
Deep Learning for Optimization of Trajectories for
Quadrotors

Yuwei Wu, Xiatao Sun, Igor Spasojevic, Vijay Kumar

Abstract—This paper presents a novel learning-based trajec-
tory planning framework for quadrotors that combines model-
based optimization techniques with deep learning. Specifically,
we formulate the trajectory optimization problem as a quadratic
programming (QP) problem with dynamic and collision-free con-
straints using piecewise trajectory segments through safe flight
corridors [1]. We train neural networks to directly learn the time
allocation for each segment to generate optimal smooth and fast
trajectories. Furthermore, the constrained optimization problem
is applied as a separate implicit layer for backpropagation in the
network, for which the differential loss function can be obtained.
We introduce an additional penalty function to penalize time
allocations which result in solutions that violate the constraints
to accelerate the training process and increase the success rate
of the original optimization problem. To this end, we enable a
flexible number of sequences of piece-wise trajectories by adding
an extra end-of-sentence token during training. We illustrate the
performance of the proposed method via extensive simulation and
experimentation and show that it works in real time in diverse,
cluttered environments.

I. INTRODUCTION

The application of micro aerial vehicles (MAVs) has sig-
nificantly expanded recently in agriculture, industrial inspec-
tion, and customer services [2]. As one crucial module of
autonomy, the research of trajectory generation has made
significant progress in realistic feasibility and computation
efficiency. Traditional optimization-based trajectory generation
with simplified dynamics offers computational advantages for
real-time deployments [3] but suffers from parameter tun-
ings and infeasible formulations when applied to real-world
data. Moreover, existing learning-based methods [4]–[6] are
mainly trained to generate commands or waypoints, limited
by dynamic interpretability and fail to provide guarantees for
real-time safe flight. This paper addresses online trajectory
generation, focusing on achieving efficiency, reliability, and
optimality.

There is extensive work on optimization-based approaches
that rely on approximating the free space by safe-flight corri-
dors which are defined by a set of overlapping convex subsets.
These approaches find the optimal trajectory by solving a
quadratic program that assumes a specified time allocation,
an assignment of time intervals to each convex subset [3].
However, there are no principled approaches to solving the
time allocation problem. Most previous work decouples the
time allocation problem from the optimization problem and
focuses on refining and scaling the time with heuristics to

The authors are with the GRASP Laboratory, University of Pennsylva-
nia, Philadelphia, PA, 19104 USA {yuweiwu, sxt, igorspas,
kumar}@seas.upenn.edu.

Depth Image

Planned
Trajectory

Flight
Corridor

Goal

Replan
Start

Geometric
Path

(a)

(b)

Fig. 1. (a) Real-time deployment on Falcon 250 v2 autonomous stack. (b)
The planned trajectory (in light blue) demonstration with time allocation. We
use a safe flight corridor (in purple) and a geometrical searched path (in
red) and allocate time by a neural network. Then the trajectory generation
is solved by fixed-time quadratic programming. The video is available at:
https://youtu.be/tA02dJz9ux8

arrive at a feasible time allocation [7]–[15]. Parameterizing the
optimal time is computationally expensive, and even so, does
not provide optimality guarantees. Including time parametriza-
tion results in a joint optimization of piecewise trajectories
and time intervals, leading to suboptimality. Most state-of-
the-art solvers cannot find feasible solutions with a reasonable
computational budget. These works inspired us to explore the
nature of trajectory generation as an optimization problem and
improve the efficiency and optimality of the existing methods.

Leveraging the advantages of both model-based and
learning-based methods, we propose an efficient learning-
based planning framework that utilizes neural networks to
solve the optimal time allocation problem for each mini-
mum control trajectory. The trajectory generation problem
is formulated by finding the optimal trajectory coefficients
with discrete dynamic constraints and loose constraints for
intermediate waypoints in overlapping regions of flight corri-

ar
X

iv
:2

30
9.

15
19

1v
2

 [
cs

.R
O

]
 3

 D
ec

 2
02

3

https://youtu.be/tA02dJz9ux8

dors. We present a neural network to output time allocation,
with an extra differential implicit layer [16] solving trajectory
optimization with hard constraints parameterized by time
allocations. In addition, we design loss functions related to the
original nonlinear programming while considering different
solving results and adding infeasible penalty terms to train
the network efficiently. We summarize our contributions as
follows:

• A neural network architecture incorporates trajectory
optimization problems as implicit layers with a flexible
sequence of trajectory segments.

• An interpretable and lightweight learning-based planning
framework that directly learns optimal time allocation
from the corridor and state constraints for minimum con-
trol trajectory generations with quadratic programming.

• Real-world deployment of our proposed method on hard-
ware platform integrating on-board autonomy and high-
performance demonstration in both indoor and outdoor
environments, shown in Fig. 1. The open source code is
available at: https://github.com/KumarRobotics/AllocNet.

