of construction sites and parking areas. The LiDAR



TABLE I: RTE Results (%) on KITTI Odometry Benchmark.

Approach 00 01 02 03 04 05 06 07 08 09 10 AVG Online

FLOAM [11] 0.71 0.71 0.73 0.98 0.57 0.62 0.33 0.47 1.04 0.88 1.02 0.73 0.72
KISS-ICP [13] 0.52 0.72 0.53 0.65 0.35 0.30 0.26 0.33 0.81 0.49 0.54 0.50 0.61
CT-ICP [12] 0.49 0.76 0.52 0.72 0.39 0.25 0.27 0.31 0.81 0.49 0.48 0.50 0.59
Traj-LO (ours) 0.50 0.81 0.52 0.67 0.40 0.25 0.27 0.30 0.81 0.45 0.55 0.50 0.58

configuration is an Ouster OS0-64 which collected points
in 360◦ FoV at 10 Hz, and another LiDAR unit is Livox
MID70 with a non-repetitive scan pattern in 70◦ circular FoV
at 10Hz. The devices are mounted on a handheld platform,
providing millimeter-accurate ground truth from the Hilti
PLT 300 automated Total Station or a MoCap system. The
temporal information of each point is reserved.

Point-LIO dataset [15] is collected by Livox Avia. We
select two sequences for evaluation. The outdoor sequence
features a spinning motion on a rotating platform, while the
indoor involves a circular swinging motion with the LiDAR
attached to one end of a rope. Both sequences suffer that the
kinematic state exceeds the IMU measuring range, causing
most LIOs [6], [7] to fail. The interval ∆tk is 0.01s and
voxel size is 0.2m for indoor sequence.

B. Comparison With LiDAR-only Methods

We compare Traj-LO with the LiDAR-only methods,
including FLOAM [11], KISS-ICP [13] and CT-ICP [12].

1) KITTI: At first, a vertical angle of 0.205◦ is used to
rectify the calibration errors in raw point clouds. Since the
points are motion-corrected, continuous registration is dis-
abled. We maintain motion constraints between 4 consecutive
scans. For quantitative analysis, we use the KITTI relative
translation error, and the results are reported in Table I. It can
be seen that FLOAM obtains the worst performance among
the four methods. Across the 11 training sequences, KISS-
ICP, CT-ICP and our Traj-LO achieve similar average accu-
racy. On the other 11 testing sequences, we have obtained
the best online result on the KITTI benchmark with a score
of 0.58% translation error and 0.0014deg/m rotation error.

2) NTU: As a pioneering benchmark that leads the de-
velopment of LiDAR Odometry in the last decade, KITTI
mostly moves straightforward plus small turns. This cannot
fulfill the requirement of robust LiDAR odometry nowadays.
Thus, we provide a comprehensive evaluation on more
challenging aerial dataset. It records the specific timestamps
of each LiDAR point, which makes it possible to examine
the advantage of continuous-time approaches. The results of
absolute trajectory error (ATE) compared with ground truth
are listed in Table II, which is computed by evo package1.

Our proposed Traj-LO approach achieves the best per-
formance and outperforms other methods at a large margin
except for tnp sequences. FLOAM nearly drifts on all se-
quences, since its original public code does not compensate
for motion distortion. Although KISS-ICP claims its constant
velocity model is on par or even slightly better with the IMU,
it drifts on most sequences. For the more complicated NTU
dataset, the constant velocity assumption may not be valid.

1https://github.com/MichaelGrupp/evo

Fig. 4: The ATE of four methods on sequence spms 03 is depicted
over time. The notable differences occur mainly during the take-off
and landing phases.

CT-ICP achieves an average accuracy at the centimeter
level, similar to our Traj-LO when excluding failed se-
quences, which outperforms the two previous discrete-time
methods. The robustness of CT-ICP is unsatisfactory, as
it fails on half of the NTU sequences. This is because
linear interpolation using the beginning and end poses of
the scan is unsuitable in the case of rapid motion. Besides,
it is not enough to track the aerial vehicles by only taking
consideration of the translation in motion constraint.

