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Distributed Simultaneous Localisation and
Auto-Calibration using Gaussian Belief Propagation

Riku Murai, Ignacio Alzugaray, Paul H.J. Kelly and Andrew J. Davison

Abstract—We present a novel scalable, fully distributed, and
online method for simultaneous localisation and extrinsic cal-
ibration for multi-robot setups. Individual a priori unknown
robot poses are probabilistically inferred as robots sense each
other while simultaneously calibrating their sensors and markers
extrinsic using Gaussian Belief Propagation. In the presented
experiments, we show how our method not only yields accu-
rate robot localisation and auto-calibration but also is able to
perform under challenging circumstances such as highly noisy
measurements, significant communication failures or limited
communication range.

Index Terms—Distributed Robot Systems, Localization, Cali-
bration and Identification

I. INTRODUCTION

AS robots become increasingly ubiquitous, more of them
are expected to jointly operate and coordinate in shared

environments to perform complex and collaborative tasks. For
many of the tasks, it is critical to estimate the robot’s pose
accurately and precisely, also known as robot localisation.
While many localisation systems have been proposed in the
literature, most of the works focus on single-robot setups.
However, relying solely on a single robot’s proprioceptive and
exteroceptive sensors for localisation is challenging and often
limiting, especially in a multi-robot scenario, where relative
localisation is crucial to ensure that robots interact safely and
effectively.

This motivates multi-robot collaborative localisation, where
robots utilise each other’s observations to enhance their own
localisation accuracy and therefore, the overall accuracy of the
multi-robot system. The accuracy of co-localisation, however,
is heavily reliant on the quality of extrinsic calibration of the
sensors (e.g. visual camera rigs, rangefinders) and the markers
they can detect on other robots (e.g. AprilTags, reflective
markers). While most works often take such extrinsic calibra-
tion for granted, in practice, the default in-factory calibration
can only be precise to a certain degree. This is particularly
important in multi-robot setups, where manual calibration
becomes impractical and highly accurate in-factory, per-robot
calibration incurs high operational costs.

In this paper, we envision a system (see Fig. 1) in which
multiple robots co-localise themselves as they move and sense
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Fig. 1: Overview of the proposed auto-calibrating localisa-
tion system for three heterogeneous robots (top). Each robot
observes the markers M placed on its peers to establish
measurement z̄SM using sensor S mounted on top of a moving
base B. Using the proposed methodology, the robots’ relative
positions and their calibration parameters can be retrieved in a
distributed and asynchronous fashion performing probabilistic
inference on a factor graph. We refer to TWB as WB for
clarity.

each other while simultaneously estimating and refining the
extrinsic calibration of their sensor and their onboard marker
on-the-fly. In summary, the contributions of our work are:

• A novel method for distributed multi-robot localisation
and extrinsic calibration of both the sensor and the
observed marker on the robots. Our approach builds
on top of our previous work Robot Web [1], originally
limited to pose variables in SE(2) given range-bearing
observations. We extend the framework by simultane-
ously estimating the SE(3) pose of the robots and their
extrinsic calibrations using Gaussian Belief Propagation
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(GBP) to further improve the accuracy of multi-robot
localisation.

• We present a formulation of the inter-robot factor that
avoids the sharing of the calibration variables amongst
multiple robots, sparing communication effort between
robots and thus enhancing the scalability of the system.

• We provide an extensive evaluation of our approach in
comparison with other state-of-the-art alternatives and
measure the performance of the method under extreme
conditions such as a large number of communication
failures, a large proportion of outlying measurements, and
a limited communication range.

II. BACKGROUND

A. Multi-Device Calibration

Calibration is vital for robotic operations and, as such, the
body of literature on the subject is vast. Due to space limi-
tations, our literature review focuses on calibration processes
that involve multiple cameras or multiple robots.

Accurate extrinsic calibration is often critical in multi-
device systems. Different robots have different base frames,
and within a robot, the exact position of the sensor and observ-
able onboard marker may not be available. A common instance
of this is hand-eye calibration. From a set of known relative
transformations, the calibration process seeks to establish the
undetermined relationship, often the relative transformation
between the robot base frame and sensor frame [2]. These
methods can be extended to support multiple robots using
iterative methods [3] or probabilistic approaches [4]. However,
these methodologies primarily focus on offline settings where
calibration precedes operational activities. In multi-robot se-
tups, [5] proposes a method to perform online calibration
of infra-red sensors while estimating the parameters of the
underlying physical sensor model.