II. RELATED WORKS

A. Optimal Time Allocation for Trajectory Planning

Decoupled trajectory parameterization of flat outputs with
polynomials has been well-explored as an efficient way to
optimize the trajectory with quadratic programming (QP)
while encoding dynamic and obstacle-free constraints with
differential flat outputs [3, 12]. A closed-form solution for
this QP formulation, incorporating equality constraints, was
proposed in [12]. Its numerical stability issues during matrix
inverse were addressed in [17], and better-conditioned matrices
are formulated in [18] with linear computational complexity to
solve QP. However, introducing time allocation optimization
for piece-wise trajectory makes the problem more challenging,
resulting in a joint spatial-temporal ill-conditioned nonlinear
programming (NLP). Previous research has primarily focused
on iterative time refinement [19], time-optimal primitives
[20, 21], path parameterization [13, 22], or bi-level optimiza-
tion [14] to address the challenge by solving the problem in
two phases or iteratively searching for optimal time alloca-
tion. Moreover, different analytic gradients towards time and
waypoints have been studied [11] to improve the efficiency
of fast trajectory generation. However, the lack of feasibility
guarantees and the high sensitivity of parameters limit the
performance of these approaches in real-world scenarios.

B. Learning for Autonomous Navigation

Learning-based methods have emerged as powerful ap-
proaches for autonomous navigation applications. End-to-end
policy learning [4] directly trained the control commands
using deep reinforcement learning to generate trajectory with
waypoints. Many existing works assume a collision-free ref-
erence line and perform policy learning based on state ob-
servations along this predefined path or in an obstacle-free
space. These methods involve imitating human drivers or
expert planners [5, 6] or utilizing learning-based perception
to generate collision-free waypoints [23]. However, they often

generate over-simplified end-to-end commands or waypoints
that require additional components such as Model Predictive
Control (MPC) or a dynamic trajectory planner to obtain a
smoother trajectory [24]–[26]. Differentiable trajectory op-
timization mapping from waypoints can also be included
during the learning process [26]. However, the computational
complexity associated with the learning processes and gener-
alization limits the deployment to more unknown scenarios.
Addressing time allocation in trajectory optimization, Ryou et
al. [27] employed a deep neural network with sequence-to-
sequence learning to determine optimal time allocation given
waypoints. Nevertheless, the complex process of multi-phase
learning with brute-search time allocations remains a challenge
that must be addressed, encouraging us to pursue a lightweight
and efficient structure.

C. Neural Optimizations with Hard Constraints

Recent works using neural networks (NNs) to learn opti-
mizers with hard constraints have gained significant attention
due to their extensive applications and promising results.
Amos et al. [16, 28] proposed OptNet to demonstrate the
effective integration of quadratic programming (QP) with hard
constraints within the NNs framework, which illustrate the
potential of leveraging implicit layers to tackle complex opti-
mization problems. Jaquier et al. [29] extended the application
of OptNet to multitask control problems by formulating these
tasks as QPs and employing differentiable layers to enable
the learning of specific manipulator skills. However, these
approaches primarily focus on feasible problem formulations,
leaving a gap when dealing with the inherent infeasibility
of specific optimization problems. To address this limitation,
DC3 [30] fixed the violation and obtained an approximated
solution by adding additional differentiable completion and
correction procedures, which can be extended to nonlinear
optimization. Other works using meta-learning [31], double
descriptions [32] can also be applied to learn optimizers.
Integrating differential optimization in NNs provides diverse
tools to address optimization problems.

III. DEEP TIME-OPTIMAL TRAJECTORY LEARNING

A. Spatial-temporal Trajectory Optimization

Leveraging the differential flatness of quadrotor dynamics,
we represent the trajectory of the quadrotor by the trajectory
of its flat outputs: σ = [x, y, z, ψ]T ∈ R3 × S1. The vector
[x, y, z]T ∈ R3 represents the position of the quadrotor,
whereas ψ ∈ S1 represents the “yaw” angle that the projection
of its body x axis forms with the x axis of the world
frame. The remarkable fact is that a generic trajectory of
the quadrotor corresponds to a unique function σ, and in
turn, every sufficiently smooth σ corresponds to a dynam-
ically feasible trajectory of the vehicle, provided its motors
can exert sufficient thrust. The latter, actuation constraints
render numerous classes of trajectory optimization problems
for quadrotors computationally challenging. In this work, we
focus on the class of minimum-time problems, enforcing
the constraints in an approximate discrete approach on the
derivatives of σ, in the hope of developing an algorithm that

https://github.com/KumarRobotics/AllocNet

can output near-optimal and safe (collision-free, dynamically
feasible) trajectories in real-time. We parameterize the trajec-

��

�0

Boundary Constraints
�[�−1](0) = �0

Continuity Constraints
��

[�−1](∆��) = ��+1
[�−1](0)

Dynamic Constraints
− �� ≤ �[�−1](�) ≤ ��

Corridor Constraints
��

ℱ�(�) ≤ ℎ�
ℱ

Fig. 2. Trajectory Optimization formulation with corridors and dynamic
constraints. The equality boundary and continuity constraints are also demon-
strated.

tory of flat outputs σ(t) as a suitably smooth N = 2κ − 1
degree piece-wise polynomial function. In particular, σ(t)
is a concatenation of a sequence of M ∈ N segments,
σ1(·),σ2(·), ...,σM (·). Segment i, σi, is characterized by
its coefficients ci ∈ R(N+1)×3 and duration ∆ti > 0.
The complete trajectory σ(t) is therefore encoded through
its coefficient matrix c = [cT1 , ..., c

T
M]T and time allocation

intervals t = [∆t1, ...,∆tM]T , with:

σ(t) = σi(t−
i−1∑
k=1

∆tk), ∀t ∈ [

i−1∑
k=1

∆tk,

i∑
k=1

∆tk],

where σi(t) = cTi β(t),

β(t) = [1, t, t2, ..., tN]T , ∀t ∈ [0,∆ti].