C. Comparison With LiDAR-inertial Methods

Traj-LO has demonstrated a significant advantage over
the existing LiDAR-only methods. Thus, we also compare
it against the widely used LIO methods like LIO-SAM [6]
and FAST-LIO [7]. Surprisingly, Traj-LO performs the best
on the handheld Hilti dataset in Table III and achieves the
competitive results on the aerial NTU dataset in Table II.
Note that our approach achieves such promising results using
only LiDAR points.

The difficulty of the NTU dataset lies in the jerky motion
patterns during take-off and landing. Fig. 4 plots the ATE
of spms 03 over time. For a single horizontal LiDAR, Traj-
LO exhibits a larger ATE at the beginning and end of the
trajectory while its ATE closely matches that of LIO-SAM
and FAST-LIO during smooth flight. This indicates that the
IMU is able to provide the extra kinematics information
when lacking sufficient geometric constraints.

D. Evaluation on Multi-LiDAR System

Our continuous-time trajectory representation is naturally
capable of integrating multiple LiDARs into a unified frame-
work. As demonstrated in Table II, Traj-LO outperforms
the existing B-spline-based LO method MARS [19], when
utilizing both horizontal and vertical LiDARs. Furthermore,
our approach exhibits exceptional performance in high-speed
spms sequences that is traditionally considered as a strength
of LIO approaches such as CLIC [29] and SLICT [37].

A notable advantage of multi-LiDAR systems is their
ability to provide supplementary geometric information in
scenes, where a single LiDAR may degrade. As illustrated
in Fig. 5, tnp sequences lack sufficient features to constrain
motion in the vertical direction. CT-ICP with single LiDAR
maintains low ATE by searching more neighborhoods from



TABLE II: ATE (m) on the NTU VIRAL Dataset.

Approach Sensor1 eee nya sbs rtp tnp spms

01 02 03 01 02 03 01 02 03 01 02 03 01 02 03 01 02 03

L
O

FLOAM [11] L1 4.486 8.238 1.133 1.447 1.292 1.498 0.976 2.010 1.079 10.775 4.637 2.218 2.354 2.249 1.566 x x x
KISS-ICP [13] L1 2.220 1.570 1.014 0.628 1.500 1.272 0.917 1.312 1.030 3.663 1.970 2.382 2.305 2.405 0.799 8.493 x 5.451
CT-ICP [12] L1 7.763 0.125 11.171 0.100 0.101 0.073 x 0.084 1.545 x 0.081 0.086 0.073 0.071 0.045 x x x
MARS3[19] L1+L2 0.247 0.103 0.093 0.056 0.062 0.083 0.137 0.126 0.159 × 0.233 0.138 0.073 0.068 0.067 × × 19.865

Ours L1 0.055 0.039 0.035 0.047 0.052 0.050 0.048 0.039 0.039 0.050 0.058 0.057 0.505 0.607 0.101 0.121 x 0.103
L1+L2 0.051 0.033 0.036 0.052 0.045 0.045 0.042 0.042 0.041 0.045 0.061 0.044 0.049 0.040 0.049 0.056 0.163 0.063

L
IO

LIO-SAM [6] L1+I 0.032 0.050 0.077 0.041 0.056 0.067 0.054 0.043 0.044 0.085 0.073 0.066 0.065 0.127 0.052 0.207 x 0.074
FAST-LIO [7] L1+I 0.029 0.019 0.023 0.031 0.031 0.036 0.031 0.045 0.029 0.042 0.060 0.052 0.043 0.037 0.045 0.056 0.050 0.075
SLICT3[37] L1+L2+I 0.032 0.025 0.028 0.023 0.023 0.016 0.030 0.029 0.034 0.045 0.047 0.050 0.029 0.020 0.038 0.061 0.10 0.066
CLIC3[29] L1+L2+I 0.040 0.021 0.031 0.030 0.037 0.034 0.033 0.037 0.044 0.072 0.239 0.064 0.060 0.061 0.053 0.123 x 0.211

1 L1: horizon OS1-16, L2: vertical OS1-16, I: external IMU.
2 The best results overall are in blod, while the best results in each category are underlined. ’x’ denotes divergence.
3 The results of MARS and SLICT are obtained from the paper [37] while CLIC are from [29].

