
RobotGPT: Robot Manipulation Learning from
ChatGPT

Yixiang Jin 1, Dingzhe Li 1, Yong A 1, Jun Shi 1, Peng Hao 1, Fuchun Sun 2, Jianwei Zhang 3, Bin Fang 2∗

Abstract—We present RobotGPT, an innovative decision
framework for robotic manipulation that prioritizes stability
and safety. The execution code generated by ChatGPT cannot
guarantee the stability and safety of the system. ChatGPT
may provide different answers for the same task, leading to
unpredictability. This instability prevents the direct integration of
ChatGPT into the robot manipulation loop. Although setting the
temperature to 0 can generate more consistent outputs, it may
cause ChatGPT to lose diversity and creativity. Our objective
is to leverage ChatGPT’s problem-solving capabilities in robot
manipulation and train a reliable agent. The framework includes
an effective prompt structure and a robust learning model.
Additionally, we introduce a metric for measuring task difficulty
to evaluate ChatGPT’s performance in robot manipulation.
Furthermore, we evaluate RobotGPT in both simulation and real-
world environments. Compared to directly using ChatGPT to
generate code, our framework significantly improves task success
rates, with an average increase from 38.5% to 91.5%. Therefore,
training a RobotGPT by utilizing ChatGPT as an expert is a
more stable approach compared to directly using ChatGPT as a
task planner.

I. INTRODUCTION

Large language models (LLMs) have demonstrated im-
pressive achievements across various tasks, including but not
limited to text generation, machine translation, and code
synthesis. Recently, there has been a growing trend of work
[1, 2] attempting to incorporate LLMs into robotics systems.
This previous work has demonstrated that LLMs are capable
of conducting robot system planning in a zero-shot fashion.
However, to date, no research explores the full extent of what
tasks LLMs are capable of solving.

In addition, the rapid advancement in LLMs has also a sig-
nificant impact on Human-Robot Interaction (HRI). Research
on HRI involves broader areas, such as virtual reality, smart
spaces, and more. To increase user-facing popularity and to
make it more comfortable and convenient for people to use
robots, natural interaction is one of the key technologies.
At present, some progress has been made in the research
of natural language interaction [3], but there are also many
shortcomings.

This work was supported by Major Project of the New Generation of
Artificial Intelligence, China (No. 2018AAA0102900), the National Natural
Science Foundation of China under Grant 62173197

1The authors are with Samsung Research China – Beijing (SRC-
B) {yixiang.j, dingzhe.li, yong.a, jun7.shi,
peng1.hao } @samsung.com

2The author is with Tsinghua University {fangbin,
fcsun}@tsinghua.edu.cn, *Bin Fang is the corresponding
authors.

3The author is with Universität Hamburg, Germany

Nevertheless, there is still a slight lack of generalization
of usage scenarios and comprehension of language models.
The recent advent of ChatGPT has raised expectations for
LLMs. ChatGPT stands out among various language models
due to its powerful code model generation capabilities and
conversational flexibility, showing an amazing understanding
that allows users to interact with robots in a more natural way.
Existing representative works use ChatGPT to generate code
that can be deployed directly on robots, describing the goals
of the task and the library of functions available to ChatGPT
in advance, and then using ChatGPT to manipulate different
robots to perform functions such as drone navigation and
robots grasping objects in natural language after continuous
cyclic feedback. The ability of ChatGPT to parse user intent
from natural conversations and to generate problem-solving
code from natural conversations reveals the great potential of
ChatGPT for applications in robotics [1].

In this paper, we conducted in-depth research on the appli-
cation of ChatGPT in the field of robot manipulation. We aim
to advance the practical application of ChatGPT in robotics.
With ChatGPT, we implement a framework that translates the
environment and tasks into natural language. Subsequently,
ChatGPT generates specific action command codes, which are
used to train the agent RobotGPT that leverages ChatGPT’s
problem-solving capabilities. The robot can indirectly use
natural language to interact with the outside world in order
to design reasonable action sequences and implement corre-
sponding functions (e.g., pick-and-place). We also have some
suggestions for dialogue with ChatGPT, i.e., how to structure
prompts so that ChatGPT can understand more accurately and
deeply. In addition, we point out the limitations and security
risks of such interactions, as well as simple ideas to solve the
problem. Overall, our main contributions are as follows:

1) We explore an effective prompts structure with a self-
correction module, and conducted experiments on tasks
of varying difficulty to explore the capability boundaries
of ChatGPT on robotic tasks.

