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E(2)-Equivariant Graph Planning for Navigation
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Abstract—Learning for robot navigation presents a critical
and challenging task. The scarcity and costliness of real-world
datasets necessitate efficient learning approaches. In this letter,
we exploit Euclidean symmetry in planning for 2D naviga-
tion, which originates from Euclidean transformations between
reference frames and enables parameter sharing. To address
the challenges of unstructured environments, we formulate the
navigation problem as planning on a geometric graph and
develop an equivariant message passing network to perform
value iteration. Furthermore, to handle multi-camera input, we
propose a learnable equivariant layer to lift features to a desired
space. We conduct comprehensive evaluations across five diverse
tasks encompassing structured and unstructured environments,
along with maps of known and unknown, given point goals or
semantic goals. Our experiments confirm the substantial benefits
on training efficiency, stability, and generalization. More details
can be found at the project website: https://lhy.xyz/e2-planning/.

Index Terms—Integrated planning and learning, deep learning
methods, vision-based navigation

I. INTRODUCTION

NAVIGATION is a fundamental capability of mobile
robots. Traditional navigation approaches, such as A*

[1], focus on finding shortest-distance collision-free paths to a
provided goal location in a pre-built occupancy map or known
costmap. Recently, learning-based approaches to robot naviga-
tion have been proposed [2–6], which are particularly useful
when the costs or goals are not explicitly provided and need
to be learned from data. For example, in visual navigation,
the cost to navigate between locations may depend on high-
dimensional visual features, and the goal may likewise need to
be visually identified (e.g., “find a mug”). As another example,
in imitation learning, users may provide information about
their preferred navigation policy implicitly via demonstrations,
and the costs or optical actions need to be learned using
features from the robot’s state-action space.

While the aforementioned learning-based approaches ex-
hibit remarkable capability in handling high-dimensional ob-
servations, they typically require a considerable amount of data
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and intensive training [2, 3]. Furthermore, these methods lack
guarantees regarding generalization capabilities. In this work,
we investigate the potential benefits of Euclidean symmetry
in navigation tasks. It stems from Euclidean transformations
among reference frames, enabling parameter sharing, enhanc-
ing efficiency, and improving generalizability. The utilization
of symmetry in navigation within the grid world domain is
explored in the earlier study by Zhao et al. [7] (left of Fig. 1).
They introduce the equivariant version of the value iteration
network (VIN) [8] under discrete translations, rotations, and
reflections, along with a differentiable navigation planner.
Their work showcases notable improvements compared to
baseline approaches [8, 9]. However, they only focused on
navigation in discrete 2D grids, which limits its applicability
to robot navigation.

In our work, we introduce an equivariant learning-based
navigation approach that operates on graphs in continuous
space and considers symmetry with respect to an infinitely
larger continuous group – the Euclidean group E(2) (right
of Fig. 1). Specifically, we use geometric graphs (or spatial
graphs) [10], where nodes in our graph correspond to states
(and their features) arbitrarily located in 2D space. This
eliminates the confinement to a grid, enabling the environment
to remain non-discretized and permitting variable resolution.
This also helps when the robot’s motion deviates from grid-
like patterns. Moreover, our approach accounts for continuous
rotational symmetry, enhancing learning efficiency compared
to discrete symmetry like Dihedral group D4.

However, to exploit Euclidean symmetry in graph-based
navigation, we need to solve two major challenges. First,
previous work on 2D grids exploited the grid nature of their
problem and used standard 2D symmetric convolution, which
is no longer applicable in our case. Instead, we derive a new
E(2)-equivariant message-passing version of VIN and validate
that it satisfies our notion of symmetry. Second, to capture
symmetry in visual inputs/features, previous work relied on
a very specific setup. As illustrated in Fig. 1, the agent
was assumed to have four cameras, each situated 90◦ apart,
exactly matching the D4 symmetry being considered, such
that a group transformation (rotation) can be implemented as
a permutation to the four images. Extending this approach di-
rectly to E(2) would technically require an infinite number of
cameras (or at least an infinite-resolution panoramic camera).
We lift this restriction by introducing a learnable equivariant
layer that can take images from a camera array conforming
to a subgroup of E(2) (such as D8) and lift their features to
become E(2)-equivariant.

We empirically demonstrate the effectiveness of our ap-
proach on various navigation environments, including 2D grid,
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Fig. 1: Illustration of rotation equivariance. We provide a side-by-side comparison with SymVIN [7]. We use the blue arrow to show
the orientation of the robot. Rotating the robot ⟳ 90◦ is equivalent to rotating the world frame ⟲ 90◦. When camera views are cyclically
permuted, action output (red arrow) is transformed by a rotation matrix. The state space of SymVIN (left) is confined to the grid, and it
only produces discrete actions. Our approach acts on continuous 2D space and produces R2 actions.

