
TacIPC: Intersection- and Inversion-free FEM-based Elastomer
Simulation For Optical Tactile Sensors

Wenxin Du1∗, Wenqiang Xu1∗, Jieji Ren1, Zhenjun Yu1 and Cewu Lu1

Abstract— Tactile perception stands as a critical sensory
modality for human interaction with the environment. Among
various tactile sensor techniques, optical sensor-based ap-
proaches have gained traction, notably for producing high-
resolution tactile images. This work explores gel elastomer
deformation simulation through a physics-based approach.
While previous works in this direction usually adopt the explicit
material point method (MPM), which has certain limitations in
force simulation and rendering, we adopt the finite element
method (FEM) and address the challenges in penetration
and mesh distortion with incremental potential contact (IPC)
method. As a result, we present a simulator named TacIPC,
which can ensure numerically stable simulations while accom-
modating direct rendering and friction modeling. To evaluate
TacIPC, we conduct three tasks: pseudo-image quality assess-
ment, deformed geometry estimation, and marker displacement
prediction. These tasks show its superior efficacy in reducing
the sim-to-real gap. Our method can also seamlessly integrate
with existing simulators. More experiments and videos can
be found in the supplementary materials and on the website:
https://sites.google.com/view/tac-ipc.

I. INTRODUCTION

Tactile perception plays a pivotal role in enabling humans
to discern and interact with their surrounding environment.
Several methods have been explored to implement tactile
sensors, including piezoelectric sensors [1], capacitive sen-
sors [2], and optical sensors [3], [4], [5]. Recently, optical
sensor-based approaches have become more and more pop-
ular due to their ability to generate high-resolution tactile
images (also known as pseudo images) and their seamless
integration into learning pipelines. The optical tactile sensors
often use a camera to capture the deformation of the gel
elastomer (as shown in Fig. 1). However, the tactile images
derived from optical sensors do not directly correspond to
force measurements. Many carefully designed light paths are
proposed in previous sensors [3], [4], [5], but none have been
able to accurately and consistently reconstruct the deformed
surface normals across various shapes. Consequently, the
primary application of the optical tactile sensor is its direct
incorporation into a learning pipeline [6], with simulation
being an integral component of this process.

For simulation, the simulator should be able to support the
computation and rendering of the gel elastomer deformation.
In the previous works, the gel deformation is treated in two
directions: non-physics-based and physics-based ways. As
shown in Fig. 1, the non-physical way [7], [8] allows the

*Equal contribution.
1{mnkmYuki, vinjohn, jiejiren, jeffson-yu,

lucewu}@sjtu.edu.cn. Cewu Lu is the corresponding author, a
member of Qing Yuan Research Institute and MoE Key Lab of Artificial
Intelligence, AI Institute, Shanghai Jiao Tong University, China.

Fig. 1: (a). The structure of optical tactile sensors. (b).
Different ways to implement elastomer: non-physics, MPM-
based, FEM-based.

object and the gel to penetrate each other, and uses the
penetration depth as the elastomer deformation. The physics-
based way [9], [10] usually adopts the explicit material
point method (MPM) as the physics simulation algorithm.
The object and gel are both modeled as sets of material
points. Explicit MPM benefits from the development of
Taichi [11], which has friendly APIs, thus simple coding
is enough to build effective simulators. However, explicit
MPM has its disadvantages over force simulation (especially
frictional force) and its stability (particle penetration and
numeric instability), and the rendering is implemented by
interpolation between sample points, which can lead to
over-smooth effects. Another way to achieve physics-based
deformation is the classic finite element method (FEM)-
based modeling, which is known to easily model friction
and accurate force computation. However, since FEM adopts
explicit mesh for the deformed object (i.e., the elastomer),
the contact between the object and the gel can easily cause
penetration and mesh distortion [12].

In this work, we take the FEM-based path to model the
elastomer. The penetration and mesh distortion issues are
addressed by incorporating the incremental potential contact
(IPC) method [13], which can guarantee intersection-free and
inversion-free during contact. In addition, IPC solves the
dynamics equation in an implicit way, leading to numeri-
cally stable and accurate simulation results. The proposed
simulator is named TacIPC. It models the elastomer with a
tetrahedral mesh. Explicit mesh modeling has three advan-
tages: (1) Rendering can be directly handled. (2) Friction can
be directly modeled. (3). It can be naturally integrated with

ar
X

iv
:2

31
1.