Multi-camera rigs are becoming increasingly popular as
they can significantly extend the surrounding perceptive field
for any robot and even directly yield stereo-depth capabilities
provided there is view overlap. However, accurate calibration
of such these rigs is often challenging, leading to several
works on automatic offline calibration [6], [7], [8]. The
method in [9] carries out continuous self-calibration using an
extended Kalman filter in a stereo setup. Beyond two cameras,
self-calibration of multiple cameras extrinsic is achieved on
an aerial vehicle in [10], whereas an information-theoretic
approach described in [11] is able to operate on a rig of
eight cameras. Notably, while these methods are online, they
predominantly address setups with a single robot with multiple
onboard sensors, rather than a truly distributed, multi-robot
system.

In the field of sensor networks, CaliBree [12] performs
fully distributed sensor calibration by measuring disagreement
between uncalibrated and calibrated sensors upon rendezvous
event. This method, however, is only limited to calibration and
does not address the localisation of the devices. In [13], GBP
is used in a distributed fashion for intrinsic calibration and
refinement of the camera poses. The method solves structure-
from-motion, where multiple cameras are stationary; hence, it

is not applicable to online robotic applications with a moving
onboard sensor. Non-parametric belief propagation is used
in [14] to perform calibration and localisation of sensors.
The method is sampling-based; hence less efficient than GBP
and assumes that the sensors are stationally. LaSLAT [15]
performs localisation and calibration of the sensors together
with tracking of a target. In LaSLAT, the sensor poses are
assumed to be static and are not suitable for localising multiple
moving robots, which is the problem we address in this work.

B. Multi-Robot Localisation

Many recent advancements in multi-robot localisation lever-
age the advancements in distributed pose-graph optimisation
(PGO). For example, [16] uses chordal-relaxation to make
the underlying PGO problem linear, and solves them using
a Gauss-Seidel solver. Semidefinite Programming (SDP) re-
laxation together with Riemannian block coordinate descent
is used in [17], [18] which enables verification of the correct-
ness of the estimates, and is decentralised and asynchronous.
A distributed SLAM system [19] is built upon these ap-
proaches, demonstrating their practicality. However, the above
approaches require a full relative transformation between the
robots and can only handle isotropic covariance. This could
be limiting, for example, if the inter-robot observations are
all range-bearing, as we will explore in this paper. More
recently, methods use range measurements [20] or bearing
measurements [21] and show that it is possible to obtain
certifiably optimal solutions again via SDP relaxation. While
all PGO-based methods achieve good localisation accuracy,
the formulation is often tailored and these methods do not
generalise to other problem instances.

More general methods for multi-robot localisation such
as DDF-SAM [22], and DDF-SAM2 [23] operate on factor
graphs. They rely on Gaussian elimination and require robots
to exchange Gaussian marginals about shared variables. The
communication; however, increases quadratically with the
number of shared variables. Alternating Direction Method
of Multipliers (ADMM) has been employed for distributed
SLAM [24] or to efficiently share map points for distributed
bundle adjustment [25]. However, unlike elimination-based
approaches only the point-estimates are recovered.

Our recent work, Robot Web [1] uses GBP to perform
localisation. The proposed approach operates on general factor
graphs; the underlying GBP algorithm is asynchronous and
decentralised, thus the system is scalable to many robots.

III. PRELIMINARIES

A. Factor Graphs

A factor graph is a type of bipartite graph G = (X,F,E)
consisting of variable nodes X = {xi}i=1:Nv connected by
edges E to factor nodes F = {fs}s=1:Nf

. A factor graph
represents the factorisation of the joint distribution: p(X) ∝∏Nf

s=1 fs(Xs), where Xs = n(fs). Here, n(v) is the set of
neighbouring nodes connected via edge to the node v.
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B. Belief Propagation

Belief Propagation (BP) [26] is an algorithm used to infer
a marginal distribution of p(xi) for each variable xi ∈ X
of a joint distribution p(X) by passing messages among
neighbouring nodes. As such operation is local, the algorithm
is highly parallelisable and suitable for distributed inference.
BP has promising applications in robotics, including multi-
hypothesis and non-Gaussian inference [27].

