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Learning Sequence Descriptor based on
Spatio-Temporal Attention for Visual Place

Recognition
Junqiao Zhao1,2, Fenglin Zhang∗1, Yingfeng Cai1, Gengxuan Tian1, Wenjie Mu1, Chen Ye1, Tiantian Feng3

Abstract—Visual Place Recognition (VPR) aims to retrieve
frames from a geotagged database that are located at the same
place as the query frame. To improve the robustness of VPR in
perceptually aliasing scenarios, sequence-based VPR methods are
proposed. These methods are either based on matching between
frame sequences or extracting sequence descriptors for direct
retrieval. However, the former is usually based on the assumption
of constant velocity, which is difficult to hold in practice, and
is computationally expensive and subject to sequence length.
Although the latter overcomes these problems, existing sequence
descriptors are constructed by aggregating features of multiple
frames only, without interaction on temporal information, and
thus cannot obtain descriptors with spatio-temporal discrimi-
nation. In this paper, we propose a sequence descriptor that
effectively incorporates spatio-temporal information. Specifically,
spatial attention within the same frame is utilized to learn spatial
feature patterns, while attention in corresponding local regions
of different frames is utilized to learn the persistence or change
of features over time. We use a sliding window to control the
temporal range of attention and use relative positional encoding
to construct sequential relationships between different features.
This allows our descriptors to capture the intrinsic dynamics in a
sequence of frames. Comprehensive experiments on challenging
benchmark datasets show that the proposed approach outper-
forms recent state-of-the-art methods. The code is available at
https://github.com/tiev-tongji/Spatio-Temporal-SeqVPR.

Index Terms—Recognition, Localization, SLAM, Visual Place
Recognition

I. INTRODUCTION

V ISUAL place recognition (VPR) aims to retrieve frames
from a geotagged database that are located at the same

place as the queried frame [1]. It is typically used for loop
detection in simultaneous localization and mapping (SLAM)
as well as for visual relocalization. Various approaches have
been proposed to enhance the performance of VPR by learning
improved single frame representation [2]–[7]. However, single
frame-based VPR is vulnerable to drastic changes in viewpoint
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and appearance, so studies have delved into the utilization of
sequence information to address this issue.

One category of sequence-based methods is based on se-
quence matching. This approach involves comparing each
frame of the query sequence with the database to create a
matching matrix. Then, the diagonal values are aggregated
to obtain a similarity score to determine the location of the
query sequence. However, this method is mainly suitable for
cases where the camera motion remains relatively stable [8].
Otherwise, incorrect matches may occur. Additionally, the
computational cost of sequence matching increases with the
sequence length and map size [9].

To overcome the aforementioned challenges, researchers
have proposed utilizing descriptors to represent a sequence
[10]. Sequence descriptors offer better scalability for varying
sequence lengths and greater robustness against perceptual
aliasing. However, existing research only aggregates descrip-
tors [11] or local features of multiple frames [12], neglecting
the cross-frame temporal interactions, which makes sequence
descriptors less discriminative.

In this paper, we propose an approach for exploring spatio-
temporal interactions within frame sequences to extract se-
quence descriptors. Such sequence descriptors take into ac-
count both the temporal correlation across multiple frames and
the spatial structure distribution in a frame. By employing the
attention mechanism, we adaptively weight image patches to
capture and combine discriminative features in the sequence.
A sliding window is used to control the attentional range and
reduce the computational burden. Moreover, relative positional
encoding is employed to guide the sequence descriptors in
learning spatio-temporal patterns rather than specific visual
content. This choice stems from the observation that, during
camera motion, the visual content moves with the frame,
while the relative positions of spatio-temporal patterns remain
constant.

The contributions of this paper are threefold:

• We introduce a spatio-temporal sequence descriptor that
effectively captures the interaction of the spatial and
temporal information simultaneously.

• We investigate the impact of positional encoding on the
spatial and temporal information interactions.

• Our approach delivers competitive results across multiple
datasets, outperforming existing state-of-the-art methods
based on sequence descriptors.
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II. RELATED WORKS

A. Sequence-based VPR

There are mainly two avenues for utilizing sequence infor-
mation in VPR: sequence matching and sequence descriptor
extraction [1].