05
84

3v
1 

 [
cs

.R
O

] 
 1

0 
N

ov
 2

02
3

https://sites.google.com/view/tac-ipc


mesh-based robot simulators such as MuJoCo [14], Bullet
[15], Isaac Sim [16], and RFUniverse [17].

For rendering, in the real world, the image is generated by
the reflecting layer. The typical Phong-based rendering with
Gaussian blur [7], [18] does not replicate the mechanism and
only uses it to create seemingly similar effects. In TacIPC,
we adopt physics-based ray-tracing rendering to mimic the
light path as in the real world by adjusting the LED positions.
We calibrate the lighting color temperature in the real world
and implement it in the simulation. Also, we use reference
images from the real world to generate real-world sensory
noise.

To evaluate the proposed tactile simulator, we conduct
three tasks: pseudo-image quality assessment, marker dis-
placement prediction, and deformed geometry estimation.
These tasks can demonstrate that compared with previous
optical tactile sensor simulators, our simulation method can
significantly reduce the sim-to-real gap in both rendering and
physics simulation, providing a more accurate and reliable
way to design and optimize gel-based tactile sensors or
provide training data for learning methods. Furthermore, our
approach can be easily integrated into existing simulation
environments and can significantly improve the performance
and accuracy of the simulation. We adopt RFUniverse [17]
in our experiments.

We summarize our contribution as follows:
• We propose the first intersection- and inversion-free

simulator TacIPC for optical tactile sensors. It utilizes
the physical properties of the sensor to simulate realistic
tactile images in a numerically stable and physically
accurate way.

• We use TacIPC to predict the tactile sensor marker
displacement under frictional contacts, which is essen-
tial for contact-rich manipulation tasks. It significantly
outperforms the MPM-based simulator.

• We train a depth estimation neural network in a sim-to-
real fashion using pseudo images generated by TacIPC
and validate the model on real-world data.

II. RELATED WORKS

Our work proposes a physics-based simulator for optical
tactile sensors which is related to techniques of simulating
the elastomer deformation and the tactile sensors.

A. Elastomer Simulation

Previous methods to simulate the elastomer effect in opti-
cal tactile sensors can be roughly divided into two categories:
non-physics-based and physics-based approaches.

The non-physics-based approaches try to produce realistic
tactile images in the simulator without actually considering
the elastomer deformation caused by external contact. Some
works [7], [8] reconstruct the pseudo elastomer surfaces by
allowing the object to intersect the elastomer and take the
depth of the intersected surface. Then, they apply Gaussian
kernels to smooth depth maps. We refer to these methods as
“depth-based”. TACTO [18] is also one of the depth-based
methods to render the tactile image with PyBullet [15]. But

it just adds shadow on the intersected surface. These non-
physics-based approaches can produce seemingly plausible
pseudo images but they do not have physical context.

Another line is the physics-based approach. Simulating
elastomers, such as the gel layers in optical tactile sensors, is
a complex task due to their unique deformable property and
high degrees of freedom. Numerous studies have adopted the
Finite Element Method (FEM) for deformation simulations,
as illustrated in [19], [20]. In [21], the authors proposed a
robot interface to grasp an elastomer such as rubber spheres
and foam cubes. Lee et al. [19] use FEM to estimate force
distribution. Though FEM is widely adopted in simulating
deformation, it is considered computational consumption and
likely causes mesh distortion (e.g., irregular mesh structures
or negative element volumes) [12]. Recently, several works
have leveraged the material point method (MPM) for a
physics-based simulation of elastomers [10], [9]. Such meth-
ods enjoy the friendly API provided by Taichi [11], and can
easily utilize the explicit MPM method to develop simulators.
However, explicit MPM has its disadvantages over frictional
force simulation and numeric stability. And the particle-
based representation makes it hard to render the tactile image
directly. Thus, by rethinking the trend of technical develop-
ment, we determine physical accuracy is more important and
take the FEM path. In this work, we address the distortion
issue of FEM simulation by introducing increment potential
contact (IPC) [13], which can guarantee intersection- and
inversion-free.