(1)

Given a sequence of safe flight corridors extracted from
free space, together with dynamic feasibility in the form
of collision-free constraints on the derivatives of the flat
outputs, generate the time-optimal vector of duration intervals
and corresponding coefficients. For example, “collision-free”
constraints on the second derivatives encode actuation bounds
on the acceleration of the vehicle, constraints on the first
derivatives encode bounds on its velocity, and constraints
on the zeroth derivatives encode staying in the obstacle-free
region of space, shown in Fig. 2.

The objective function involves minimizing the traversal
time as well as the control effort (snap or jerk) required
to execute the planned n-dimension piece-wise polynomial
trajectory. Hence, the problem is formulated by

min
c,t

∫ ∑M
k=1 ∆tk

0

∥σ(κ)(t)∥2dt+ wtf(t), (2a)

s.t. σ[κ−1](0) = q̄0, σ[κ−1](

M∑
k=1

∆tk) = q̄f , (2b)

σ
[κ−1]
i (∆ti) = σ

[κ−1]
i (0), (2c)

− dm ≤ σi(t)
[κ−1] ≤ dm, (2d)

GH
i σi(t) ≤ hH

i , (2e)
∀i ∈ 1, ...,M, ∀t ∈ [0,∆ti]. (2f)

The q̄0, q̄f ∈ R3×κ are initial and end states up to (κ − 1)-
order derivative and σ[κ−1](t) = [σ(t)T , ...,σ(κ−1)(t)T]T .

The time objective f(t) could be the sum of total traversal
time or its absolute deviation from an expected finish time,
and wt is the associated weight. We use Eq. (2d) to include
all state and input inequality constraints except the constraints
on position, which are captured in Eq. (2e). The vector
dm ∈ Rκ−1 includes the magnitude of maximum velocity
vmax and acceleration amax for k = 3, adding maximum
jerk jmax for k = 4. The corridor constraints are formulated
by half-space representation of polytopes with GH

i ∈ RFi×3,
hH
i ∈ RFi , where Fi is the number of hyperplanes for i-th

polytope. The continuous inequality constraints are enforced
by discretizing the trajectory by the sampling number Nres and
querying sample points to satisfy positions within corridors
and higher derivatives within maximum limits. More generally,
we can formulate the problem into nonlinear programming as
follows.

Problem 1. The Time-optimal minimum control trajectory
optimization with corridor and dynamics constraints is a
parametric nonlinear programming (NLP) problem.

min
c,t

cTQ(t)c+ wtf(t), (3a)

s.t. A(t)c = b, (3b)
G(t)c ≤ h, (3c)

Ht = m, (3d)
Ct ≤ d, (3e)

where Q ⪰ 0 is a positive semidefinite matrix.

The former problem presents a non-convex optimization
that nevertheless possesses a certain amount of structure. In
particular, given a feasible time allocation, we can directly
compute the time-dependent matrices Qt,At,Gt and solve
for the optimal vector of coefficients as a convex quadratic
programming. Importantly, all aforementioned constraints are
linear constraints on c for a fixed t.

Problem 2. The minimum control trajectory optimization for
a given time allocation can be formulated as a quadratic
programming (QP) problem as follows:

min
c

cTQtc, (4a)

s.t. Atc = b, (4b)
Gtc ≤ h. (4c)

Unfortunately, the quadratic problem is not always feasible
with corridors and dynamics constraints for a specific time
allocation, which introduces extra refinements and iterations
for better time intervals.

B. Learning Time Allocation with NNs

1) Network architecture: We propose a Time Allocation
Network (AllocNet) to learn the time allocation for trajectory
generation. The full network architecture and system frame-
work are shown in Fig. 3. We learn a function that maps the
flattened initial and terminal states, denoted by q = [q̄0, q̄f]

T ,
together with the sequence of feasible flight corridors, denoted
by {PH

i =
[
GH

i ,h
H
i

]T }Mmax
i=1 , to the sequence of optimal

Motion Planning

{�∗} {��, ��, ��, �, �} �∗

Control

Offline
Training

� : {�∗, �∗}

Inputs

Corridor Generation

Initial Path Finding

Point Cloud

End State

Stereo
Camera IMU

Start State
{�}

Model Based: Safe
Flight Corridors

Learning Based: AllocNet

���� ����

��

Fig. 3. The overall planning framework. The network architecture is included in the motion planning part. With some initial path generation and corridor
generation, we can use two terms of network input: padded corridor and start and end state input. “I”, “O” represent the input and output size, “F” represents
kernel size, and “S” is stride. The output layer for time allocation is connected with a Softplus function to ensure t∗ ≻ 0. During the offline training, we
utilize a QP implicit layer to propagate gradients toward time allocation, and for online planning, we directly use a QP solver to solve the minimum control
trajectory optimization.

times, t∗ ∈ RM . Each flight corridor is represented as one
matrix in RFmax×4. Here Fmax represents the maximum
number of faces of the corridor, that is, the number of linear
inequality constraints that define it, and 4 corresponds to the
encoding of each such inequality using the unit normal and
the signed distance of the hyperplane that represents its zeroth
level set from the origin. We note that the actual number of
polytopes M need not be fixed; it can take on any value at
most Mmax. At the level of inputs to AllocNet, this is handled
by zeroing out the data corresponding to the trailing PH

i . We
further introduce another, auxiliary, output of the network -
a “stopping token” [33] that signals the maximum index of
the M -dimensional output vector t that corresponds to the
traversal time of a supplied corridor.