Sequence matching involves two key steps. Initially, a
similarity matrix is constructed by comparing the descriptors
of each frame in the query sequence with the descriptors of
all frames in the database. Subsequently, the most similar
sequence in the database is determined by aggregating the
individual similarity scores. SeqSLAM [8] is a pioneering
example of sequence matching. However, SeqSLAM can be
computationally demanding especially when handling large
maps. Additionally, it relies on the assumption of constant
velocity, which can limit its applicability in scenarios with
varying motion characteristics. To address these challenges,
several innovations have emerged. Fast-SeqSLAM [9] lever-
ages an approximate nearest neighbor algorithm to reduce time
complexity without degrading accuracy. [13] proposes a local
matching method based on an improved dynamic time warping
algorithm, which relaxes the assumption of constant velocity
and concurrently reduces time complexity. [14] and [15] use
a cost matrix-based approach via dynamic programming to
alleviate the issues of missing frames. These methods have
also been evaluated on sequences with strong seasonal changes
and showing promising performance. However, these methods
operate on the matching scores obtained from the underlying
single frame descriptors.

In the second avenue, a descriptor is extracted to represent a
sequence, followed by a direct sequence-to-sequence similarity
search. This not only reduces the matching cost but also incor-
porates temporal cues into the descriptor. [10] first proposes
the idea of fusing multiple individual descriptors to generate a
sequence descriptor. Subsequently, SeqNet [11] proposes using
a 1-D convolution to learn frame-level features into a sequence
descriptor. However, this approach is implemented based on
pre-computed individual frame descriptors, which prevents the
sequence descriptors from capturing the local features within
each frame. SeqVLAD [12] proposes a detailed taxonomy
of techniques using sequence descriptors. It analyzes various
mechanisms for fusing individual frame information, and
further investigates the feasibility of using the Transformer
as the backbone. The sequence descriptor is aggregated by
NetVLAD [6] directly from the local features of each frame
in the sequence. However, it does not consider the temporal
information interaction across frames, resulting in descriptors
without spatio-temporal discrimination.

B. Spatio-temporal Attention Mechanism

Spatio-temporal attention mechanisms have been applied in
various tasks, including video retrieval, video classification,
and more. In the context of video action recognition, [16]
presents a general ConvNet architecture. It leverages multi-
plicative interactions of spatio-temporal features to capture
long-term dependencies among local features. [17] proposes
a spatio-temporal attention network to learn discriminative
feature representations for actions. In the video classification

task, [18] explores the efficacy of spatio-temporal attention
mechanism for feature learning directly from image patches.
In the realm of video action recognition and object detection,
[19] introduces a novel multi-scale vision transformer, which
achieves state-of-the-art performance. The spatio-temporal at-
tention mechanism has also been extended to diverse tasks
such as image captioning [20] and person re-identification
[21].

These methods leverage both spatial and temporal infor-
mation to selectively focus on relevant video regions or
frames. Interestingly, despite the success of spatio-temporal
attention mechanism in various applications, it has not yet
been integrated into sequence-based VPR.

III. METHODOLOGY

We begin by presenting the architecture, which encompasses
spatio-temporal-based feature learning and aggregation. Sub-
sequently, we introduce the loss function.

A. Architecture

The architecture of our model is illustrated in Figure 1.
It takes a frame sequence S ∈ RL×H×W×3 as input, com-
posed of L image frames with dimensions H × W . Since
vision transformer (ViT) [22] is computation-intensive and
lacks the inductive biases inherent in convolutional neural
networks (CNN) [23], we utilize convolution layers to map
each frame si to a feature map mi ∈ Rh×w×c, where si ∈ S,
i ∈ {1, 2, . . . , L} and c represents the number of channels.
Subsequently, the feature map of each frame is split into N
non-overlapping patches, where N is determined as hw/P 2,
given the patch size of P × P . Following this, each patch
is flattened and mapped to an embedding x using a trainable
linear projection E as Equation (1).

xi
j,patch = E(pij), xi

j ∈ RD (1)

where i ∈ {1, 2, . . . , L}, j ∈ {1, 2, . . . , N}, and p ∈ RP×P

which indicates the patch. Then, x is employed as the input
embedding for Spatial and Temporal Transformer Encoders.