B. Sensor Simulation

With the elastomer simulation technique, we need an
interface to incorporate it into a sensor and robot system.
For example, in the non-physics-based line of research, [7]
initially simulated optical tactile sensors by refining depth
maps sourced from Gazebo [22]. Meanwhile, in [18], both
the sensor’s and object’s meshes are primarily introduced
in OpenGL [23], subsequently modified within the PyBullet
simulation. Within this context, depth maps might be pro-
cured from PyBullet or concurrently produced in OpenGL
alongside tactile visuals.

As for the physics-based line, [19] adopts ABAQUS [24]
to simulate the elastomer deformation. However, ABAQUS
requires many computational resources (e.g., a cluster) and
is hard to integrate into a robot simulator.

III. IPC PRELIMINARY

To leverage the advantages of FEM-based modeling and
explicit mesh representation, the key challenge here is to
make the contact intersection-free and inversion-free. We
introduce incremental potential contact (IPC) [13] to address
it, and will briefly describe its mechanism.

In a dynamics system, without contact and friction, the
dynamics differential equation based on Newton’s law for
vertices can be formulated as:{

fext + felastic = Mv̇

v = ẋ
(1)



where fext is the external forces applied to the vertices, and
felastic is the forces due to elastic deformation. x and v
is the position and velocity of the vertices, M is the mass
matrix.

Putting Eq. 1 under the implicit Euler scheme:{
fext
t+1 + felastic

t+1 = M
h (vt+1 − vt)

vt+1 = 1
h (xt+1 − xt)

(2)

is equivalent to minimizing the Incremental Potential energy:

E(x, xt, vt) =
1

2
(x− x̂)TM(x− x̂) + h2Φ(x), (3)

which means xt+1 = argminx E(x, xt, vt). In other words,
minimizing the energy can lead to the correct evolution
direction in terms of Newton’s law (Eq. 1). t is the discretized
time, h is the time step size, Φ(x) is the hyper-elastic energy
of deformable objects where the relationship ∂Φ

∂x = felastic

holds due to the principle of virtual work. x̂ = xt + hvt +
h2M−1fext.

Considering contact, to prevent collision, IPC adopts a
barrier function:

b(d) = b(d, d̂) =

{
−(d− d̂)2log(d

d̂
), 0 < d < d̂

0 d ≥ d̂
(4)

where d is the geometric distance between contact primitive
pairs including point-triangle pairs and edge-edge pairs, and
d̂ is a threshold parameter.

With this barrier function b(·), one can construct a barrier
energy term:

B(x) = κ
∑
k∈C

b(dk(x)) (5)

which induces the collision forces between contact primitive
pairs, where C represents the set of any primitive pair k
(i.e., an edge-edge pair or a point-triangle pair in the 3D
case) with its geometric distance dk less than d̂, κ is the
weight parameter for this barrier energy term.

Considering the friction, IPC uses a C1 smooth approxi-
mation of the Coulomb friction model

fk = −µλkf1(∥uk∥)Tk(x)
uk

∥uk∥
(6)

where µ represents the coefficient of friction, λk =
κ∥∂b(dk(x))

∂x ∥ is the contact force magnitude, Tk(x) repre-
sents the sliding basis, uk = Tk(x)

T (x−xt) is the tangential
relative displacement vector at the local orthogonal frame.
Here, f1(x) is a C1 smooth function

f1(x) =

{
− y2

ϵ2vh
2 + 2y

ϵvh
, y ∈ (0, hϵv)

1, y ≥ hϵv
(7)

making the friction force fk integrable, characterizing the
transition between dynamic friction and static friction. Now
if we lag the sliding basis and contact force magnitude to
values Tn

k , λn
k solved in the last optimization step, then we

can derive the variational frictional energy by integrating fk:

Dk(x, xt) = µλn
kf0(∥uk∥) (8)

Fig. 2: TacIPC: Simulation and Rendering Pipeline. The
object mesh (A) and the elastomer tetrahedral mesh (B) are
loaded into the IPC simulation scene (C). The elastomer
deformation solved by IPC is used to render the pseudo
tactile image (E) by an MC-Tac model (D).

which satisfies fk(x) = −∇xDk, where f0(x) =∫ x

ϵvh
f1(s)ds+ ϵvh and uk = Tn

k (x)
T (x− xt). Here ϵv > 0

is a threshold parameter to handle the transition between
dynamic and static friction. So the total lagged variational
frictional energy would be D(x, xt) =

∑
k∈C Dk(x, xt), and

we finally solve frictional contact by minimizing the energy
and updating lagged sliding basis along with contact force
magnitude alternately.