In BP, at each iteration t, factor fs sends a message mt
fs→xi

to all variables xi ∈ n(fs), and variable xi sends back a
message mt

xi→fs
to all factors fs ∈ n(xi). At a variable xi,

the product of all the incoming messages forms the belief
bt(xi):

bt(xi) =
∏

fs∈Fi

mt−1
fs→xi

(xi) , (1)

where Fi = n(xi). The outgoing message to fs from xi is
simply the product of all other incoming messages from Fi:

mt
xj→fs(xj) =

bt(xi)

mt−1
fs→xi

(xi)
. (2)

The message from a factor to a variable message is:

mt
fs→xi

(xi) =
∑

Xs\xi

fs(Xs)
∏

xj∈Xs\xi

mt
xj→fs(xj) , (3)

where Xs = n(fs). A factor takes a product of all the
incoming messages together with its potential and marginalises
out all the other adjacent variables Xs \ xi to compute the
outgoing message to xi.

C. Gaussian Belief Propagation

GBP [28] is a subset of BP where all the factors and, hence,
the joint posterior distribution are Gaussians. Note that GBP
has no theoretical convergence guarantees when applied to
graphs with cycles and yet, it has shown robust performance
across many different tasks [29], [30], [31].

We use canonical representation of Gaussian:
N−1(x;η,Λ) ∝ exp(− 1

2x
⊤Λx + η⊤x), where we

define information vector η = Λµ and information matrix
Λ = Σ−1. Measurements Z = {z̄}m=1:Nz are modelled as
z̄m = hm(Xm)+ ϵ, where hm(·) is a measurement prediction
function, and ϵ is a zero-mean Gaussian ϵ ∼ N (0,Σm).
Assuming independence of the observations, the likelihood
of the observations is:

l(X;Z) =

Nz∏
m

lm(Xm; z̄m)

∝
Nz∏
m

exp(−1

2
∥z̄m − hm(Xm)∥2ΣM

) , (4)

where the likelihood l(X;Z) ∝ p(Z|X). This notation is used
to clarify that likelihood is a function of X , with Z as its
parameter [32]. We are interested in estimating the configura-
tion which maximises the Maximum A Posteriori (MAP) esti-
mate: XMAP = arg maxX l(X;Z)P (X). GBP achieves this
via marginal inference by computing the marginal posterior
P (xi|Z) = N (µi,Σi) where µi = xMAP

i for all xi ∈ X . In

Before Calibration After Calibration

Markers M

Sensors S

Fig. 2: Example of calibration of the extrinsic of the sensors’
pose and markers’ position using the proposed method, where
we artificially set the ground-truth extrinsics to be the same
for visual clarity. We overlay the calibration estimates of 64
robots from randomly initialised states (left), and visualise the
estimated extrinsics after the calibration (right).

the factor graph representation of the posterior P (X|Z), each
xi is a variable node, and each lm is a factor node connected
via edge to nodes Xm. The reader is referred to [33], [34] for
more details on GBP.

D. Gaussian Belief Propagation with Lie Groups

Given a non-linear measurement prediction function hm

it’s first-order Taylor approximation is: hm(x) ≈ hm(x0) +
Jmhm(x − x0), Jm = dhm

dx |x=x0
. We retrieve the likelihood

of the descent direction ∆x = x−x0 that minimises the local
residual as in [1]:

lm(∆Xm; z̄m) =

N−1(∆Xm;JT
mΛm(z̄m − hm(x0)),J

T
mΛmJm) . (5)

For clarity, the ∆ is dropped from the notation of the likelihood
for the remaining of the paper. Energy of the factor is defined
as: Em = (z̄m − hm(x0))

⊤Λm(z̄m − hm(x0)).
We further apply GBP to variables on the Lie Group as in

[1], which rely on the following expressions:

Y = X ⊕ X τ ≜ X ◦ Exp(X τ) ∈ M , (6)
X τ = Y ⊖ X ≜ Log(X−1 ◦ Y) ∈ TXM , (7)

where X ,Y are points on the Lie Group M, and X τ is a
tangent vector in Lie algebra TXM defined locally around a
point X . Functions Exp, Log are the exponential, logarithmic
mapping from M → TXM and TXM → M respectively,
allowing us to move back and forth between Lie Group and
Lie algebra. Composition operation ◦ uses the group property
and imposes that the composition of the elements remains in
the Lie Group. To simplify the notation, we will drop ◦ when
composing two transformations.