1) Spatial Attention: In each frame, the positions of the
local features reflect the spatial distribution of the features, and
this distribution remains relatively consistent within a frame
under the same view. Similar to ViT [22] and as illustrated
in Figure 2 (a), we incorporate position information into the
patch embedding using a standard learnable absolute positional
embedding denoted as xpos ∈ RD, as follows1:

xj = xj,patch + xj,pos, xj ∈ RD (2)

We employ an Ls-layer transformer encoder for spa-
tial fusion, which outputs spatial fusion embeddings
{xs1

1,...,N , . . . , xsL
1,...,N}. Each layer consists of a multi-head

self-attention (MSA) module, a multi-layer perceptron (MLP),
Layer-norm (LN) blocks and residual connections. In the
MSA module, linear projections Wh

Q, Wh
K , Wh

V ∈ Rd×D are
applied to query (Qh), key (Kh) and value (V h) according

1The superscript is omitted where it does not cause ambiguity.
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Fig. 1. The architecture of our proposed method. Given a continuous sequence of raw frames I1, I2, . . ., IL, we employ a Convolutional Neural
Network (CNN) to map each frame to feature maps and then split these maps into patches. A Linear Projection is subsequently employed to map the patch
features to embeddings {x1

1,...,N , x2
1,...,N , . . . , xL

1,...,N}. These embeddings from individual frames are then passed through Spatial Transformer Encoders,
applying self-attention for spatial information interaction. This process yields a set of transformed embeddings {xs1

1,...,N , . . . , xsL
1,...,N}. Furthermore, the

embeddings across different frames within the sliding window are input into a Temporal Transformer Encoder to fuse temporal information, which generates
{xt1

1,...,N , . . . , xtL
1,...,N}. Finally, the embeddings from two branches are combined, and the NetVLAD layer is employed to aggregate these embeddings to

generate a sequence descriptor.

to Equation (3), where X = {x1, x2, . . . , xN}, h represents
the head index and d = D/h. Subsequently, the self-attention
weights are computed through the dot-product of Qh and Kh,
then the output Zh ∈ RN×d is generated by multiplying
scaled weights and V h in Equation (4). Finally, the output
{Z1, Z2, . . . , Zh} from the heads are concatenated to form
Z ∈ RN×D in Equation (5), which serves as input to the
Layer-norm and MLP components.

Qh = Wh
QX, Kh = Wh

KX, V h = Wh
V X (3)

Zh = Softmax(QhKhT /
√
d)V h (4)

Z = Concat(Z1, Z2, . . . , Zh) (5)

2) Temporal Attention: We define a sliding window of
size m × m to control the temporal self-attention range in
the sequence. Within each layer of the temporal transformer
attention, self-attention is performed within identical sliding
windows of the same region across multiple images. The
window moves along the rows and columns, indicating that
attention is performed between temporally adjacent regions,
as illustrated in Figure 2 (d), rather than between two im-
ages. In the temporal interaction, xj,patch from Equation (1)
is taken as the input. We redefine X in Equation (3) as
X = {x1

j , . . . , x
1
j+m2 , . . . , xL

j , . . . , x
L
j+m2}, where L is the

frame index, j is the patch index and m is the sliding window
size, and we generate Q, K, V respectively. Compared to
absolute positions, we argue that relative positions provide
more accurate description of the consistency or variation of
local features in a sequence over time. This is because relative
position information can capture the changing relationship
between the positions of two patches across different frames,
as illustrated in Figure 2 (d), whereas absolute position infor-
mation merely considers the static relationship between one
patch and all patches, as illustrated in Figure 2 (b).

We encode the relative position between two input embed-
dings xi and xj in X , into a relative positional embedding

Pij ∈ RD, following [24]. The representation of pairwise
encoding is then embedded into the self-attention module2,

Z = Softmax(QKT + E(rel)/
√
D)V (6)

where E
(rel)
ij = QiPij , and E(rel) ∈ R(m×m×L)×(m×m×L),

and the E changes in each layer of the temporal transformer
encoder. We further decompose the relative positional em-
bedding into height, width and temporal axes following [19],
which can reduce the number of learnable parameters. We
adopt the Lt-layer transformer encoder for temporal fusion,
then the temporal fusion embeddings {xt1

1,...,N , . . . , xtL
1,...,N}

are generated.
3) Aggregation: In our spatial and temporal attention

blocks, the class token is removed. This decision aligns with
our strategy of utilizing attention for information interaction,
rather than extracting frame descriptors. The sequence descrip-
tor is aggregated by NetVLAD [6].

Given a set of D-dimensional embeddings from spatial and
temporal Transformer, we combine them based on the position
of patches i.e., {xs1

1,...,N + xt1
1,...,N , . . . , xsL

1,...,N + xtL
1,...,N}.