2) We propose a novel framework for the application of
ChatGPT in the field of robotics. Our system does
not directly execute the code generated by ChatGPT.
Instead, we employ an agent that learns the planning
strategies generated by ChatGPT, thereby enhancing
the stability of the system. Although fine-turning can
improve accuracy [4], training data is difficult to obtain.

II. RELATED WORK

1) LLMs for robotics.: Controlling robots via language can
bring more natural interaction for non-experts [5]. Stability

ar
X

iv
:2

31
2.

01
42

1v
1

 [
cs

.R
O

]
 3

 D
ec

 2
02

3

State Observation:

Objects Info
1: object_name: CUBE_0, shape: CUBE,
size: [0.03 0.03 0.03]
2: object_name: CUBE_1, shape: CUBE,
size: [0.03 0.03 0.03]
3: object_name: CUBE_2, shape: CUBE,
size: [0.03 0.03 0.03]
4: object_name: CUBE_3, shape: CUBE,
size: [0.03 0.03 0.03]
RobotAPI Info:
Given a Panda robot arm with a two-
figure gripper. There are two functions
you can use only:
1. envs.pickObject(object_name)
2. envs.placeObjectOn(object_name,
relative_position = [dx, dy]

Task Info:
Please stacking cubes.

Heightmap In-hand Image

1. Background Description

Promoting:

2. Objects Info

3. RobotAPI Info

Background Description
We have a robot arm with a two-finger
gripper. Consider there are a plane with
height (z axis) 0, and several building
blocks with shape of (x, y, z) on it. Output
a executable python code as concise as
possible.

4. Task Info

Interactively Generated Expert:

Excusable python codes

Code Error
Catching

Reasons for task failed

Robot Learning:

Deep Reinforce Learning Demo Collection
Robot-GPT

State: I, H, g

Action: Ag, Ap

[State: I, H, g;
Action: Ag, Ap;
Reward: SR;]

Decision Bot

5. Example

1. Pickup(‘CUBE_1’)
2. PlaceObjectOn(‘CUBE_0’)
3. Pickup(‘CUBE_2’)
4. PlaceObjectOn(‘CUBE_0’)
5. Pickup(‘CUBE_3’)
6. PlaceObjectOn(‘CUBE_0’)

Strategy Generated by ChatGPT:

Eval Codes

TRUE

ERROR

Excusable Double
Check

FALSE

Reasons for task failed

Corrector Bot
Promoting:

2. Current Objects Info
3. Previous Generated Code

1. Task Info

Fig. 1: Architecture of our system. ChatGPT plays three roles within it, namely decision bot, evaluation bot and corrector bot.
The operator gives an instruction for the robot to complete the task, and then a natural language prompt is generated based
on environmental information and human instruction. The decision bot will generate the corresponding executable code based
on the provided prompts. Next, the generated code will be executed line by line. If a runtime error occurs, the reason for this
error and the line of code where the error occurred will be provided for the decision bot for modification until the code can
run successfully. Then, the executable code will be tested by the Eval Code model that is generated by the evaluation bot. If
the executable code can’t pass the Eval Code, the corrector bot will analyze potential reasons for the failure of results and
send those failure reasons back to the decision bot for correction. Afterward, the code that satisfied the evaluation condition
will be used to generate demonstration data. After training, the trained agent can deploy the real robot perfectly.

and generalization are concerns for using language to con-
trol robots [4]. There exists a large literature on this issue,
overall divided into high-level interpretation (e.g., semantic
parsing, planning) [6] and low-level policies (e.g., model-
based, imitation learning or reinforcement learning) [7]. Large
language models (LLMs) exhibit powerful general intelligence
capabilities. At the same time, LLMs for robots have received
considerable attention [8]. The typical literature related to our
research work is as follows. [9] proposes LLMs can effectively
decompose high-level tasks into mid-level plans without any
further training. [2] construct geometrically feasible plans
based on LLMs. [10] use value functions to evaluate each
step of LLMs generation and select the optimal trajectory. [11]
build systems based on LLMs to learn the particular person’s
preferences. [4] use LLMs to generate robot-centric programs.
However, the stability of the output from LLMs is still worth
exploring.