TABLE III: ATE (m) on the Hilti SLAM Challenge Dataset

Approach Sensor1 RPG Base1 Base4 Lab Cons2 Camp2

L
O

FLOAM [11] L1 2.775 0.914 0.287 0.182 11.515 8.946
L2 - - - - - -

KISS-ICP [13] L1 0.187 0.294 0.119 0.073 0.835 5.052
L2 3.726 6.850 0.293 × 21.650 3.609

CT-ICP [12] L1 0.188 0.321 0.210 0.052 0.087 0.077
L2 0.197 × 0.126 × 13.359 6.516

Ours
L1 0.172 0.301 0.064 0.027 0.065 0.045
L2 0.218 0.314 0.064 × 0.135 0.049

L1+L2 0.170 0.297 0.049 0.050 0.063 0.060

L
IO

LIO-SAM [6] - - - - - - -

FAST-LIO [7] L1+I 0.182 0.309 0.033 0.035 0.066 0.087
L2+I 0.282 0.313 0.693 × 0.198 0.063

CLIC [29] L1+I 0.394 0.340 0.202 0.240 0.327 0.397
L2+I - - - - - -

1 L1: OSO-64, L2: Livox MID70, I: IMU embedded in L1.
2 The best results overall are in blod, while the best results in each category are

underlined. ’x’ denotes divergence, and ’-’ denotes invalid results.

Fig. 5: The environment in the tnp sequence resembles a Man-
hattan world, with nearly all 16-channel laser beams from the
horizontal LiDAR sensor interacting with three vertical walls. The
upper figure provides separate plots of the XYZ positions of tnp 01
over time, while the bottom left plots the trajectory in the xz plane.
The bottom right shows the mapping results after fusing the points
from both the horizontal and vertical LiDAR.

the 27 closest voxels. In contrast, Traj-LO leverages the
additional vertical LiDAR to enhance system observability,
which significantly reduces large errors along the z-direction.

As shown in Fig. 4, the ATE of Traj-LO during takeoff
and landing phases is substantially reduced by introducing
the vertical LiDAR. This indicates us that the LiDAR-only
method is able to achieve similar results as LIO through
providing the adequate geometric constraints for registration.

Fig. 6: The bottom shows the IMU data collected by the rotating
platform, where angular velocity exceeds the measurement range
of 17.5 rad/s. (a) is the mapping result of our LiDAR-only method
while (b) FAST-LIO [7] drifts significantly.

E. Evaluation on Non-repetitive LiDAR

Non-repetitive scanning LiDARs with a small FoV are
popular as complements to multi-line spinning LiDARs. In
the experiment, we evaluate different methods on the Hilti
dataset with a Livox MID70. To cover the 70◦ circular
FoV with limited laser heads, the laser direction has to
change frequently using Risley prism. This sensor introduces
more severe motion distortion [17]. As shown in Table III,
continuous-time methods outperform discrete-time methods
even without IMU. However, the overall performance of
Livox MID70 is lower than that of multi-line Ouster LiDAR,
which offers a wider FoV.

F. Extreme Scenarios Beyond IMU Measuring Range

Finally, we evaluate Traj-LO in more challenging scenar-
ios using the Point-LIO dataset. Fig. 1 and Fig. 6 show
the mapping results along with the recorded IMU data
over time. Remarkably, our LiDAR-only odometry method
exhibits minimal drift even in case of exceptionally ag-
gressive motion. This unexpected performance can be at-
tributed to the spatial-temporal information contained within
the millions of streaming LiDAR points, which surpasses
the capabilities of conventional IMUs with the frequencies
between 100-400 Hz. Furthermore, MEMS IMUs tend to
introduce noises, especially in aggressive motions, whereas
the range measurements obtained from individual LiDAR
points are considerably more accurate. By making use of
previously overlooked temporal data in registration, LiDAR-



only odometry demonstrates a level of capability that exceeds
the initial expectations.

V. CONCLUSION

This letter has introduced a LiDAR-only odometry using a
simple yet effective continuous-time trajectory. By coupling
geometric information and kinematic prior hiding behind
streaming points, the performance of our approach was on
par with start-of-the-art LIOs and even suppressed them
in extreme scenarios. Moreover, the proposed odometry
was designed to accommodate various types of LiDARs as
well as multi-LiDAR systems. At present, our method is
primarily designed for odometry task. In future work, we
intend to explore the capabilities of a complete LiDAR-
only SLAM system that incorporates this continuous-time
trajectory along with a more representative map structure.
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