Following this, we perform aggregation on the resulting N×L
embeddings using NetVLAD,

V (k) =

N×L∑
i=1

ak(xi)(xi − ck) (7)

where xi is a single embedding, ck is the k-th centroid which
is trainable parameter, and the ak(xi) is a soft-assignment
defined as:

ak(xi) =
ew

T
k xi+bk∑

k′ e
wT

k′xi+bk′
(8)

where wk, bk are also trainable parameters.

2Here we only show the single-head self-attention, for multi-head self-
attention, please refer to Equation (3), Equation (4) and Equation (5).
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Fig. 2. The different positional embeddings and sliding windows. Here we show spatial absolute positional embedding (a) and relative positional embedding
(c), as well as temporal absolute positional embedding (b) and relative positional embedding (d), where we use A to represent the absolute positional embedding
and R for the relative positional embedding. Dashed arrows indicate that information is passed between the two patches. Solid arrows indicate to fuse positional
embeddings to the information passing. It’s important to note that absolute positional embeddings are independent of the inter-patch relationships. In contrast,
relative positional embeddings vary based on the position relationship between patches.

TABLE I
DATASETS DETAIL. THIS TABLE SPECIFIES THE NUMBER OF IMAGES IN

THE DATASET USED.

dataset database / queries

MSLS

Melbourne 101827 / 88118
Amman 953 / 835
Boston 14024 / 6724

San Francisco 6315 / 4525
Copenhagen 12601 / 6595

NordLand
train set 15000 / 15000
test set 3000 / 3000

Oxford1
train set 2401 / 2448
test set 1460 / 1474

Oxford2
train set 3619 / 3926
test set 3632 / 3921

B. Loss Function

Similar to the training regime of NetVLAD, we use the
max-margin triplet loss as below:

Loss =
∑
k

max(∥Sa − Sp∥2 −
∥∥Sa − Sk

n

∥∥
2
+ α, 0) (9)

where α is the desired margin between the norm of the anchor
Sa and the best positive Sp and that of Sa and the hardest
negatives Sk

n in the descriptor space. The k is the number of
hard negative samples corresponding to each anchor. We train
our model using a set of reference and query databases. For
each query, we consider it as an anchor, and its positives and
negatives are generated from the reference database, which
will be detailed in Section IV-B.

IV. EXPERIMENTS
A. Datasets

In our experiments, we use three datasets: MSLS [25],
NordLand [26], Oxford RobotCar [27], as summarized in
Table I.

1) Mapillary Street Level Sequences (MSLS): MSLS is a
comprehensive dataset consisting of street-level view image
sequences, designed to support VPR studies. These sequences
are collected from various cities. We used Melbourne for
training and Amman, Boston, San Francisco and Copenhagen
for testing.

2) NordLand: The Nordland dataset comprises a collection
of images captured during of rail journeys across four seasons,
covering various weather and lighting conditions. We use the
Summer-Winter pair for training, and Spring-Fall pair for
testing.

3) Oxford RobotCar: The Oxford RobotCar dataset is a
large-scale dataset for autonomous driving research. It encom-
passes road scenes captured during different time periods. We
design two experimental sub-datasets: Oxford1 and Oxford2.
For Oxford1, we split the database (2015-03-17-11-08-44,
day) and query (2014-12-16-18-44-24, night) to train set and
test set. For Oxford2, we use a database (2014-12-16-09-14-
09, day) and query (2014-12-17-18-18-43, night) for train and
database (2014-11-18-13-20-12, day) and query (2014-12-16-
18-44-24, night) for test. These datasets are pre-processed to
keep an approximate 2 meters frame separation based on the
latitude and longitude of each frame location.