2) Implicit differentiable layers: With time allocation from
the previous layer, we can explicitly formulate the trajectory
optimization problem as a quadratic programming problem.
The matrices formed by time allocation are defined as a set
Φ(t) = {Q(t),A(t),G(t)}. Then we introduce a differen-
tiable layer with its input and output as:

zi+1 = argmin
z

zTQ(zi)z, (5a)

s.t. A(zi)z = b, (5b)
G(zi)z ≤ h, (5c)

where zi = t∗ refers to the optimal time allocation from the
previous layer, zi+1 = c∗ is the optimal coefficient matrix.
After solving this problem, we can get the equalities part of
the KKT condition [34] with the primal-dual optimal solution,

Γ(c∗, ν∗, λ∗,Φ) =

 2Qc∗ +AT ν∗ +GTλ∗

Ac∗ − b
diag(λ∗)(Gc∗ − h)

 = 0. (6)

To keep it short, we use y∗ = (c∗, ν∗, λ∗) in the rest of
paper. By using implicit differentiation, we can get

∂Γ(y∗,Φ)

∂Φ
+
∂Γ(y∗,Φ)

∂y∗
∂y∗

∂Φ
= 0. (7)

Therefore, we can expand the partial derivative of output
towards input as time allocation with chain rules by:

∂y∗

∂t∗
=
∂y∗

∂Φ

∂Φ

∂t∗
= −

(
∂Γ(y∗,Φ)

∂y∗

)−1
∂Γ(y∗,Φ)

∂Φ

∂Φ

∂t∗
. (8)

With the above expression, we are able to backpropagate
gradients of the primal solution c∗ towards time t∗.

3) Loss functions: We consider two main loss functions,
one loss term ℓF for min objective and a stopping token loss
ℓT for a flexible number of segments. The loss function is
evaluated by the objective of the original nonlinear program-
ming

ℓF (t
∗) = (c∗)TQ(t∗)c∗ + wt1

T t∗, (9)

where 1 is an vector of ones to minimize the total time term.
We need to propagate the gradient toward the previous layer.
Based on Eq. (8), we can further utilize chain rules to get all
gradients to time allocation, as:

▽tℓF (t
∗) =

(
∂Q

∂t∗

)T

▽QℓF +

(
∂c∗

∂t∗

)T

▽c∗ℓF + wt1 (10)

The QP implicit layer assumes the feasibility of the problem
and the satisfaction of the KKT condition. However, there are
no guarantees to formulate problems that are always feasible
primarily because of invalid time allocations. Additionally,
in certain scenarios, the QP solver cannot find an optimal
solution within the allowed time constraints. In differentiable
optimization layers with learning hard constraints, usually, the
relaxed problems are studied to ensure feasibility, which will
leave the gap to the original problem [16]. For the conditions

of solver failures, we instead use a different loss term to
penalize the deviation to the reference feasible time allocation,

ℓF (t
∗) = wF ∥t̄− t∗∥2 + wt1

T t∗, (11)

where wF is the weight for the MSE loss.
When generating the overlapping flight corridors, the num-

ber of segments usually depends on the initial seed path for
polytopes and goal position, which we expect to represent the
problem efficiently. To maintain such an efficient representa-
tion, a flexible segment length rather than a redundant corridor
sequence would be much better for formulating the optimiza-
tion. Thus, we design the stopping token loss for AllocNet that
considers the timeliness of terminating the sequence.

More specifically, the token loss function aims to minimize
three terms: the prediction error, the cost associated with
prematurely ending the sequence, and the cost associated
with ending the sequence late. The token loss function ℓT
is formulated as follows:

ℓT (s) = ℓBCE(s, s̄) + λp · (ℓPEP + ℓLEP), (12)

where s = [s1, ..., sMmax
] represents the predicted stop tokens,

s̄ = [s̄1, ..., s̄Mmax
] is the ground truth stop tokens, ℓBCE is

the Binary Cross Entropy loss, ℓPEP is the premature end
penalty, ℓLEP is the late end penalty, and λp is the penalty
weight for the premature and late end penalties. We can define
the premature end penalty ℓPEP and late end penalty ℓLEP

as:

ℓPEP =

Mmax∑
i=1

1{si>α∧s̄i<α}, (13)

ℓLEP =

Mmax∑
i=1

1{si<α∧s̄i>α}, (14)

where α is the token threshold, and 1{·} is the indicator
function which equals 1 when the condition inside the braces
is true and 0 otherwise. For each stop token, 0 and 1 indicate
the mid and the end of a sequence, respectively.