2D geometric graphs, and Miniworld visual navigation [11] on
both grid and graph. Moreover, in demonstrating its potential
suitability for semantic goals and real-world environments, we
provide a proof-of-concept experiment on semantic navigation
tasks in the Habitat simulator [12]. Among these studies,
we observe a consistent improvement in learning efficiency
and stability. Overall, our study provides insight into the
application of equivariance in navigation and the challenges.
Our contributions are three-fold:

• We study the equivariance properties of 2D navigation
and identify the two challenges.

• To address the challenges, we (1) derive the geomet-
ric message passing (MP) version of value iteration
on geometric graphs and (2) propose using a learnable
equivariant layer that converts multi-camera images to
desired feature space, respectively.

• We demonstrate the empirical performance of navigation
on Grid World (2D grid), Graph World (2D geometric
graphs), and Miniworld visual navigation on both grid
and graph. We provide proof-of-concept results on se-
mantic navigation in Habitat simulator.

II. RELATED WORKS

Geometric deep learning. Our exploration of Euclidean
symmetry utilizes tools from geometric deep learning [10, 13–
16]. Geometric deep learning and equivariant networks extend
the study of classic 2D translation-equivariant convolution
neural networks into more symmetry groups and spaces
[10, 13]. Cohen and Welling [13] propose group convolu-
tion network (G-CNN), a pioneer work that studies rotation
symmetry, followed by an extension to steerable convolution,
Steerable CNN [17]. It has also been extended to the 3D case
[18] and supported by a library in E(2) [16]. For graphs,
equivariant message passing uses equivariant multilayer per-
ceptrons (MLPs) to propagate geometric quantities between
nodes to preserve the symmetry [14, 15]. Different from
E(3)-equivariant message passing in [15], we work on E(2)
case. Additionally, the relationship between geometric graphs
and value iteration has been discussed in [19]. In practice,
equivariant networks enable sharing parameters and reduce the
number of parameters.

Equivariance in reinforcement learning and planning.
Our work draws upon previous research on symmetry in rein-

forcement learning (RL) and planning [7, 20, 21]. Symmetry
and equivariance have been studied in reinforcement learning
and planning before and in the era of deep learning [22, 23].
Invariance of the optimal value function and equivariance of
the optimal policy of a Markov Decision Process (MDP)
with symmetry have been shown in Zinkevich and Balch
[24]. When using function approximation, equivariant policy
networks and invariant value networks have been used to
improve training efficiency in model-free RL [20, 21], and
equivariance also helps in transition model and model-based
RL [7, 25–27].

Learning to navigate. To achieve end-to-end navigation
learning, several works investigate the differentiable planning
algorithms [8, 28]. In this letter, we aim to investigate a
particular class of planning algorithms that rely on Value
Iteration Network (VIN) [8] and its variants [7, 9, 29, 30].
The selection of VINs is motivated by the fact that value
iteration is fully differentiable and inherently encompasses
an equivariant convolution [7]. Gupta et al. [31] adapt VIN
to real-world applications with simultaneous mapping and
planning, and Karkus et al. [32] propose DAN for end-to-
end learning with structured representation. Prior to us, Zhao
et al. [7] improved VIN with symmetry. However, these works
operate on a structured 2D grid Z2. In this letter, we extend the
planning to the 2D plane, enabling navigation in more realistic
unstructured environments.

III. BACKGROUND AND PROBLEM FORMULATION:
NAVIGATION AS GEOMETRIC GRAPHS

In this section, we define the navigation problem under
study and explore its symmetry aspects. Our formulation is
a straightforward generalization of the global planning on
occupancy grid [7, 8], with extensions including representing
the navigation task through a geometric graph [10, 15]. Our
objective is to train a planner that generates action at at state
st, guiding the agent to reach a target w on the graph: at =
policyθ(st,w). The target can be a spatial location (point
goal) or semantic goal. We base on the differentiable planner
– VIN [8], allowing to consume input in high-dimensional
features, e.g., image or even text embedding. As background,
we first explain the problem definition, alongside the geometric
structure and symmetry in the navigation graph. Then, we
introduce the extension of equivariance in value iteration.
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Lastly, we delve into the incorporation of equivariance within
the value iteration framework on the geometric graph.

Definition. We approach navigation as a 2D continuous path
planning problem, building upon the 2D discrete grid version
introduced in [7, 8], while extending it to the utilization of
the geometric graph G = ⟨V, E⟩ in 2D Euclidean space R2.
In navigation tasks, the agent observes a state st ∈ S at each
step, and the action is to move on the 2D plane at ∈ A = R2.
State st can be a 2D position in R2 or egocentric panoramic
images in RK×H×W (where K denotes the number of images
of resolution H ×W )1. To convert the task into a geometric
graph, each node vi ∈ V corresponds to a state s ∈ S and is
associated with a node feature hi (such as images) and has a
position xi ∈ R2. It is also possible to use edge features2.
In this letter, we focus on addressing the global planning
problem: given a navigation task (state s and target w) as a
feature field/map M , we output action field Π = Planθ(M).