B. Implementation Details

Architecture. We implement our method using the Pytorch
framework [28] on an NVIDIA RTX A6000 card. In the patch
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TABLE II
QUANTITATIVE RESULTS ON MSLS

Method Dimension
MSLS

Amman Boston SF Cph

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

NetVLAD [6] 4096 0.189 0.251 0.277 0.179 0.238 0.267 0.289 0.398 0.455 0.405 0.534 0.594

NetVLAD+SeqMatch [11] 4096 0.246 0.302 0.330 0.204 0.239 0.257 0.363 0.430 0.460 0.504 0.612 0.657

SeqNet [11] 4096 0.269 0.376 0.408 0.274 0.354 0.390 0.556 0.671 0.728 0.462 0.581 0.637

SeqVLAD [12] 24576 0.300 0.448 0.519 0.466 0.628 0.678 0.661 0.826 0.863 0.564 0.722 0.777

Ours 24576 0.303 0.423 0.511 0.504 0.645 0.688 0.680 0.841 0.864 0.608 0.765 0.801
SeqVLAD w/ PCA 4096 0.294 0.442 0.526 0.465 0.623 0.675 0.656 0.822 0.859 0.560 0.720 0.774

Ours w/ PCA 4096 0.306 0.411 0.510 0.502 0.645 0.691 0.671 0.839 0.860 0.604 0.760 0.801

The best and second-best results for each dataset are highlighted. The best overall results on each dataset are indicated in bold, while the second-best results
are underlined.

TABLE III
QUANTITATIVE RESULTS ON NORDLAND AND OXFORD ROBOTCAR

Method Dimension
NordLand Oxford1 Oxford2

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

NetVLAD [6] 4096 0.377 0.543 0.615 0.468 0.696 0.779 - - -

NetVLAD+SeqMatch [11] 4096 0.610 0.705 0.746 0.672 0.784 0.846 - - -

SeqNet [11] 4096 0.797 0.905 0.930 0.741 0.875 0.933 - - -

SeqVLAD [12] 24576 0.964 0.992 0.993 0.966 0.982 0.989 0.844 0.929 0.958

Ours 24576 0.971 0.995 0.995 0.958 0.978 0.988 0.868 0.944 0.968

SeqVLAD w/ PCA 4096 0.963 0.991 0.994 0.967 0.982 0.990 0.847 0.932 0.961

Ours w/ PCA 4096 0.971 0.995 0.995 0.955 0.977 0.986 0.866 0.945 0.969

The best and second-best results for each dataset are highlighted. The best overall results on each dataset are indicated in bold, while the second-best results
are underlined.

embedding process, the CNN comprises two convolutional
layers. The first layer maps 3 channels to 64 channels and the
second layer maps 64 channels to 384 channels. We set the
convolution parameters as follows: kernel = 7, stride = 2
and padding = 1. After each convolution operation, we apply
the ReLU activation function followed by max pooling. Then
we incorporate the spatial transformer encoder with Ls = 4
layers and the temporal transformer encoder with Lt = 4
layers. Additionally, we use a multi-head in transformer with
h = 6 heads. In the temporal transformer encoder, we set the
size of sliding window m = 6 and the stride = 3. Both the
inputs and outputs of the transformers are embeddings with
a dimensionality of D = 384. In the NetVLAD module, we
configure the number of clusters to be 64, yielding sequence
descriptors with dimensions of 384 × 64 without the applica-
tion of Principal Component Analysis (PCA) [29]. To facilitate
comparison with other methods, we perform dimensionality
reduction using PCA, reducing the dimensionality to 4096.

Training. In the training phase, we initialize the model
with pre-trained parameters from CCT [23] and adopt the
Adam optimizer [30]. All images are resized to 384 × 384.
The learning rates for spatial transformer encoder, temporal
transformer encoder and NetVLAD are configured as 0.0001,
0.001 and 0.0001 respectively. We set the batch size = 4,
with each batch consisting of a query sequence, a best positive
sequence and 5 hardest negative sequences (k = 5 as refer-
enced in Equation (9)). The length of each sequence is set to

L = 5. The margin in triplet loss is specified as α = 0.1.
The mining method [6] is used to select samples, i.e., we
initially select samples based on GNSS labels between the
query and the database, and then we select the best positive
and the hardest negatives by cosine distance in the descriptor
space. Since selecting negatives from the whole dataset is
time and space consuming, we adopt partial mining [25]. This
involves randomly sampling a subset of negatives using GNSS
labels filtering and using a cache to store the descriptors of
sub-negatives. The cache is employed for selecting negatives
and is refreshed after every 1000 iterations. We implement
early stopping by halting the training if the Recall@5 does
improve for 5 consecutive epochs. We set the positive distance
threshold to 10 meters and the negative distance threshold to
25 meters.

Evaluation. In the evaluation phase, we use Recall@K as
the performance metric. Recall@K is defined as the ratio of
the number of correct queries retrieved to the total number of
queries. A correct retrieval is defined as at least one of the
top K retrieval being within the given radius from the ground
truth position of the query. We use radii of 10 meters, 20
meters and 1 frame for Oxford, MSLS and Nordland datasets
respectively.