IV. DISTRIBUTED LOCALISATION AND
EXTRINSIC CALIBRATION

A. Gaussian Belief Propagation for Distributed Inference

Let G be the global factor graph which we want to perform
inference over. In distributed GBP, robots own a factor graph
Gω each, and their union is G =

⋃
ω∈Ω Gω . Each robot has
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ownership of its pose variables and the factors corresponding
to the observations it made, i.e. the nodes that their local
graph Gω consists of. This is important as the global factor
graph G is partitioned amongst the robots Ω; hence, the
marginal estimates obtained by solving the distributed problem
using GBP are exactly the same as the marginal estimates of
the global problem obtained via centralised GBP under an
assumption of perfect communication.

Distributed inference is achieved by each robot α ∈ Ω
performing GBP message passing on their local graph Gα.
Along the edges of a factor fαβ owned by α, a factor-to-
variable message mfαβ→xβ (xβ) is sent from α to β via inter-
robot communication. Similarly, β sends back to α variable-to-
factor message, mxβ→fαβ (xβ). A factor-to-variable message
is a Gaussian distribution N (µf→x,Λ

−1
f→x), and a variable-

to-factor message is a linearlisation point x̄ and a Gaussian
distribution N (µx→f ,Λ

−1
x→f ).

B. Problem Formulation

This section details how multi-robot localisation and the
extrinsic calibration of their onboard sensors and observable
markers are simultaneously and distributedly performed. In the
considered setting, each robot is equipped with a range-bearing
sensor S that observes the other robot’s onboard marker
M . While the addressed setup is representative of realistic
constraints of many robotic applications, here we describe the
formulation in general terms, so that it can easily be extended
to support more information-rich measurements such as direct
relative transformations (e.g. using visual sensors and fiducial
markers).

The relative transformation from the base of the robot
B to its sensor S is TBS ∈ SE(3), where the notation
TBS represents the pose of S in the coordinate frame of
B. Similarly, tBM ∈ R3 represents the marker position M
relative to B. Since only range-bearing sensors are used in the
current setup, the orientation of the marker is not observable
and thus not included in this specific problem definition. When
the sensor Sα in robot α observes the marker Mβ in robot β,
a relative measurement z̄αβSM is generated. The initial estimates
of TBS and tBM are expected to be noisy due to inaccurate
calibration. Our work optimises over the extrinsic calibration
using the observations z̄αβSM robots accumulate over time as
depicted in Fig. 2.

Let Ω = {α, β, γ, . . .} be the set of robots, T be the number
of considered time-steps, and Tω

WBt denote the pose of the
base of the robot ω at time t in the world coordinate. To
perform marginal inference over all, Tω

BS , t
ω
BM ,Tω

WBt,∀ω ∈
Ω,∀t ∈ {1, . . . T}, we consider the following factors.

1) Range Bearing Sensor: In our setup, robots can observe
the other robots using range-bearing sensors. We use spherical
coordinate (r, θ, ϕ), i.e. radial distance, azimuthal angle, and
elevation angle respectively. All angles are parameterised using
SO(2), hence; the range bearing measurement is z̄αβSM ∈
⟨R,SO(2),SO(2)⟩, a composite manifold.

Robot 

Robot 

Odometry

Range Bearing Range Bearing

Odometry

Calibration

Fig. 3: Reducing the inter-robot communication by restructur-
ing the factor graph. We refer to TWB as WB for clarity.
Left: The inter-robot factor (range bearing) depends on four
variables: the poses of the robots, the marker M , and the
sensor S pose with respect to the robot base B. Right
We introduce the marker and sensor variable in the world
coordinate frame using Eq. (10). While the total number of
variables increases, the inter-robot factors depend on fewer
variables, thus reducing the communication requirements.