After adding the friction energy D(x, xt) and the barrier
energy B(x) above into the incremental potential energy
E(x, xt, vt), one can solve a dynamics system with con-
tact and friction by minimizing the total energy Ê =
E(x, xt, vt)+B(x)+D(x, xt) using the Projective Newton
optimization algorithm. During each Newton step, to ensure
that no penetration happens, IPC applies the Continuous
Collision Detection (CCD) algorithm to compute the Time
Of Impact (TOI) and subsequently uses it to filter the Newton
step size. In this way, IPC could guarantee that its simulation
results are intersection-free and inversion-free.

IV. TACIPC

By incorporating IPC into tactile simulation, we construct
a robot interface for tactile sensing and rendering. The overall
pipeline is illustrated in Fig. 2.

A. Elastomer Simulation

In TacIPC, we apply FEM for elastomer simulation. In
our work, we use tetrahedral meshes to represent objects.
For FEM, previous work [9] has mentioned concerns about
the mesh distortions, which may cause irregular meshes or
negative element volume and therefore lead to a low accuracy
of stress. IPC partially solves this problem by applying CCD
and optimization step size filtering techniques to eliminate
negative volume and mesh intersection issues, resulting in a
higher simulation quality. Additionally, the typical use cases
of tactile sensors will not cause large elastomer deformation,
thus these problems are usually not significant.

For elastomer simulation, we model the elastomer with a
tetrahedral mesh with K vertices and N tetrahedra. When
the elastomer is pressed by an external surface which is also
represented by mesh, we apply IPC to handle the contact.
The numbers of K and N depend on the mesh discretization



strategy of the gel elastomer. We discuss different strate-
gies in Sec. VI-D. In our work, the main experiments are
conducted with strategy: K = 23661 and N = 104675, in
the central region of the mesh where most of the contact
happens, vertices and tetrahedral cells reach the highest
density where the average edge length is 0.1mm.

B. Connection With A Robot Simulator

In Tacchi [9], it shares only the contact object velocity
with the external simulator such as MuJoCo [14]. Due to
the different contact modeling in Tacchi (particle for object
representation, MPM for physics simulation) and MuJoCo
(mesh for object representation, penalty-based optimization
[25] for physics simulation), the tactile simulation and robot
simulation are independent. That is, the contact force be-
tween the object and tactile sensor in these simulators will
be different, and the particle locations of the gel elastomer in
Tacchi will not align with the vertex locations in the external
simulator.

However, in TacIPC, we can simply address such issues
by sharing all vertex velocities and locations with an external
simulator supporting mesh modeling such as RFUniverse.

C. Rendering

Since rendering is related to the lighting design of the
optical tactile sensors, different sensors may have different
designs. We adopt the MC-Tac sensor [3] for the main
experiments, as it is an open-source optical tactile sensor.

We load an MC-Tac sensor model in Unity where light
source positions and parameters (e.g., lighting color temper-
ature) are aligned with those of the real-world sensor. We also
align the Unity camera pose and parameters with those of
the real-world camera in the sensor. The deformed elastomer
surface generated by TacIPC reflects the light emitted by
these light sources, so tactile images can be captured by
the Unity camera and subsequently rendered by the standard
Unity physics-based rendering pipeline (e.g., real-time ray-
tracing). Finally, we subtract the simulation reference image
from the rendered image and then add it to the reference
image collected from the real world to obtain the result. It
can introduce real-world sensory noise and further reduce
the sim-to-real gap.

V. EXPERIMENTAL SETUP

In this section, we introduce the task settings to validate
the ability of TacIPC in Sec. V-A, real-world setup in Sec.
V-B, and simulation setup in Sec. V-C respectively.