2) Robot Learning.: In order to exploit the ability of
robots to interact with the real world, robot learning has
become a research hotspot [12]. Deep Learning advances the
development of robot learning when the state includes image
[13]. There are many algorithms for robot learning. However,
the algorithms based on reinforcement learning and imitation
learning are still the mainstream [14, 15]. In order to compare

different reinforcement learning algorithms, many benchmarks
have been proposed. [16] are targeted at single tasks (e.g., door
opening, furniture assembly, in-hand dexterous manipulation).
[17, 18] have a variety of different environments, but lack
long-horizon tasks. The relatively comprehensive benchmarks
are RLBench [19] and BulletArm [20]. Although benchmarks
provide the framework, how to get data for robot learning is
still a problem.

III. METHODOLOGY

ChatGPT cannot parse visual inputs and operate robots by
themselves. In this paper, we leverage a simulation environ-
ment and natural language-based robotic API to unleash Chat-
GPT’s general problem-solving capabilities. As a result, we
expect that the trained agent RobotGPT can absorb ChatGPT’s
knowledge at the task planning level.

A. ChatGPT prompts for robot manipulation

Recently, there has been a growing interest in using large
language models such as ChatGPT to directly control robots
by generating high-level actions. However, this approach may
not be suitable for several reasons. Firstly, ChatGPT-generated
actions may not be safe or stable, as they do not take into

Fig. 2: Prompts for ChatGPT

account the physical constraints and limitations of the robot.
Secondly, ChatGPT lacks the ability to reason about causal
relationships and temporal dependencies, which are crucial for
controlling complex robotic systems. Therefore, we propose an
alternative approach based on robot learning, where ChatGPT
is used to generate demonstrations that are used to train the
robot. By leveraging the strengths of both language models
and robot learning, we aim to develop safer and more robust
robotic systems. In this section, we detail our framework of
interaction with ChatGPT for demonstration generation.

We propose a framework for interacting with ChatGPT that
consists of two parts: code generation and error correction.
In the code generation phase, the user describes the task and
provides examples to guide ChatGPT’s response. This helps to
ensure that ChatGPT generates appropriate and relevant out-
puts that meet the user’s requirements. In the error correction
phase, both runtime errors and task failures are considered to
be correct.

1) Prompting description: Effective prompting methods
are essential for improving the performance of ChatGPT in
various domains. Vemprala et al. [1] pointed out the current
challenges of prompting LLMs for robotic manipulation as: 1).
requiring a complete and accurate description of the problem;
2). the allowable natural language described APIs; 3). biasing

the answer structure. In this section, we detail our effective
prompts method for robotic manipulation. We propose a five-
part prompting method that includes background description,
object info, environment info, task info, and examples. In
the background description part, the basic information about
the environment is described, such as the purpose of the
environment, its layout, and relevant entities. In the object info
part, we list all objects’ names, shapes, poses, and other helpful
information, such as their properties and relationships with
other objects. In the environment info part, we describe the
robot and API functions ChatGPT can use to perform the task.
In the task info part, we give the specific task for ChatGPT,
generally to generate Python code for a given job. Finally,
in the example part, we provide some examples to facilitate
a better understanding of the environment and API usage.
Following the suggestion by OpenAI [21], we set background
information and RobotAPI information as the system message
in the ChatGPT API to obtain satisfactory responses. By using
this comprehensive and structured prompting method, we aim
to improve the accuracy and efficiency of ChatGPT in various
tasks and domains.

2) Self-correction: In generating responses for complex
tasks, ChatGPT may occasionally produce minor bugs or
syntax errors that necessitate correction. This paper introduces

an interactive approach for rectifying ChatGPT’s responses. To
employ this method, we first execute the generated code within
a simulator and assess the outcomes.