The range bearing factor relating the sensor Tα
WSt and the

marker tβWMt at time t is:

ls(T
α
WSt, t

β
WMt; z̄

αβ
SM ) ∝

exp(−1

2
∥z̄αβSM −⋄ hs(T

α
WSt, t

β
WMt)∥

2
Σs

) , (8)

where we use the notation −⋄ from [35], an operation on the
composite manifold (⊖ operation is applied to each block of
composites separately), and hs is the function that predicts
range bearing measurement between Tα

WS and tβWM .
2) Robot Odometry: We assume that odometry measure-

ments T̄Bt−1Bt
∈ SE(3) (e.g. IMU/wheel odometry) are

made available to each robot. An odometry factor penalises the
deviation between observation T̄Bt−1Bt and the two estimated
consecutive poses TWBt−1 ,TWBt ∈ SE(3):

lo(TWBt−1
,TWBt

; T̄Bt−1Bt
) ∝

exp(−1

2
∥T̄Bt−1Bt

⊖ (T−1
WBt−1

TWBt
)∥2Σo

) . (9)

This assumes that the odometry measurement is measured
in the base frame B. This property can be enforced by
choosing a suitable base frame given prior information about
the wheel/IMU position. However, if the odometry is provided
via the sensor S (i.e. visual odometry), we can replace the
transformations in the base frame B with a transformation in
the sensor from S.

3) Calibration Factor: In Eq. (8), we have used
TWSt, tWMt position of sensor S and marker M in the
world coordinate frame W at time t. A simple solution to
obtain the position in the world coordinate is to use all
Tα

WBt,T
α
BS ,T

β
WBt, t

β
BM inside the likelihood function, as

shown in the left row of Fig. 3. However, this has a clear
disadvantage: robots must communicate both the calibration
estimate and the pose estimate with each other. This not
only doubles the inter-robot communication effort but also
exposes internal states (i.e. sensor calibration) that do not
need to be revealed to other robots. Furthermore, it creates
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small cycles which often leads to overconfidence [28]. Hence,
this motivates the redesign of a factor to only share the pose
estimate of the sensor and the marker between robots.

The objective of the calibration is to find a transformation
TBS ∈ SE(3) such that: TWS = TWBTBS . This relation-
ship as a likelihood is defined as:

lc(TWS ,TWB ,TBS) ∝

exp(−1

2
∥Log(T−1

WSTWBTBS)∥2Σc
) . (10)

The likelihood for calibration of the marker can be derived
in a similar way. This allows us to create a factor graph as
illustrated in the right row of Fig. 3, where only TWSt, tWMt

is connected between the robots. While this formulation in-
creases the total number of variables in the factor graph, fewer
variables are connected to the inter-robot factor, thus reducing
the data transfer between the robots.

C. Adaptive Regulariser on the Factor

Due to the nature of SE(3), the objective function which
we are minimising is non-linear and non-convex; challenging
for any iterative optimisers, but especially for local ones such
as GBP with no access to the global objective function. In our
case, the Lie group extension of GBP [1] was insufficient to
consistently reach convergence. Hence, here, we introduce an
adaptive regularisation term in GBP to assist convergence.

For each of the factors fm, with a likelihood as defined in
Eq. (5), we add a zero-mean prior N−1(0, λmI). The term
λt
m is local to the factor and is updated adaptively based on

the difference between the current local factor energy Et
m and

last iterations Et−1
m :

λt
m =

{
λt−1
m · λ↑ Et

m − Et−1
m > ϵλ

λt−1
m /λ↓ otherwise

, (11)

where a threshold ϵλ is required to avoid the weighting
from increasing when the factors’ energy stops changing
significantly near convergence, and λ↑, λ↓ are the increase,
decrease factor respectively. Intuitively, at the beginning when
far from optima, the adaptive regulariser encourages small
descent steps. As the factors become more confident about
its approximation of the curvature (i.e. made multiple suc-
cessive descents), larger descent steps are performed. While
the principle of this approach is the same as Levenberg-
Marquardt, fundamental this weighting scheme is computed
and applied purely locally, and the step is always taken even
if the local energy increases. This way, no synchronisation or
communication is required when applied distributedly.

Assuming that the objective function is strictly con-
vex, the addition of the adaptive regualisation term will
not change the optimal solution. As the GBP converges,
limλm→0 ls(Xs; z̄s)N−1(0, λmI) = ls(Xs; z̄s), and λm → 0
as the energy decreases or reaches local convergence.