A. Benchmark Tasks

We collect both real-world data and simulation data to
evaluate TacIPC in 3 tasks: (1) pseudo-image quality assess-
ment. In this task, we compare the tactile images generated
by the simulator with ground truth collected from the real
world under the Structural Similarity (SSIM), Mean Abso-
lute Error (MAE), and Peak Signal-to-Noise Ratio (PSNR)
metrics. TacIPC and other simulator baselines including the
depth-based method [7] and Tacchi [9] are evaluated respec-
tively. (2) marker displacement prediction. In this task, we

first press the contact object onto the tactile sensor elastomer,
then use a robot gripper to rotate and push the contact object
respectively. During the process, we record the movement of
the markers on the elastomer. We align all the movements
of the contact object in Tacchi and TacIPC respectively with
those in the real-world experiments. Finally, we compare the
marker displacement predicted by Tacchi and TacIPC with
the ground truth collected from real-world experiments. (3)
deformed geometry estimation. In this task, we train a U-
Net [26] to predict depth images of contact objects from the
corresponding tactile images. Two networks are trained on
synthetic datasets generated by Tacchi [9] and TacIPC and
tested on real-world data. We assess the sim-to-real gap of
their output through MAE and Mean Squared Error (MSE).

Fig. 3: 3D printed objects with various complex patterns.

B. Real-world Setup

We obtained an object dataset by 3D printing 19 object
meshes where 9 of them have different regular patterns such
as alphabet letters and polygons and the rest of them have
various detailed textures. As from Fig. 3, all of these objects
are short cylinders similar to coins, where the patterns are
printed on one side of them. We glued the other side of these
objects to a wooden cube when conducting the experiments.
A Flexiv robot with an AG-95 gripper grasps the cube, and
then it will move to the MC-Tac sensor which is fixed on
a horizontal tabletop. Subsequently, the gripper goes down
to press the elastomer of the sensor. Meanwhile, the tactile
snapshots are captured by the MC-Tac camera.

C. Virtual-world Setup

In the TacIPC simulator, we first use ABAQUS [24] to
apply tetrahedral meshing on the MC-Tac elastomer triangle
mesh which is a cylinder with a radius of 15mm and a
thickness of 2mm. The average edge length of the contact
area is about 0.1mm. The vertex number and cell number
of the tetrahedral mesh are 23661 and 104675 respectively.
For the object mesh, we apply the quadric edge collapse



Fig. 4: Pseudo images of the depth-based method[7] (2nd column), Tacchi[9] (3rd column), and TacIPC (4th column). Ground
truth (1st column) is collected from real-world experiments. Within physics-based methods, TacIPC generates results with
more detailed texture and higher quality than those of Tacchi.

decimation mesh simplification algorithm [27] provided by
the MeshLab software [28] before sending them into the
simulation scene, resulting in meshes each with ∼8000
vertices, since most of the original meshes have more than
500,000 vertices which are too many for the simulation
and will dramatically increase the computation cost with no
apparent quality improvement. In our TacIPC simulation, the
timestep dt = 0.01s, distance threshold for barrier energy d̂
is set to be 1 × 10−3 times of the diagonal length of the
simulation scene, barrier energy weight κ = 106. For the
contact object, we model it as a rigid body with density
ρ = 1 × 103kg/m3. As for the MC-Tac gel elastomer,
we measure the gel material parameters in the real world
and set them in the simulation scene. These parameters are
as follows: gel density ρgel = 1.01 × 103kg/m3, Young’s
modulus Egel = 1.23 × 105Pa, and Poisson’s ratio νgel =
0.43. In the simulation, we use the augmented Lagrangian
algorithm to fix the side of the elastomer which is glued
to a horizontal surface in the real world and to control the
movement of the contact object to press the elastomer. In this
way, we can save the deformation results of the elastomer
and subsequently use them to render tactile images in Unity.

VI. EXPERIMENTS

A. Pseudo-Image Quality Assessment

To evaluate the pseudo image quality of our method,
we collect tactile sensor images of 19 3D-printed objects
with complex textures in the real world. The printed objects
and their meshes are shown in Fig. 4. As Fig. 4 shows,
Tacchi generates over-smooth results due to its depth field
interpolation step. While pseudo images generated by TacIPC
illustrate detailed and clear complex textures of contact
objects. However, such over-smooth effects may be not

properly reflected in the pixel-wise metrics like MAE, and
PSNR reported in TABLE I. It inspires us to adopt metrics
on physics, as described in the next section.

Simulation SSIM↑ MAE↓ PSNR↑
depth-based 0.86 0.043 55.92

Tacchi 0.90 0.034 59.17
TacIPC 0.90 0.037 57.72

TABLE I: Pseudo image quality comparison. Tacchi and
TacIPC generates better results in terms of SSIM. In terms
of MAE and PSNR, Tacchi achieves the best results among
the three simulation methods, but generating over-smooth
results.