C. Results

1) Comparison with the State-of-the-art Methods: The cho-
sen baseline methods include the state-of-the-art methods us-
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ing sequence descriptors, i.e., SeqNet [11] and SeqVLAD [12].
Additionally, we also compare our method with NetVLAD [6]
and NetVLAD+SeqMatch [11]. To ensure a fair comparison,
all the experimental results are reproduced via our setting
described in Section IV-A and Section IV-B.

Table II and Table III show the results of our method
compared to the baseline methods on MSLS, NordLand and
Oxford RobotCar. It is evident that NetVLAD performs worse
than other methods, indicating that sequence VPR significantly
outperforms the single-frame VPR. In addition, the methods
based on sequence descriptors outperform the method based
on SeqMatch.

Compared to SeqNet, our method outperforms it across
all datasets. We observe a Recall@1 improvement of over
10% in most datasets, except for a 4% improvement in
Amman. SeqNet generates a sequence descriptor through a
weighted sum of frame descriptors, which are created by
aggregating the local features of each frame. While local
features can be discriminative for individual frames within a
sequence, they may not exhibit the same level of discriminative
power across all sequences. In contrast, our method directly
derives the sequence descriptors from the local features of
all frames within a sequence. This approach ensures that
our descriptor maintains its discriminative qualities across
different sequences.

Additionally, compared with SeqVLAD, our method ex-
hibits superior performance in most datasets, except Amman
and Oxford1. Notably, SeqVLAD does not take into account
the temporal correlation across multiple frames. As shown
in Figure 6 (a)(c), the SeqVLAD is susceptible to dynamic
objects, e.g., bicyclists, and is sensitive to illumination changes
from day to night or variations in weather conditions. Con-
versely, our proposed cross-frames temporal attention can
effectively capture local regions correspondences to learn
patterns that persist over time. This property renders our
sequence descriptors more robust to illumination changes and
local scene variations. Figure 3 provides further insight by
illustrating the attention mechanisms of both our method and
SeqVLAD for different regions within query sequences from
Figure 6 (a)(c), substantiating the aforementioned conclusions.
While our method’s performance in Oxford1 is slightly lower
than SeqVLAD, there is a noteworthy Recall@1 improvement
of over 2% in Oxford2. Oxford1 has a smaller train set
compared to Oxford2, but our model has a higher parameter
count than SeqVLAD, making it more challenging to train
effectively. On the other hand, SeqVLAD tends to be more
susceptible to overfitting.

Finally, we delve into the impact of reducing the dimen-
sionality of sequence descriptors. The results reveal that when
descriptors undergo dimensionality reduction via Principal
Component Analysis (PCA) into a 4096-Dimensional space,
their performance remains on par with that of the full-sized
descriptors.

2) Ablation Studies: We conduct ablation studies on the
four test cities of MSLS to analyze the effectiveness of the
spatio-temporal attention with positional embedding and the
sliding window setting. As shown in Figure 4, we compare
the experimental results of spatio-temporal attention with po-
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Fig. 3. Visualizations on attention. Here are the attentions of our method and
SeqVLAD for different regions of the query sequences which is in Figure 6
(a), Figure 6 (c). Red portions indicate more focus, and blue portions indicate
less focus. Compared to SeqVLAD, our method focuses less on dynamic
objects and more on road elements.
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scratch without pre-trained parameters.

sitional embedding. It can be clearly observed that descriptors
extracted via spatial attention achieve better performance than
those extracted via temporal attention. This may indicate that
the spatial structure plays a dominant role in the sequence
descriptors. But our sequence descriptors extracted via spatio-
temporal attention achieve the best performance. This suggests
that fusing temporal information to spatial structure can further
improve the representation of the descriptors. Furthermore, the
role of positional embedding is slight for spatial attention but
crucial for temporal attention. Fusing position information can
greatly improve performance of descriptors, and relative posi-
tional embedding is superior to absolute positional embedding.

In addition, we explore how the hypermeters of the sliding
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Fig. 5. Ablation Studies for sliding window settings. We show the
comparison of Recall@N performances with different sliding window settings,
where m/s demonstrates the size and stride of the sliding window respectively.