V. EVALUATION

We mainly evaluate our approach in a simulated environ-
ment with a vast number of robots, as obtaining the ground-
truth extrinsic calibration and robot poses in the real-world

TABLE I: Accuracy of the proposed method (‘Ours’) and the
global, centralised NLLS LM solver (‘LM’) at convergence
as a function of the number of robots N and the enabling
of autocalibration. Results include the RMSE ATE and ARE
of the robot poses of their bases in the world frame TWB ,
the extrinsic calibration of their sensor TBS and marker tBM

(only translation) where applicable.

N T Initial LM w/ Calib. Ours w/ Calib. Ours w/o Calib.
[m] [deg] [m] [deg] [m] [deg] [m] [deg]

16 TWB 0.432 7.422 0.065 1.858 0.084 1.970 0.093 2.313
TBS 0.080 8.852 0.023 1.156 0.027 1.268 – –
tBM 0.085 – 0.020 – 0.022 – – –

32 TWB 0.434 7.471 0.051 1.742 0.062 1.811 0.075 2.138
TBS 0.082 8.856 0.021 1.035 0.025 1.251 – –
tBM 0.087 – 0.019 – 0.022 – – –

64 TWB 0.436 7.402 0.043 1.684 0.054 1.761 0.066 2.082
TBS 0.083 8.810 0.020 0.969 0.025 1.214 – –
tBM 0.088 – 0.018 – 0.020 – – –

128 TWB 0.434 7.385 0.039 1.646 0.049 1.732 0.060 2.041
TBS 0.085 8.740 0.018 0.969 0.022 1.202 – –
tBM 0.087 – 0.017 – 0.020 – – –

for such experiments would be extremely challenging. As a
verification of the applicability of our method to the real-
world, we evaluate using UTIAS MR.CLAM dataset [36].

To simulate sensor noise, observations are corrupted by
applying zero-mean Gaussian noise. Odometry measurements
are corrupted with noise with σt

B , a standard deviation of 0.01
meter per meter travelled for the translation, and with σR

B , a
standard deviation of 1 degree per 90 degrees rotated for the
rotation. Inter-robot measurements are corrupted in their range
and bearing readings with a standard deviation of σs: (0.05m,
5◦). 3D range bearing measurements (r, θ, ϕ) are restricted
to the three closest observable robots, to imitate realistic
and limited inter-robot observability. We further restrict the
range-sensing to be limited to |θ| < 60◦ and |ϕ| < 60◦, to
simulate the field of view limitations of, for instance, visual
sensors. Robots are randomly initialised in translation and
orientation within a 20m × 20m × 20m space. We assume
that the initial pose of the robots is known to a certain degree,
within a noisy initial guess with standard deviation 0.01m, 1◦

respectively for the translation and the rotation. We simulate
the robots’ motion by drawing random samples from a uniform
distribution, U(0, 1)m for translational motion and U(−π, π)◦

for rotational motion, across all three dimensions. Finally, the
initial calibration of sensor S and marker M also deviate from
the ground-truth with a standard deviation of the translational
part of extrinsic of sensor σt

S and marker σt
M set to 0.05m,

and the standard deviation of the rotation part of the sensor
frame σR

S = 5◦.
To enhance the stability of GBP, for the adaptive regu-

larisation, we use the default parameter of λm = 10, λ↓ =
9, λ↑ = 11, ϵλ = 10−4. While not sensitive to the choice of
parameters, we found GBP to diverge in many cases without
adaptive regularisation. Additionally, 30% of both internal and
external GBP messages are randomly dropped, as an empirical
heuristics to improve the convergence of the system [37].
Unless specified otherwise, for robustness against outlying
measurements, we dynamically scale the information matrix of
the range-bearing sensor factor using a DCS robust kernel [38]:
sm = min

(
1, 2Φ

Φ+Em

)
, with Φ = 10. For each range-bearing
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Fig. 4: From top to bottom: RMSE ATE for TWB , TBS ,
tBM . RMSE ARE omitted as it follows the same trend.
Left: Comparison of different distributed alternatives (Final
RMSE ATE of global, non-distributed LM shown for refer-
ence). Right: Analysis of robustness regarding communication
failures by randomly dropping a percentage of the inter-robot
GBP messages in each iteration. 100% indicates that all inter-
robot messages are dropped, preventing co-localisation.

measurement, the information matrix Λm is scaled by s2m.
In all the presented experiments, unless specified otherwise,

we consider N = 64 robots that randomly execute 50 motions,
incrementally growing the underlying factor graph (see Sec-
tion IV-B) and performing 30 GBP message-passing iterations
after each of these motions. The experimental results aggregate
information from a total of 10 randomised runs, where we
often report the average Root Mean Squared Error (RMSE) of
Absolute Trajectory Error (ATE) and Absolute Rotation Error
(ARE) to measure the accuracy of the system as described
in [16] for multi-robot setup.