B. Marker Displacement Prediction

As [4] shows, the marker displacement of tactile sensors
is crucial since it could be used to predict force distribution,
contributing to more stable manipulation policies. Here we
conduct experiments to compare the marker displacement
computed by different physics simulation methods and that in
the real world. To fully test the marker displacement accuracy
in different cases, we conducted the experiment under both
shearing frictional contacts and rotational frictional contacts.
In both settings, the elastomer was pressed to a depth of
0.5mm by the contact object. Subsequently, in the former
setting, the gripper will move straight horizontally, causing
the gel elastomer to shear, while in the latter setting the
gripper will rotate around a vertical axis through its center,
causing the gel elastomer surface to rotate.

We record the marker displacement in both settings in
the real world, Tacchi simulator, and TacIPC simulator
respectively, as shown in Fig. 5. Take the displacement in the
real world as the ground truth, marker displacement in the



Fig. 5: Marker displacement in rotational (a) and shearing (b)
friction experiments. In both (a) and (b), the top left image
illustrates the gripper motion during the real-world experi-
ments. The top right image shows the marker displacement
recorded in the real world. The bottom left image and the
bottom right image show the marker displacement predicted
by the Tacchi and the TacIPC simulator respectively. The
red line represents the displacement vectors of markers,
where the end with a green dot on each line represents the
initial marker position, and the position of the other end
is the final marker position. Pixel values under the images
are the average displacement of 20 selected markers which
correspond to the 20 green dots in the top right sub-images
of (a) and (b).

Tacchi simulator is much shorter than the ground truth, while
marker displacement in TacIPC is closer to those in the real
world. We also plot the accumulated average displacement
length of 20 markers in the center of the contact region in
the real world, Tacchi simulator, and TacIPC simulator for
each frame in Fig. 6. It clearly illustrates that the marker
displacement in our TacIPC is much more consistent with
the real world in a long-term sequence than the MPM-based

Fig. 6: Curves of average marker displacement length in the
real world, Tacchi simulator, and TacIPC simulator respec-
tively. Results generated by TacIPC show higher consistency
with the real-world data than those of Tacchi.

Tacchi simulator.

C. Deformed Geometry Estimation

We train a U-Net to estimate the depth map of the contact
object given its tactile image. We collect 20 tactile images for
each of the 24 object meshes with various random poses to
obtain the training dataset by using our TacIPC simulator. We
first train the network on this dataset and then validate it on
real images collected from the real world to examine the sim-
to-real gap between the TacIPC simulator and the real world,
which is reported in Table II. The reference depth in the real
world is obtained by aligning the flat part of the reconstructed
object surface with that of the ground truth contact object
mesh in Unity. Qualitative results are shown in Fig 7. The
high quality of the estimated depth images illustrates the gap
between simulation and real-world is partially bridged by the
accuracy of TacIPC.

D. Ablation Study

a) Different Meshing Methods: We test different tactile
sensor elastomer tetrahedral mesh discretizations generated
by uniform meshing and adaptive meshing techniques by
using them to generate tactile images and estimate contact
object depth maps using these generated images. Three
uniformly discretized meshes and two adaptively discretized



Simulation MAE↓ MSE↓
Tacchi 0.03072 0.001423
TacIPC 0.02708 0.001254

TABLE II: Depth image reconstruction error on real-world
data of the two U-Nets trained on Tacchi and TacIPC
respectively. U-Net trained on the TacIPC-generated dataset
achieves higher accuracy in terms of MAE and MSE.

Fig. 7: Validation results of the depth estimation mod-
els trained by synthetic datasets generated by Tacchi (3rd
column) and TacIPC (4th column) respectively. From the
zoomed-in details, we can observe that the Tacchi depth
estimation model tends to predict large depth values for
the shadow part caused by object edges. While the TacIPC
model does not share this artifact and generates more realistic
results.