Combining ℓF and ℓT , AllocNet is therefore trained with
the following cumulative loss function

ℓ = ℓF (t
∗) + wS · ℓT (s), (15)

where wS is the weight for balancing ℓF and ℓT .

IV. RESULTS

A. Numerical Evaluation

1) Dataset generation: We use the real-world flying point
cloud dataset M3ED [35] and randomly generated maps with
Gaussian noise toward obstacles in the simulation for training.
To model local map regions for online planning, the point
cloud data is sampled and cropped into the same size as
12.5m × 12.5m × 5m, re-centered into the same origin. We
sample 100 valid start and goal states in each map to get
260000 data groups. We apply Informed RRT* [36] to generate
an initial geometric path and use this path to get convex
covers as continuous overlapped corridors [1]. Because the
runtime increases with the number of hyperplanes, we limit

(a) Representative samples in random density maps

(b) Representative samples in real-world point clouds

Fig. 4. Representative samples in simulation and real-world environments.
The simulated map is randomly generated with different types of obstacles
and different densities. The real-world flight data are cropped and re-centered.
Some sampled paths and corridors are shown in the figure.

the maximum number of hyperplanes within each corridor to
50. Furthermore, we enforce a maximum trajectory segment of
5 or 10, or this data will be dropped. The training variables and
computation time will increase with the number of segments
based on the problem formulation. We use the well-known
trajectory optimization methods [11] to get the reference
feasible time allocation, which enables minimizing the non-
fix total time. Some representative samples in both types of
maps are shown in Fig. 4.

2) Implementation Details: We use 3-D 5 (or 7)-degree
polynomials and solve the quadratic programming via OSQP
[37]. The corridors and flat-based dynamic constraints are
approximated discrete hard constraints for designed feasible
trajectories. We implemented the AllocNet in PyTorch and
trained it on our generated dataset with a carefully selected
set of parameters, shown in Tab. I. The LSTM component
within the network has a hidden size of 256 and comprises a
single layer. The network is trained on NVIDIA RTX A5000
GPU and later integrated with other ROS modules by using
LibTorch. The model can converge easily in 100 to 500 epochs
during training with the reference time loss term.

TABLE I
PARAMETERS

vmax amax jmax Nres wF wt wS λp

4 m/s 6 m/s2 8m/s3 20 1200 17.5 20 5

3) Ablation Experiment: We conduct a set of ablation
experiments to comprehensively evaluate the performance of
AllocNet and gain deeper insights into its mechanisms. These
experiments involve comparing the learned AllocNet model
with versions that include modifications to the loss function
and part of the architecture. To evaluate the role and impact
of the individual components and parameters of the proposed
model, we prepare several alternative versions of the model:

• Reference Time ℓF Only: By training a model using
only the ℓF loss function, we aim to investigate the role
and contribution of ℓT to the performance of AllocNet.

• Reference Time ℓF w/ Token: In this variant, we set the
token threshold α as 0.5, which is the most frequently

used token threshold for LSTM models in general. This
experiment is designed to demonstrate the influence of
tuned token thresholds on predicting the correct sequence
length.

• Ours w/ MLP Output Module: We replace the LSTM
output module with a 3-layer MLP with a hidden size
of 256. This variant helps us evaluate the advantages of
LSTM to predict segment numbers accurately.

• Ours (α = 0.35/0.75): We evaluate the model with
different stopping token threshold α to investigate the
tradeoff of biased threshold to control the actual output
length and the final performance.

To ensure attributable performance changes to specific modi-
fications, all comparative models maintain the original param-
eter values for elements that have not been specifically altered
for the experiment.

0

0.2

0.4

0.6

0.8

1

ref. time ref. time
w/ Token

ours
w/ MLP
Output

ours
(� = 0.35)

ours
(� = 0.75)

ref. time ref. time w/
Token

ours
w/ MLP
Output

ours
(� = 0.35)

ours
(� = 0.75)

ref. time ref. time
w/ Token

ours
w/ MLP
Output

ours
(� = 0.35)

ours
(� = 0.75)

ref. time ref. time w/
Token

ours
w/ MLP
Output

ours
(� = 0.35)

ours
(� = 0.75)

0

1

2

3

4
mean
median

0

4

8

12

16
mean
median

0

1000

2000

3000

4000

5000

mean
median

M
in

 C
on

tro
l

In
fe

r.
Ti

m
e

(m
s)

Su
cc

. R
at

e
Tr

aj
. T

im
e

(s
)

Fig. 5. Ablation study on minimum control efforts, total flight time (s),
inference time (ms), and success rates.

The test result is shown in Fig. 5. With the use of only
objective loss, the value of the output time vector tends to
accumulate in the first index and barely works as expected.
Adding the token loss significantly alleviates this issue but
still stays in highly sub-optimal areas with a larger total time
range and lower success rate. Although using an MLP layer
instead of LSTM shows a higher success rate by consistently
outputting the maximum length of values, it lacks precision
in predicting the actual length of time sequences due to
its non-autoregressive nature. In contrast, the autoregressive
nature of LSTM, when trained with token loss, allows for
more accurate termination of sequences, leading to lower
control efforts compared to MLP, which tends to overfit the
most frequent sequence length. For our proposed method, the
failure scenarios are mainly because the length of valid time
allocation doesn’t fit the actually input corridor length, which
is nontrivial to train together with multiple loss functions.
The stopping token threshold is usually set as 0.5, but with
multiple loss functions, relaxing the threshold (α = 0.35) will

accordingly increase the overall success rate. Otherwise, using
larger threshold results in more conservative total trajectory
times and lower control efforts.