TABLE IV
RESOURCE CONSUMPTION AND MODEL SIZE. THE MS/FRA INDICATES THE
TIME OF EXTRACTING A FRAME DESCRIPTOR, AND MS/SEQ INDICATE THE

TIME OF EXTRACTING A SEQUENCE DESCRIPTOR.

Method
Extraction

latency

GPU

Memory
GFLOPs Params

NetVLAD [6] 8.8 ms/fra 57.26 MB 45.12 14.74 M

SeqNet [11] 6.2 ms/seq 320.01 MB 0.84 83.89 M

SeqVLAD [12] 8.9 ms/seq 59.88 MB 32.71 7.15 M

Ours 18.7 ms/seq 103.74 MB 63.74 13.06 M

window affect the ability to capture the dynamics of local
features in temporal attention. We compare different sliding
window settings, where 4× 4, 6× 6 and 8× 8 are set for the
size of window, and {2, 3}, {2, 3, 4} and {3, 4, 5} are set
for the stride respectively. As observed in the Figure 5, for a
given stride, a larger sliding window performs better, but the
performance decreases beyond a certain threshold. Finally, the
optimal value of stride is half of the sliding window size.

3) Runtime Analysis and Memory Footprint: In real-world
VPR systems, it is crucial to take latency and scalability
into account. Table IV provides insights into the computa-
tional time, GPU memory footprint and model size of the
compared techniques in evaluation. SeqNet is able to extract
sequence descriptors more swiftly and with lower GFLOPs
due to the pre-extraction and storage of NetVLAD descriptors
for each image offline. This eliminates the need to account
for the time taken by NetVLAD. In addition, the memory
footprint and model parameters of SeqNet are influenced by
both the descriptor dimension and sequence length, which
are proportional to D × D × L, where D represents the
descriptor dimension and L represents the sequence length.
In contrast, our approach and SeqVLAD extract sequence
descriptors directly from the original image sequences, with
the entire process being executed online. Additionally, our
model considers the interaction among consecutive frames,
making it more intricate than SeqVLAD. Consequently, it
takes more time to extract a sequence descriptor.

query

seqnet

seqvlad

ours

query

seqnet

seqvlad

ours

query

seqnet

seqvlad

ours

query

seqnet

seqvlad

ours

(b)

(a)

(c)

(d)

Fig. 6. Qualitative results. In these examples, the proposed method suc-
cessfully retrieves the matching reference sequence in MSLS street (a) view
and highway (b), Oxford (c) and NordLand (d), while SeqNet and SeqVLAD
produce incorrect place matches. Green and red indicate correct and incorrect
retrievals, respectively. While orange indicates the same view but beyond a
certain GNSS label threshold, which is also defined as incorrect retrievals.

4) Qualitative Results: In Figure 6, we show our retrieval
sequence compared with those from SeqNet and SeqVLAD
in MSLS street view and highway, Oxford and NordLand.
Sequences marked with green and red borders indicate correct
and incorrect retrievals, respectively. Sequences marked with
orange borders indicate that the retrieval sequence and the
query have the same view, but their GNSS labels define that
they are not the same “place”. Based on the qualitative results,
our method demonstrates the capability to handle changes
in lighting conditions caused by day-night transitions and
weather changes. In addition, it is less susceptible to dynamic
occlusions and partial scene changes, such as pedestrians
and vehicles on the road, as well as changes due to road
maintenance.
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D. Limitations

The complexity of our model results in a heightened reliance
on the size and distribution of the train set, which may yield
subpar results when the train set is small, as observed in
Table III Oxford1. Additionally, we further analyze the failure
cases in Amman. We find that some query images and their
ground truth exhibit a large discrepancy in field of view
(FOV). Consequently, our approach, which incorporates tem-
poral interaction, may introduce greater temporal consistency
in sequence descriptors than descriptors without temporal
information. This could be one of the factors contributing to
the failure cases.

V. CONCLUSION

VPR holds immense potential for various applications. Our
work aims to provide a new perspective on sequence-based
VPR. Instead of aggregating multiple frames spatially, we
introduce the fusion of features in the temporal dimension.
We use a spatio-temporal attention approach to generate a
discriminative descriptor of sequences with improved accuracy
compared to existing methods. Additionally, our findings em-
phasize the significance of both spatial structure and temporal
variation in sequence descriptors. We anticipate that these
insights will serve as a solid foundation for future research
endeavors, enabling improved utilization of sequence infor-
mation in VPR.
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