The generated code will be executed line by line, and when
a runtime error occurs, the runtime errors, including the error
message and its location, will be captured by the Code Error
Catching module. This data is then sent back to the ChatGPT
decision bot for further analysis. In situations where the result
is a failure, the corrector bot can analyze potential reasons for
the failure based on prompts and generate a response explain-
ing why the task failed. Finally, the original ChatGPT decision
bot will regenerate the code based on the corrector bot’s
failure analysis. Utilizing this feedback, ChatGPT amends its
response and produces accurate code. This interactive process
may iterate up to three times. Our objective is to improve the
precision and dependability of ChatGPT’s responses, making
them increasingly relevant across a range of domains.

3) Generated Code Evaluation: The task completed ac-
cording to the ChatGPT-generated code should satisfy the
requirements. To this end, an automatic, efficient and precise
task evaluation module is imperative.

As Fig. 1 shown we employ a ChatGPT named evaluation
bot to generate evaluation code. The prompts for the evaluation
bot have some differences with the decision bot. The structure
of prompts remains unchanged, but the content of background
description and robot API has been different as Fig. 2 pre-
sented. Evaluation bot generated function is task success()
will serve as the criterion for determining the success of the
entire task. The role of humans is to double-check whether the
generated evaluation code is correct. If an incorrect evaluation
code is generated, humans will intervene to make corrections.
This kind of design can minimize the burden on humans.

B. Robot learning

It is unreliable to rely on ChatGPT to perform general
robotics tasks because the output of ChatGPT is random,
which exaggerates the risk of robotic work. Although setting
the temperature to zero can produce consistent outcomes at the
cost of diminishing diversity and creativity, it may also lead to
the continual failure of tasks. To solve this problem, we expect
robots to learn robot policies to absorb ChatGPT’s knowledge
of solving general tasks. For robot learning, we leverage the
state-of-the-art, open-source robotic manipulation benchmark
and learning framework BulletArm [20] to train an agent from
a ChatGPT-generated demonstration.

1) Action, state space and reward: The ChatGPT-powered
expert demonstrations were generated in the simulation en-
vironment, which comprised a Panda robot with a camera
mounted on top of the workspace. The state space is composed
of a top-down height-map H , an in-hand image I , and gripper
state g ∈ {HOLDING,EMPTY }. For action space, it
included robot skill As ∈ {PICK,PLACE} and target pose
Ap ∈ Axyθ. Where x and y represent the XY coordinates of
the end-effector and θ notes rotation along the z-axis. The
reward is set as a sparse reward function, in which the reward
is 1 when all state-action pairs reach the goal state and 0
otherwise.

Height-map

Qmap

X

Y

Selection by g

Q
m

ap
θ

Equivariant

convolutional layer

In-hand Image

Equivariant

convolutional layer

Selection by g

Fig. 3: Robot learning network architecture

2) Algorithm: BulletArm[20] shows that SDQfD [22] per-
forms better than DQN [23], ADET [24] and DQfD [25].
As for network architecture, Equivariant ASR[14] has the
best performance across all environments, then Rot FCN[26]
and CNN ASR[22], and finally FCN[27]. In this paper, the
SDQfD[22] algorithm is adopted for the task of robot learning
with Equivariant ASR network[14] as Fig. 3 shown. The loss
function is the sum of n-step TD loss and strict large margin
loss.

IV. EXPERIMENTS

In this section, we conduct the evaluation of the proposed
system in both simulation and real environments. To be more
precise, we focus on explaining the following question:

1) Can Robot-GPT efficiently and safely collects demon-
stration data and deploy it in the real world bridging the
sim-to-real domain gap?

2) Can our LLM-driven robot solves problems that hand-
coding and non-LLM are not well-addressed?

Fig. 4: Eight tasks used in our experiments

TABLE I: Inference Comparison

Task Name Description

move cube Move small cube above onto big cube

stacking Stack the given blocks together.

pyramid stacking Stack the given three blocks into a pyramid
shape.

house building 1 Construct a tall building using the given
three blocks and a triangle shape.

house building 2 Construct a bungalow using the given two
cubes and a triangle shape.

house building 3 Construct a house using the given two cubes
(red), a brick (blue) and a triangle shape.

bottle arrangement Arrange the given six bottles neatly on a
tray.

bin packing Pick up blocks on the table and place on
tray.