A. Comparison with Centralised Factor-Graph Solvers

Here we compare the proposed incremental GBP-based
approach with a global Non-Linear Least Squares (NLLS)
Levenberg-Marquardt (LM) solver (implemented in The-
seus [39]) that processes the full graph as a whole batch. We
evaluate how the accuracy of the overall system varies as a
function of the number of robots N and the effect resulting

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Outlier Noise Fraction

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R
M

S
E

A
T

E
T

W
B

[m
]

0 4 6 8 10 20 Inf

Communication Range [m]

0.1

0.2

0.3

0.4

0.5

R
M

S
E

A
T

E
T

W
B

[m
]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Outlier Noise Fraction

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

R
M

S
E

A
T

E
T

B
S

[m
]

0 4 6 8 10 20 Inf

Communication Range [m]

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

R
M

S
E

A
T

E
T

B
S

[m
]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Outlier Noise Fraction

0.05

0.10

0.15

0.20

R
M

S
E

A
T

E
t B

M
[m

]

0 4 6 8 10 20 Inf

Communication Range [m]

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

R
M

S
E

A
T

E
t B

M
[m

]

Fig. 5: From top to bottom: RMSE ATE for TWB , TBS ,
tBM . RMSE ARE omitted as it follows the same trend.
Left: Effect of increasing the fraction of outlier noise. Non-
Gaussian noise is added to the inter-robot sensor measurement
to simulate outliers. Right: Impact on the overall accuracy
when robots are limited to only communicating with peers
within the specified range.

from enabling or disabling auto-calibration for the proposed
method, i.e. whether the initial noisy calibration is optimisable
or remains fixed, respectively. The robust kernel is disabled for
this experiment to simplify the comparison. The accuracy of
the different alternatives is compared in Table I. Despite the
proposed method being distributed and without any global,
second-order perspective of the whole problem, experimental
results show no significant differences with respect to the
global LM solver at convergence. As expected, the larger the
number of robots N , the higher the accuracy of all methods
as the underlying factor graph becomes denser and thus,
more information-rich. Observe that the proposed GBP-based
approach is still able to profit from a denser graph despite
including more cycles. We additionally report the results of
our method while considering that the noisy initial calibration
is correct. This yields obviously worse results than when we
optimise the graph which considers the calibration parameters.
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B. Comparison with Distributed Factor-Graph Solvers

We compare our method against other distributed solvers:
block Gauss-Seidel (GS) and its relaxations block Successive
Over-Relaxation (SOR) [40]. In GBP messages are exchanged
in parallel and thus do not require coordinated updates. We
favour GS and SOR by counting each iteration as an ordered
sweep, where robots sequentially exchange their updated state
in a specific order. In this comparison, all the methods are
provided with the whole graph to be optimised from the
beginning instead of incrementally growing and solving the
problem, with 16 robots making 10 random motions. We
use the same relaxation parameter as reported in [16]. The
robust kernel is disabled for this experiment to simplify the
comparison.

Results are presented in the left column of Fig. 4. GBP
shows a faster convergence rate than GS and SOR in the num-
ber of iterations (the aforementioned global and centralised
LM method is also shown for reference). Presented results
match prior comparisons between GBP and Successive Over-
Relaxation in [28]. Note that GS and SOR produce marginally
better extrinsic at by trading off a significantly worse body
frame localisation.