B. Benchmark Comparisons in Simulation

We compare our proposed methods with some existing
solving schemes. All methods are provided with dynamic and
corridor constraints, with the trajectory represented by piece-
wise polynomials. Theoretically, using linear inverse with
higher derivatives waypoints equality constraints can achieve
a more numerically stable solution [17], and our sub-problem
formulation can also be replaced by this method. To make a
fair comparison, we only choose benchmark methods that can
be combined with general nonlinear or quadratic programming
formulation, and all are formulated with the same general
inequality constraints. We also observe some learning-based
methods with hard constraints [30, 32], but the performances
are not usually better than the state-of-the-art solver and are
even worse for nonlinear problems. We evaluate all these
methods in four different types of environments: simulated
random map, forest, urban, and indoor. We utilize only the
simulation and forest data during training, whereas the urban
and indoor maps come from unseen data distributions. The
details of benchmark methods are:

• QP∗ [3]: The quadratic programming is solved by OSQP,
and the optimal times’ gradient descent is solved by
backtracking line search using L-BFGS [38]. The original
problem doesn’t enforce dynamic inequality constraints;
therefore, it can reach a 100% success rate. However,
we include all these constraints for comparison and will
directly exit the line search if it reaches an invalid time
allocation.

• NLP: we use NLopt [39] to solve the nonlinear pro-
gramming in Prob. 1 and use the Improved Stochastic
Ranking Evolution Strategy (ISRES) algorithm to get the
global optimal solution. Because it’s hard to generate the
optimal solution fast, we use the QP solution as an initial
guess and limit 5 seconds for maximum solving time.

• Bilevel [14]: The time allocation and trajectory optimiza-
tion are combined in a BiLevel Optimization problem. We
replace the original trajectory representation as Bezier
Curves to polynomials and also change the constraints
formulation accordingly. The inner loop quadratic pro-
gramming is solved by OSQP.

As indicated in Tab. II, we apply a traditional method
to generate the safe flight corridor for all different datasets,
ensuring there are no generalization issues in our proposed
framework and comparison. In addition, we set the same rela-
tive tolerance criteria and limit the iterations for all the solvers.
The NLP methods usually cannot converge with the allowed
time, and the performance could be worse if no feasible initial
guess is provided. The QP∗ and Bilevel methods need an
initial total time, whereas other methods can directly optimize
the time during optimization. The QP∗ method uses finite
differences as the gradient direction and has a relatively lower
success rate among all other methods. This is due to the fact
that the quadratic programming will easily become infeasible

TABLE II
BENCHMARK ON TRAJECTORY OPTIMIZATION

Method
Min

Control
Traj.

Time (s)
Comp.

Time (ms)
Succ.
Rate

Sim

QP∗ 129.08 7.66 1820.15 0.51
NLP 154.61 7.00 5095.19 0.79
Bilevel OPT 151.18 7.10 2030.81 0.76
Ours (α = 0.35) 108.32 7.00 55.36 0.84
Ours (α = 0.75) 55.14 7.54 44.91 0.80

Forest

QP∗ 108.05 7.89 1619.20 0.52
NLP 138.26 7.22 5093.21 0.78
Bilevel 136.79 7.29 1813.08 0.77
Ours (α = 0.35) 105.21 7.17 55.48 0.87
Ours (α = 0.75) 51.75 7.66 41.56 0.79

Urban

QP∗ 104.86 8.05 1594.43 0.51
NLP 129.62 7.22 5095.45 0.81
Bilevel 124.32 7.40 1835.72 0.79
Ours (α = 0.35) 101.03 7.23 54.39 0.86
Ours (α = 0.75) 54.97 7.63 43.29 0.80

Indoor
QP∗ 104.63 8.02 1481.62 0.52
NLP 130.90 7.32 5089.54 0.80
Bilevel 127.06 7.43 1769.22 0.78
Ours (α = 0.35) 102.64 7.34 52.23 0.90
Ours (α = 0.75) 56.09 7.74 42.31 0.79

because of invalid time allocation. The benchmark results
highlight the advantages in terms of both computation time
and also minimum control efforts of our proposed method.
Even when the total solving time for constrained quadratic
programming is factored in, our proposed method can still
achieve fast computation time and a reasonable success rate for
online planning. For online planning, we can combine multiple
models to get better overall performance in practice.

(a)

(b)

Fig. 6. Snapshots of flight experiments in the outdoor (a) and indoor (b)
cluttered environments.