A. Metrics

To create a grading system, we consider the following three
aspects: the number of objects o, object categories c and
the number of tasks’ steps s. These three factors are the
top influences on the difficulty of robotic desktop grasping
tasks, as determined through a survey conducted with 32
experts and engineers in the field of robotics and computer
vision. The questionnaire consists of two main parts. The first
part is to write down the top three factors influencing robot
manipulation difficulty. The second part is to assign a score
to eight scenarios for this experiment. Results are shown in
TABLE II.

Among the three factors, the number of objects has the
greatest impact, and we have magnified its weight in the score.
Therefore, the score of task difficulty can be calculated using
the following equation:

score = o+ o ∗ c+ s (1)

Tasks with scores between 0 and 10 are considered easy,
tasks with scores between 11 and 20 are regarded as medium,
and scores above 20 are defined as difficult tasks. Table II
shows the tasks utilized in the experiment and their cor-
responding difficulty levels. The difficulty calculated from
equation 1 is the same as the subjective results obtained
from the survey questionnaire besides bin packing task, which
indicates that this evaluation system has general applicability.
The reason for the subjective result of bin packing task leading
to simple results is due to ignoring optimizing the placement
location to fill the bin without objects falling.

In the following quantitative experiment, we will generate
25 random scenes for each task and count the number of
successful attempts.

B. Experiment setup

Fig. 5 shows our experiment setup in both simulation
and real environments. We mount an RGB-D sensor directly
above the workspace to provide a clear height map of the
scene. In the simulated environment, the robot relies on the

TABLE II: Experiment tasks and their corresponding difficulty.
‘Difficulty1’ represents results calculated based on the metrics,
and ‘Difficulty2’ is subjective ratings obtained from the survey
responses.

Task Name o c s Score Difficulty1 Difficulty2
move cube 2 1 2 6 E E

block stacking 4 1 6 16 M M
pyramid stacking 3 1 6 15 M M
house building 1 4 2 6 20 M M
house building 2 3 2 4 15 M M
house building 3 4 3 6 28 H H

bottle arrangement 6 1 12 30 H H
bin packing 8 1 16 40 H E

PyBullet engine for motion control. While in the real world,
the robot utilizes MoveIt and ros franka for motion planning
and execution.

(a) Simulation Environment (b) Real robot environment

Fig. 5: Experiment Setup

C. Simulation experiment

Table III presents the quantitative results of the eight exper-
iments. The fact is that despite entering the same prompts
each time, the generated code and the resulting output al-
ways have significant differences because the temperature of
the decision bot is 1.0. In addition, the code generated by
ChatGPT contains syntax or logic errors. Although our self-
correction module can revise some syntax errors, in most
cases, if ChatGPT fails to generate successful code initially, it
becomes difficult to achieve success in this experiment.

(a) Failing to under-
stand requirements

(b) Wrong action se-
quence planning

(c) Wrong
placement position

Fig. 6: Failed task planning generated by ChatGPT.

Fig. 6 illustrates the three most common failures caused by
incorrect planning generated by ChatGPT. Fig. 6 (a) shows

failures caused by misunderstanding of the task requirements.
The bottle arrangement task requires placing the bottles neatly
on the tray, rather than dropping them onto the tray at will.
Fig. 6 (b) presents wrong action sequence planning, in which
the robot is grasping the stacked blocks in the image. This is
obviously unreasonable because the robot should be grasping
objects that have not yet been stacked. In Fig. 6 (c), it is
evident that the placement position of the robot is deviant.
Therefore, ChatGPT can provide different solutions for the
same prompts, some of which are correct while others are
incorrect. This is why we propose the RobotGPT framework
as a more stable approach.

Fig. 7: Success rates for three difficulty levels

Fig. 7 displays the success rates for three difficulty levels.
For ChatGPT, it is evident that as the task difficulty increases,
the success rate decreases significantly. The success rates for
the easy, medium, and difficult tasks are 0.88, 0.39, and 0.21,
respectively. In contrast, our RobotGPT model demonstrates
robustness across all levels of tasks, maintaining a good
performance, which can achieve 0.915 on average.