C. Robustness Analysis

1) Communication Failure and Asynchronicity: We analyse
the robustness of the system regarding potential communica-
tion failures, modelled by randomly dropping a percentage of
the inter-robot GBP messages in each iteration, and present
the results in the right column of Fig. 4. In this experiment,
the whole graph is available from the beginning of the
proposed algorithm with 16 robots and 50 random motions
to clearly identify the convergence trends. The behaviour
of the system remains largely unaffected by communication
failure up to around 80%, communication failure. ATE of
TWB initially increases as poses are initially uncertain and
are down-weighted by the robust kernel. However, within a
few iterations, the poses are correctly optimised, reducing
the ATE. Even at an extremely high communication failure
rate, the RMSE ATE still gradually decreases as we perform
more iterations and thus, more rounds of communication.
The experiment further demonstrates the asynchronicity of
our approach, where the message order does not significantly
impact the overall performance. This is a crucial property
required for real-world deployment, where the communication
channel is potentially unreliable, especially at scale.

2) Robustness to Outlier Measurements: As real-world
inter-robot sensing is often challenging (e.g. misidentification,
sensor failure), we investigate the robustness of the system
to extreme, non-Gaussian outlier measurements following a
uniform noise. As presented in the left row of Fig. 5, results
indicate that, while performance is reasonably impacted as the
fraction of outliers increases, the system remains stable even
for an extremely high percentage of non-Gaussian outliers.
Even at 40%, we observe a relatively small increase in
the error compared to no outlying noise, demonstrating the
robustness of our approach.

TABLE II: Evaluation of our method on real-world data.
Results include the RMSE ATE of our system with and without
the autocalibration enabled, on UTIAS MR.CLAM dataset 1-
4. The noise column indicates whether a noise was artificially
added to the sensor calibration to simulate an uncalibrated
system.

Noise Auto Calib. 1 2 3 4 Avg.
✗ ✗ 0.102 0.0976 0.0690 0.0712 0.0851
✗ ✓ 0.102 0.0967 0.0706 0.0694 0.0847
✓ ✗ 0.122 0.121 0.0974 0.0855 0.107
✓ ✓ 0.111 0.120 0.0825 0.0809 0.0984

3) Communication Range: To mimic realistic, real-world
conditions, we further limit the communication radius of the
robots to 4, 6, 8, 10 and 20m and report the results on the
right row of Fig. 5, including also no communication (0m) and
infinite communication range (‘Inf’) for completeness. While
a longer communication range proves to be indeed beneficial,
our method is able to optimise all the parameters effectively
even with a severely limited communication radius. For refer-
ence, only 24% of the robots are within communication range
at a 10m radius whereas the percentage increases to 85%
at a 20m radius and yet such a drastic increase only yields
insignificant returns in terms of accuracy.

The imposed limit on the communication range also tests the
system’s asynchronicity. Since an agent cannot communicate
at the time of observation if the other agent is too far away,
the agent needs to wait for a rendezvous event in order to
exchange information. Our result hence further highlights that
our system is capable of handling asynchronous events.

4) Real-world Experiments: To verify the applicability
of our approach to real-world data, we have performed
localisation and auto-calibration using UTIAS MR.CLAM
dataset [36]. As the robots are ground vehicles, we model them
with SE(2) poses and 2D range-bearing observations. We use
datasets 1-4, where the landmarks and the robots are randomly
scattered. We set σt

B = (0.05m, 0.01m), σR
B = 5◦, σs =

(0.08m, 2◦). The dataset is subsampled at 1s intervals, and
we use sliding window-based GBP [1] with a window size of
30.

As presented in Table II, as the robots are calibrated, auto-
calibration does not yield better RMSE ATE. We simulate an
uncalibrated system by artificially adding noise to the sensor
calibration with a standard deviation of 0.05m and 10◦ for
translation and rotation respectively. While this manipulation
of calibration is artificial, this data still contains challenging
real-world sensor and odometry noise. In such a case, auto-
calibration reduces the ATE, indicating that our method has
successfully filtered out the biases even with real-sensor data.

VI. CONCLUSION

In this paper, we presented a method for online, simul-
taneous localisation and automatic extrinsic calibration of
sensors and observable markers, by building on our previous
work Robot Web [1]. Our work performs distributed and
asynchronous inference on the factor graph using GBP, and
we have demonstrated its robustness against large amounts of
communication failure, outlying measurements, and restricted
communication ranges.
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Distributed and asynchronous properties of GBP offer at-
tractive features for multi-robot systems. Automatic calibration
ensures that the robots require as little maintenance as possible
and the accurate localisation provides the basis required for
multi-robot interaction.
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