meshes are listed in the first row of Fig. 8. By uniform mesh-
ing, we mean discretizing the object with almost uniform
edge lengths. In the 2nd column to the 4th column of Fig.
8, we use average edge lengths of 0.5mm, 0.375mm, and
0.25mm respectively. By adaptive meshing, we mean the
density of vertices reaches the maximum, in other words,
the average edge length reaches the minimum, around the
contact-rich region which is the central region of the elas-
tomer front surface. For the mesh listed in the 5th column
of Fig. 8, the average edge length of the front central region,
of the front edge region, and of the back side, is 0.25mm,
4mm, and 1mm respectively. The adaptive mesh placed in
the 6th column of Fig. 8 has an average edge length that
gradually increases from 0.1mm to 0.15mm and then to
4mm, as the region moves from the front central part to the
front edge part. The back side of the mesh has an edge length
of 1mm. Fig. 8 also shows the tactile images generated by
these discretized meshes and the corresponding depth maps
estimated by the U-Net previously described in Sec. VI-C.
From the results we observe that to achieve similar tactile

Fig. 8: Simulation tactile image and the corresponding
predicted depth images comparison among different mesh
discretizations. The fourth row illustrates the runtime of
tactile image generation using different sensor elastomer
mesh discretizations.

image quality, adaptive meshing needs far fewer vertices and
cells than uniform meshing. In all other experiments, we use
the adaptive mesh discretization illustrated in the most right
column of Fig. 8 for the MC-Tac elastomer.

b) Computational Cost: We must admit that in ex-
change for higher accuracy taking the frictional contacts
into account, the computation cost for IPC to simulate the
tactile sensor elastomer deformation is much higher than
that of explicit MPM. Typically TacIPC needs ∼6GB GPU
memory to compute the elastomer deformation during 5 large
timesteps (h = 0.01s) when the elastomer is pressed by
a simplified object mesh with ∼8000 vertices and ∼16000
edges. Here the elastomer mesh discretization has 23661
vertices and 104675 tetrahedral cells. All the simulation
experiments were running on a GeForce RTX 4090 graphics
card.

VII. CONCLUSION AND DISCUSSION

We propose TacIPC, an intersection- and inversion-free
FEM-based elastomer simulation for optical tactile sensors.
TacIPC simulates the deformation of the gel elastomer to
generate high-quality tactile images. It can also accurately
predict the marker displacement of tactile sensors by apply-
ing IPC to properly handle contact and friction. Additionally,
we train a depth estimation model that is able to reconstruct
the contact object geometry on a TacIPC-generated syn-
thetic dataset, showing a reduced sim-to-real gap. Moreover,
TacIPC can be integrated with existing simulators supporting
mesh modeling.

In this work, an efficient and standard rendering model
is used currently. To gain more realistic tactile images, one
needs to improve the rendering model and apply techniques
to calibrate its parameters. We leave these for future work.

REFERENCES

[1] X. Chen, J. Shao, H. Tian, X. Li, C. Wang, Y. Luo, and S. Li, “Scal-
able imprinting of flexible multiplexed sensor arrays with distributed
piezoelectricity-enhanced micropillars for dynamic tactile sensing,”
Advanced Materials Technologies, vol. 5, no. 7, p. 2000046, 2020.



[2] S. Lee, S. Franklin, F. A. Hassani, T. Yokota, M. O. G. Nayeem,
Y. Wang, R. Leib, G. Cheng, D. W. Franklin, and T. Someya,
“Nanomesh pressure sensor for monitoring finger manipulation with-
out sensory interference,” Science, vol. 370, no. 6519, pp. 966–970,
2020.

[3] J. Ren, J. Zou, and G. Gu, “Mc-Tac: Modular camera-based tactile
sensor for robot gripper,” in The 16th International Conference on
Intelligent Robotics and Applications (ICIRA), 2023.

[4] W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot
tactile sensors for estimating geometry and force,” Sensors, vol. 17,
no. 12, p. 2762, 2017.

[5] E. Donlon, S. Dong, M. Liu, J. Li, E. Adelson, and A. Rodriguez,
“Gelslim: A high-resolution, compact, robust, and calibrated tactile-
sensing finger,” in 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). IEEE, 2018, pp. 1927–1934.

[6] W. Xu, Z. Yu, H. Xue, R. Ye, S. Yao, and C. Lu, “Visual-tactile sensing
for in-hand object reconstruction,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023, pp.
8803–8812.

[7] D. F. Gomes, P. Paoletti, and S. Luo, “Generation of gelsight tactile
images for sim2real learning,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 4177–4184, 2021.

[8] A. Agarwal, T. Man, and W. Yuan, “Simulation of vision-based tactile
sensors using physics based rendering,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
1–7.