TABLE III: The counting results of experiments using a gpt-
3.5-turbo-0301 model

Task Name gpt-3.5 robot-gpt
Success Fail AP Success Fail AP

move cube(E) 22 3 0.88 25 0 1.0
block stacking(M) 10 15 0.40 24 1 0.96

pyramid stacking(M) 8 17 0.32 22 3 0.88
house building 1(M) 12 13 0.48 22 3 0.88
house building 2(M) 9 16 0.36 23 2 0.92
house building 3(H) 2 23 0.08 20 5 0.8

bottle arrangement(H) 9 16 0.36 23 2 0.92
bin packing(H) 5 20 0.20 24 1 0.96

D. Real robot experiment

The ultimate goal of RobotGPT is to leverage ChatGPT’s
intelligence to assist in solving real-world problems. There-
fore, we deployed the trained agent in the real environment,
which is the same as the simulation. To overcome the sim2real
gap, pre-processing will be performed on the raw depth map

Fig. 8: Real robot experiments result

via object segmentation and denoising before converting to
the height map. Besides, to ensure a continuous process of
robot pick-and-place, unlike in the simulator, the robot does
not return to the observation position to capture a new depth
map after its pick-up action during real robot testing. Instead,
the current height map is cropped from the previous one based
on the gripper holding state. For the real robot experiments,
we select six scenarios that are shown in Fig 8, and each
experiment is conducted ten times. Finally, TABLE IV reports
our real robot test results.

TABLE IV: The counting results of real robot experiments

Task Name Success Fail Total AP
move cube(E) 8 2 10 0.8

block stacking(M) 6 4 10 0.6
pyramid stacking(M) 7 3 10 0.7
house building 1(M) 9 1 10 0.9
house building 2(M) 6 4 10 0.6

bin packing(H) 7 3 10 0.7

From TABLE IV, it can be observed that tasks with fewer
execution steps tend to have a higher number of successful
attempts. The main reason for failure cases is not due to the
agent’s wrong predictions, but rather to insufficient precision
during placement, leading to task failures. Therefore, exploring
LLM in a closed-loop cycle to achieve more precise task
execution would be worthwhile research in the future.

E. AB Test

To investigate our LLM-driven robot’s capability in solving
problems that are not well-addressed by non-LLM approaches,
we have introduced two open-ended experiments as Fig. 9
shown. The first experiment involves a tidy up room challenge
that requires organizing 40 custom household objects, while
the second one is a spelling word game that aims to spell the
longest word using given set of alphabets A-L. Additionally,
we invite human subjects to complete the same tasks.

Experimental Protocol. We invite ten participants for the
AB test experiment. Seven of them have prior experience
in robot development, while three have experience in image
processing. We set a time limit of 70 minutes. Participants un-
derstand development requirements through prompts identical

TABLE V: Result of AB Test

Human Participates RobotGPT
CS CQ TU EH CS CQ TU EH

move cube 10/10 0.55 328.3 0/10 ✓ 0.5 11.8 -
block stacking 10/10 0.72 199.1 0/10 ✓ 0.75 44.9 -

pyramid stacking 10/10 0.68 206.6 0/10 ✓ 0.75 62.7 -
house building 1 9/10 0.68 193 0/9 ✓ 0.83 16.9 -
house building 2 9/10 0.69 196 0/9 ✓ 0.67 30.7 -
house building 3 9/10 0.74 206.6 0/9 ✓ 0.75 533.9 -

bottle arrangement 7/10 0.74 575.9 0/7 ✓ 0.86 110.4 -
bin packing 10/10 0.76 772.5 0/10 ✓ 0.90 574.8 -

tidy up 5/10 0.4374 1150.4 4/5 ✓ 0.71 320.1 -
word spell 5/10 0.85 652 5/5 ✓ 0.90 412.2 -

Fig. 9: Two open-ended experiments

to those given to RobotGPT. They are asked to finish the 10
tasks listed in Table V through programming. Each participant
has the autonomy to determine the order in which they attempt
the tasks.

Evaluation Metrics. We evaluate the performance by five
metrics: completion status(CS), for human participates, we
count the number of completions, as for RobotGPT is whether
finished; code quality(CQ) refers to the score of the generated
code from 0 to 1, which is analyzed by Pylint, a static
code analysis tool for Python; time usage(TU), consuming
time in seconds from reading task requirement to implement
the task in simulation; external help(EH) refers to whether
participants search for information on the internet; For human
tests, CQ, TU and EH represent the average value of data
from individuals who have successfully completed the task.