C. Real-world Deployment

We validate the proposed method on our custom-designed
Falcon 250 v2 platform [2], with ModalAI VOXL board1 and
Intel Realsense camera D435i for real-time state estimation
and volumetric mapping. The inference runs around 1.0 ms on
an i7-10710U CPU, which is similar to the computation time
achieved when running on both CPU and GPU versions. Given
the limited sensor range, the box-bounded maximum velocity
and acceleration are set to 2.0 m/s to 3.0 m/s2 respectively.
We utilize a finite horizon local planning style with a 100
HZ finite state machine to call the trajectory optimization
module. When calling the replanning with nonhomogeneous
boundary conditions, we also employ models trained from
non-rest to rest states models to handle these scenarios. Since
we use simple geometrical pathfinding to generate corridors,
the performance would be better if using some dynamic
planning methods to get dynamically feasible corridors. We
extensively demonstrate our framework in both indoor and
outdoor cluttered environments, and the snapshots are shown
in Fig. 6.

V. CONCLUSION

In this paper, we introduce an interpretable and lightweight
learning-based planning framework that utilizes neural net-
works to learn the optimal time allocation for constrained
trajectory optimization problems. We evaluate our proposed
method through extensive simulations and indoor and outdoor
experiments demonstrating its efficacy for real-time safe op-
eration. Our proposed method relies on the efficiency of the
quadratic programming solver and the quality of the initial
path. The latter forces the solution to lie in the same homotopy
class as the initial path for corridor generation. Our future
work will focus on integrating efficient and optimal search-
based path initialization and corridor generation on GPUs.

VI. ACKNOWLEDGMENTS

We would like to thank Fernando Cladera, Yuezhan Tao,
Yifei (Simon) Shao, and Alex Zhou for helping with the results
in the paper. The data sets used here are described in [35]. The
experimental platform was developed for the work presented
in [2].

REFERENCES

[1] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor,
and V. Kumar, “Planning dynamically feasible trajectories for quadrotors
using safe flight corridors in 3-d complex environments,” IEEE Robotics
and Automation Letters, vol. 2, no. 3, pp. 1688–1695, 2017.

[2] Y. Tao, Y. Wu, B. Li, F. Cladera, A. Zhou, D. Thakur, and V. Kumar,
“Seer: Safe efficient exploration for aerial robots using learning to
predict information gain,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), 2023, pp. 1235–1241.

[3] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in 2011 IEEE International Conference on
Robotics and Automation, 2011, pp. 2520–2525.

[4] R. Penicka, Y. Song, E. Kaufmann, and D. Scaramuzza, “Learning
minimum-time flight in cluttered environments,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 7209–7216, 2022.

1https://www.modalai.com/pages/voxl

[5] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A.
Bagnell, and M. Hebert, “Learning monocular reactive uav control in
cluttered natural environments,” in 2013 IEEE International Conference
on Robotics and Automation, 2013, pp. 1765–1772.

[6] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Learning high-speed flight in the wild,” Science
Robotics, vol. 6, no. 59, p. eabg5810, 2021. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abg5810

[7] J. Chen, T. Liu, and S. Shen, “Online generation of collision-free
trajectories for quadrotor flight in unknown cluttered environments,”
in 2016 IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 1476–1483.

[8] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research: The 16th International Symposium ISRR. Springer, 2016,
pp. 649–666.

[9] J. Tordesillas and J. P. How, “FASTER: Fast and safe trajectory
planner for navigation in unknown environments,” IEEE Transactions
on Robotics, 2021.

[10] I. Spasojevic, V. Murali, and S. Karaman, “Perception-aware time opti-
mal path parameterization for quadrotors,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 3213–3219.

[11] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained tra-
jectory optimization for multicopters,” IEEE Transactions on Robotics,
vol. 38, no. 5, pp. 3259–3278, 2022.

[12] A. Bry, C. Richter, A. Bachrach, and N. Roy, “Aggressive flight of
fixed-wing and quadrotor aircraft in dense indoor environments,” The
International Journal of Robotics Research, vol. 34, no. 7, pp. 969–1002,
2015. [Online]. Available: https://doi.org/10.1177/0278364914558129

[13] F. Gao, W. Wu, J. Pan, B. Zhou, and S. Shen, “Optimal time allocation
for quadrotor trajectory generation,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018, pp. 4715–
4722.

[14] W. Sun, G. Tang, and K. Hauser, “Fast uav trajectory optimization
using bilevel optimization with analytical gradients,” in 2020 American
Control Conference (ACC), 2020, pp. 82–87.

[15] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning
for quadrotor waypoint flight,” Science Robotics, vol. 6, no. 56, p.
eabh1221, 2021. [Online]. Available: https://www.science.org/doi/abs/
10.1126/scirobotics.abh1221

[16] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a layer
in neural networks,” in Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ser. ICML’17. JMLR.org, 2017, p.
136–145.

[17] M. M. de Almeida and M. Akella, “New numerically stable solutions
for minimum-snap quadcopter aggressive maneuvers,” in 2017 American
Control Conference (ACC), 2017, pp. 1322–1327.

[18] D. Burke, A. Chapman, and I. Shames, “Generating minimum-snap
quadrotor trajectories really fast,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020, pp. 1487–
1492.

[19] M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart, “Real-time
visual-inertial mapping, re-localization and planning onboard mavs in
unknown environments,” in 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2015, pp. 1872–1878.

[20] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion
planning for quadrotors using linear quadratic minimum time control,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, pp. 2872–2879.

[21] R. Penicka and D. Scaramuzza, “Minimum-time quadrotor waypoint
flight in cluttered environments,” IEEE Robotics and Automation Letters,
vol. 7, no. 2, pp. 5719–5726, 2022.