[9] Z. Chen, S. Zhang, S. Luo, F. Sun, and B. Fang, “Tacchi: A pluggable
and low computational cost elastomer deformation simulator for
optical tactile sensors,” IEEE Robotics and Automation Letters, vol. 8,
no. 3, pp. 1239–1246, 2023.

[10] Y. Wang, W. Huang, B. Fang, F. Sun, and C. Li, “Elastic tactile
simulation towards tactile-visual perception,” in Proceedings of the
29th ACM International Conference on Multimedia, 2021, pp. 2690–
2698.

[11] Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand, “Taichi:
a language for high-performance computation on spatially sparse data
structures,” ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp.
1–16, 2019.

[12] N.-S. Lee and K.-J. Bathe, “Effects of element distortions on the
performance of isoparametric elements,” International Journal for
numerical Methods in engineering, vol. 36, no. 20, pp. 3553–3576,
1993.

[13] M. Li, Z. Ferguson, T. Schneider, T. R. Langlois, D. Zorin, D. Panozzo,
C. Jiang, and D. M. Kaufman, “Incremental potential contact:
intersection-and inversion-free, large-deformation dynamics.” ACM
Trans. Graph., vol. 39, no. 4, p. 49, 2020.

[14] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine
for model-based control,” in Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on. IEEE, 2012, pp.
5026–5033. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/6386109/

[15] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[16] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu-based physics simulation for robot
learning,” 2021.

[17] H. Fu, W. Xu, R. Ye, H. Xue, Z. Yu, T. Tang, Y. Li, W. Du, J. Zhang,
and C. Lu, “Demonstrating rfuniverse: A multiphysics simulation
platform for embodied ai.”

[18] S. Wang, M. Lambeta, P.-W. Chou, and R. Calandra, “Tacto: A fast,
flexible, and open-source simulator for high-resolution vision-based
tactile sensors,” IEEE Robotics and Automation Letters, vol. 7, no. 2,
pp. 3930–3937, 2022.

[19] C. Sferrazza, A. Wahlsten, C. Trueeb, and R. D’Andrea, “Ground truth
force distribution for learning-based tactile sensing: A finite element
approach,” IEEE Access, vol. 7, pp. 173 438–173 449, 2019.

[20] S. Zhang, Z. Chen, Y. Gao, W. Wan, J. Shan, H. Xue, F. Sun, Y. Yang,
and B. Fang, “Hardware technology of vision-based tactile sensor: A
review,” IEEE Sensors Journal, 2022.

[21] L. Zaidi, J. A. Corrales, B. C. Bouzgarrou, Y. Mezouar, and
L. Sabourin, “Model-based strategy for grasping 3d deformable ob-
jects using a multi-fingered robotic hand,” Robotics and Autonomous
Systems, vol. 95, pp. 196–206, 2017.

[22] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ international
conference on intelligent robots and systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

[23] D. Shreiner et al., OpenGL programming guide: the official guide to
learning OpenGL, versions 3.0 and 3.1. Pearson Education, 2009.

[24] M. Smith, ABAQUS/Standard User’s Manual, Version 6.9. United
States: Dassault Systèmes Simulia Corp, 2009.

[25] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-
based robotics: Comparison of bullet, havok, mujoco, ode and physx,”
in 2015 IEEE international conference on robotics and automation
(ICRA). IEEE, 2015, pp. 4397–4404.

[26] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

[27] M. Garland and P. S. Heckbert, “Surface simplification using quadric
error metrics,” in Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, 1997, pp. 209–216.

[28] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli,
G. Ranzuglia, et al., “Meshlab: an open-source mesh processing tool.”
in Eurographics Italian chapter conference, vol. 2008. Salerno, Italy,
2008, pp. 129–136.

https://ieeexplore.ieee.org/abstract/document/6386109/
https://ieeexplore.ieee.org/abstract/document/6386109/
http://pybullet.org

	Introduction
	Related Works
	Elastomer Simulation
	Sensor Simulation

	IPC Preliminary
	TacIPC
	Elastomer Simulation
	Connection With A Robot Simulator
	Rendering

	Experimental setup
	Benchmark Tasks
	Real-world Setup
	Virtual-world Setup

	Experiments
	Pseudo-Image Quality Assessment
	Marker Displacement Prediction
	Deformed Geometry Estimation
	Ablation Study

	Conclusion And Discussion
	References