Results and Analysis. Table V shows the result of AB
test. Compared with hand-coding, RobotGPT demonstrates
advantages in both code quality and time consumption, which
are 0.762 and 221.8 seconds compared to 0.70 and 554.9
seconds for humans. Only five participants complete all the
tasks within 70 minutes, therefore even for engineers with a

strong programming background, generating robot demonstra-
tion data through hand-coding is time-consuming.

In addition, RobotGPT outperforms humans significantly
on two open-ended tasks, tidying up room and word spelling
game. This is primarily benefited from the prior knowledge
repository of LLM. For the tidy-up experiment, RobotGPT
divides objects into ten groups labeled as kitchenware, fruit,
snacks, media, footwear, office supplies, electronics, personal
care products, storage, and beverages, with 412 seconds time-
consuming. This is a very satisfying result. Consider if there
are 400 objects instead of 40, the advantages of LLM-driven
robots would become more evident. In the spelling game, the
result provided by the RobotGPT is a 9-letter word ’backfield,’
while the best result of human response is a 7-letter word
’blacked’. What’s more, participants need to search informa-
tion online to complete two open-ended tasks, indicating that
LLM possesses more comprehensive knowledge than humans.

V. CONCLUSION

In this paper, we first develop an effective prompting
structure to enhance ChatGPT’s understanding of the robot’s
environment and the tasks it needs to implement. Next, we
introduce a framework called RobotGPT, which leverages
ChatGPT’s problem-solving capabilities to achieve more stable
task execution. In experiments, we build a metric to measure
task difficulty and observe that as the task difficulty increases,
the success rate of execution by ChatGPT decreases. In
contrast, RobotGPT can execute these tasks with a success
rate of 91.5%, demonstrating a more stable performance.
More importantly, this agent has also been deployed to run
in real-world environments. Therefore, training a RobotGPT
by utilizing ChatGPT as an expert is a more stable approach
compared to directly using ChatGPT as a task planner. In
addition, the AB test shows our LLM-driven robot outperforms
hand-coding significantly on two open-ended tasks owing to
the massive priori knowledge repository of LLM. Overall, the
integration of robotics and LLMs is still at an infant stage.
Our work is just an initial exploration, and we believe that
much of the future research in this area is to explore how to
properly use ChatGPT’s abilities in the field of robotics.

REFERENCES

[1] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor,
“Chatgpt for robotics: Design principles and model abil-

ities,” Microsoft Auton. Syst. Robot. Res, vol. 2, p. 20,
2023.

[2] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg,
“Text2motion: From natural language instructions to fea-
sible plans,” in ICRA2023 Workshop on Pretraining for
Robotics (PT4R), 2023.

[3] M. Marge, C. Espy-Wilson, N. G. Ward, A. Al-
wan, Y. Artzi, M. Bansal, G. Blankenship, J. Chai,
H. Daumé III, D. Dey, et al., “Spoken language interac-
tion with robots: Recommendations for future research,”
Computer Speech & Language, vol. 71, p. 101255, 2022.

[4] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter,
P. Florence, and A. Zeng, “Code as policies: Language
model programs for embodied control,” arXiv preprint
arXiv:2209.07753, 2022.

[5] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek,
“Robots that use language,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 3, pp. 25–55,
2020.

[6] T. Kollar, S. Tellex, D. Roy, and N. Roy, “Toward
understanding natural language directions,” in 2010 5th
ACM/IEEE International Conference on Human-Robot
Interaction (HRI), pp. 259–266, IEEE, 2010.

[7] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn, et al.,
“Learning language-conditioned robot behavior from of-
fline data and crowd-sourced annotation,” in Conference
on Robot Learning, pp. 1303–1315, PMLR, 2022.

[8] A. Madaan, S. Zhou, U. Alon, Y. Yang, and G. Neubig,
“Language models of code are few-shot commonsense
learners,” arXiv preprint arXiv:2210.07128, 2022.

[9] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch,
“Language models as zero-shot planners: Extracting ac-
tionable knowledge for embodied agents,” in Interna-
tional Conference on Machine Learning, pp. 9118–9147,
PMLR, 2022.