[22] J. Bobrow, S. Dubowsky, and J. Gibson, “Time-optimal control of
robotic manipulators along specified paths,” The International Journal
of Robotics Research, vol. 4, no. 3, pp. 3–17, 1985. [Online]. Available:
https://doi.org/10.1177/027836498500400301

[23] S. Bansal, V. Tolani, S. Gupta, J. Malik, and C. Tomlin,
“Combining optimal control and learning for visual navigation
in novel environments,” in Proceedings of the Conference on
Robot Learning, ser. Proceedings of Machine Learning Research,
L. P. Kaelbling, D. Kragic, and K. Sugiura, Eds., vol. 100.
PMLR, 30 Oct–01 Nov 2020, pp. 420–429. [Online]. Available:
https://proceedings.mlr.press/v100/bansal20a.html

[24] A. Faust, O. Ramirez, M. Fiser, K. Oslund, A. Francis, J. Davidson,
and L. Tapia, “Prm-rl: Long-range robotic navigation tasks by
combining reinforcement learning and sampling-based planning,”
in IEEE International Conference on Robotics and Automation

(ICRA), Brisbane, Australia, 2018, pp. 5113–5120. [Online]. Available:
https://arxiv.org/abs/1710.03937

[25] G. Tang, W. Sun, and K. Hauser, “Learning trajectories for real-
time optimal control of quadrotors,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018, pp. 3620–
3625.

[26] F. Yang, C. Wang, C. Cadena, and M. Hutter, “iplanner: Imperative
path planning,” in Robotics: Science and Systems (RSS), 2023. [Online].
Available: https://arxiv.org/pdf/2302.11434.pdf

[27] G. Ryou, E. Tal, and S. Karaman, “Real-time generation of time-
optimal quadrotor trajectories with semi-supervised seq2seq learning,”
in Proceedings of The 6th Conference on Robot Learning, ser.
Proceedings of Machine Learning Research, K. Liu, D. Kulic, and
J. Ichnowski, Eds., vol. 205. PMLR, 14–18 Dec 2023, pp. 1860–1870.
[Online]. Available: https://proceedings.mlr.press/v205/ryou23a.html

[28] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z.
Kolter, “Differentiable convex optimization layers,” Advances in neural
information processing systems, vol. 32, 2019.

[29] N. Jaquier, Y. Zhou, J. Starke, and T. Asfour, “Learning to sequence
and blend robot skills via differentiable optimization,” IEEE Robotics
and Automation Letters, vol. 7, no. 3, pp. 8431–8438, 2022.

[30] P. Donti, D. Rolnick, and J. Z. Kolter, “Dc3: A learning method for
optimization with hard constraints,” in International Conference on
Learning Representations, 2021.

[31] G. Négiar, M. W. Mahoney, and A. Krishnapriyan, “Learning
differentiable solvers for systems with hard constraints,” in The
Eleventh International Conference on Learning Representations, 2023.
[Online]. Available: https://openreview.net/forum?id=vdv6CmGksr0

[32] T. Frerix, M. Nießner, and D. Cremers, “Homogeneous linear inequality
constraints for neural network activations,” in 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops (CVPRW),
2020, pp. 3229–3234.

[33] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learn-
ing with neural networks,” in Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2, ser.
NIPS’14. Cambridge, MA, USA: MIT Press, 2014, p. 3104–3112.

[34] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[35] K. Chaney, F. Cladera, Z. Wang, A. Bisulco, M. A. Hsieh, C. Kor-
pela, V. Kumar, C. J. Taylor, and K. Daniilidis, “M3ed: Multi-robot,
multi-sensor, multi-environment event dataset,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2023, pp. 4015–4022.

[36] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014, pp. 2997–3004.

[37] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020. [Online].
Available: https://doi.org/10.1007/s12532-020-00179-2

[38] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[39] S. G. Johnson, “The NLopt nonlinear-optimization package,” https://
github.com/stevengj/nlopt, 2007.

https://www.science.org/doi/abs/10.1126/scirobotics.abg5810
https://doi.org/10.1177/0278364914558129
https://www.science.org/doi/abs/10.1126/scirobotics.abh1221
https://www.science.org/doi/abs/10.1126/scirobotics.abh1221
https://doi.org/10.1177/027836498500400301
https://proceedings.mlr.press/v100/bansal20a.html
https://arxiv.org/abs/1710.03937
https://arxiv.org/pdf/2302.11434.pdf
https://proceedings.mlr.press/v205/ryou23a.html
https://openreview.net/forum?id=vdv6CmGksr0
https://doi.org/10.1007/s12532-020-00179-2
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt

	Introduction
	Related Works
	Optimal Time Allocation for Trajectory Planning
	Learning for Autonomous blackNavigation
	Neural Optimizations with Hard Constraints

	Deep Time-optimal Trajectory Learning
	Spatial-temporal Trajectory Optimization
	Learning Time Allocation with NNs
	Network architecture
	Implicit differentiable layers
	Loss functions

	Results
	Numerical Evaluation
	Dataset generation
	Implementation Details
	Ablation Experiment

	Benchmark Comparisons in Simulation
	Real-world Deployment

	Conclusion
	Acknowledgments
	References