[10] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Her-
zog, D. Ho, J. Ibarz, A. Irpan, E. Jang, R. Julian, et al.,
“Do as i can, not as i say: Grounding language in robotic
affordances,” in Conference on Robot Learning, pp. 287–
318, PMLR, 2023.

[11] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng,
S. Song, J. Bohg, S. Rusinkiewicz, and T. Funkhouser,
“Tidybot: Personalized robot assistance with large lan-
guage models,” arXiv preprint arXiv:2305.05658, 2023.

[12] O. Kroemer, S. Niekum, and G. Konidaris, “A review of
robot learning for manipulation: Challenges, representa-
tions, and algorithms,” The Journal of Machine Learning
Research, vol. 22, no. 1, pp. 1395–1476, 2021.

[13] S. Cabi, S. G. Colmenarejo, A. Novikov,
K. Konyushkova, S. Reed, R. Jeong, K. Zolna, Y. Aytar,
D. Budden, M. Vecerik, et al., “Scaling data-driven
robotics with reward sketching and batch reinforcement
learning,” arXiv preprint arXiv:1909.12200, 2019.

[14] D. Wang, R. Walters, X. Zhu, and R. Platt, “Equivariant
q learning in spatial action spaces,” in Conference on
Robot Learning, pp. 1713–1723, PMLR, 2022.

[15] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan,
M. Bauza, D. Ma, O. Taylor, M. Liu, E. Romo, et al.,

“Robotic pick-and-place of novel objects in clutter
with multi-affordance grasping and cross-domain image
matching,” The International Journal of Robotics Re-
search, vol. 41, no. 7, pp. 690–705, 2022.

[16] Y. Lee, E. S. Hu, and J. J. Lim, “Ikea furniture assem-
bly environment for long-horizon complex manipulation
tasks,” in 2021 ieee international conference on robotics
and automation (icra), pp. 6343–6349, IEEE, 2021.

[17] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n,
A. Joshi, S. Nasiriany, and Y. Zhu, “robosuite: A modular
simulation framework and benchmark for robot learning,”
arXiv preprint arXiv:2009.12293, 2020.

[18] B. Delhaisse, L. Rozo, and D. G. Caldwell, “Pyrobolearn:
A python framework for robot learning practitioners,” in
Conference on Robot Learning, pp. 1348–1358, PMLR,
2020.

[19] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison,
“Rlbench: The robot learning benchmark & learning
environment,” IEEE Robotics and Automation Letters,
vol. 5, no. 2, pp. 3019–3026, 2020.

[20] D. Wang, C. Kohler, X. Zhu, M. Jia, and R. Platt, “Bul-
letarm: An open-source robotic manipulation benchmark
and learning framework,” in Robotics Research, pp. 335–
350, Springer, 2023.

[21] OpenAI, “Best practices for prompt engineering with
openai api,” 8 2023. Accessed: August 23, 2023.

[22] D. Wang, C. Kohler, and R. Platt, “Policy learning in
se (3) action spaces,” arXiv preprint arXiv:2010.02798,
2020.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, et al., “Human-level control
through deep reinforcement learning,” nature, vol. 518,
no. 7540, pp. 529–533, 2015.

[24] A. S. Lakshminarayanan, S. Ozair, and Y. Bengio, “Re-
inforcement learning with few expert demonstrations,”
in NIPS workshop on deep learning for action and
interaction, vol. 2016, 2016.

[25] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul,
B. Piot, D. Horgan, J. Quan, A. Sendonaris, I. Os-
band, et al., “Deep q-learning from demonstrations,”
in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, 2018.

[26] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez,
and T. Funkhouser, “Learning synergies between pushing
and grasping with self-supervised deep reinforcement
learning,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4238–4245,
IEEE, 2018.

[27] J. Long, E. Shelhamer, and T. Darrell, “Fully convolu-
tional networks for semantic segmentation,” in Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pp. 3431–3440, 2015.

	Introduction
	Related Work
	LLMs for robotics.
	Robot Learning.

	Methodology
	ChatGPT prompts for robot manipulation
	Prompting description
	Self-correction
	Generated Code Evaluation

	Robot learning
	Action, state space and reward
	Algorithm

	Experiments
	Metrics
	Experiment setup
	Simulation experiment
	Real robot experiment
	AB Test

	Conclusion