Assumptions. The navigation challenge under consideration
pertains to high-level global planning. In this context, we
abstract the perception aspect (e.g., the method of acquisition)
and the control aspect (assuming the feasibility of 2D relative
movement output). Even if the execution of action does not
arrive at another graph node, we may use action from the
closest states or interpolate surrounding states. We assume a
relatively accurate localization is provided.

Geometric Structure. The navigation problem can be de-
fined as a MDP, and an inherent geometric structure emerges: it
can be conceptualized as a geometric graph (defined above) sit-
uated within a 2D Euclidean space. Specifically, this graph can
be transformed through 2D Euclidean isometric symmetries,
without impacting the optimal solution of the MDP [7, 20].
The set of all such transformations in 2D is called Euclidean
group E(2), which can be uniquely decomposed into transla-
tion part R2 and rotation/reflection part O(2), denoted as semi-
direct product ⋊: E(2) = R2⋊O(2) [13, 16]. We only require
the node features h (and edge features) are transformable by a
subgroup G ≤ E(2). Following the notation in [16], we denote
the rotation/reflection symmetry part as compact symmetry
group G ≤ GL(2), because translation group is not compact
and many useful theorems do not hold. In our implementation,
translation equivariance is achieved by using relative position.
For any subgroups G of rotation/reflection, its equivariance
needs group convolution [13] or steerable convolution [17].

Value Iteration and Symmetry. When symmetry appears
in an MDP, the value and policy functions are equivariant [7,
20]. Abstractly, we can write value iteration (VI) as iteratively
applying the Bellman operator T : Vt 7→ Vt+1:

Qt(s,a) := R(s,a) +

∫
R2

ds′P (s′ | s,a)V (s′),

Vt+1(s) = max
a

Qt(s,a),
(1)

where the input and output of the Bellman operator are both
value function V : S → R. Specifically, s ∈ S,a ∈

1We omit image RGB channel for notation simplicity.
2Similarly, each edge eij ∈ E corresponds to a state-action transition

(s,a) ∈ S×A and has an edge feature ∈ Rce (such as distance or movement
cost).

A, R(s,a), P (s′ | s,a) represent the states, actions, rewards,
and transitions, respectively. In VIN, VI(M) = T k

M [V0] is
executed k times, which takes an initial value V0 and the map
M (with a goal) as input

g · VI(M) ≡ g · T k
M [V0] = T k

M [g · V0] ≡ VI(g ·M).
(2)

Zhao et al. [7] explore the equivariance for a 2D grid case.
We extend it to geometric graph: T is performed on a graph,
which is implemented using message passing.

Symmetry Transformations. In this paragraph, we unify
the concepts presented in the preceding two paragraphs to
demonstrate the implementation of equivariance constraints,
which establish equivalence between transformed and original
input/output [13, 17, 33]. Under the group transformation g,
a (left) regular representation Lg transforms a feature map
with cout-dimensional vector (vector field) f : X → Rcout

as [10, 17, 33]:

[Lgf ] (x) =
[
f ◦ g−1

]
(x) = ρout(g) · f

(
g−1x

)
, (3)

where ρout is the G-representation associated with output Rcout .
For example, for action feature map Π : R2 → R2 (i.e., every
position x ∈ R2 is associated with a relative 2D movement),
rotating the vector needs a 2× 2 rotation matrix.

There are several useful functions in reinforcement learning
(RL) and planning that can be written as graph features,
e.g., node features as functions on S and edge features as
functions on S × A. We use ρS(g) to represent how the
state is transformed under rotations and reflections g ∈ G,
and similarly for action associated with representation ρA(g).
Note that M and Π are vector maps, requiring additional
transformation for their respective fibers (vectors). When A
is continuous action, ρA is rotation matrices. For image-input
case of M : S → RK×H×W , ρcamera(g) means cyclically
permuting K cameras: ρcamera(g) ·M(st) =M(ρS(g) · st). It
will be discussed in the next section. We list the equivariance
conditions of the key MDP functions here.
R : S ×A → R : R(st,at) = R(ρS(g) · st, ρA(g) · at)

Q : S ×A → R : Q(st,at) = Q(ρS(g) · st, ρA(g) · at)

V : S → R : V (st) = V (ρS(g) · st)
Π : S → A : ρA(g) ·Π(st) = Π(ρS(g) · st)

(4)

IV. METHODOLOGY: EQUIVARIANT MESSAGE PASSING
FOR VALUE ITERATION

Following the spirit of VIN, we build a geometric message
passing network and extend it to learning value iteration on
geometric graphs: Π = Planθ(M). Given that the input
feature map M and the resulting action map Π are both
amenable to transformation within the same group, we enforce
equivariance constraints throughout the MP network (shown in
Fig. 1): g ·Π = Planθ(g ·M).

A. Message Passing Value Iteration Networks (MP-VIN)

The overview of the MP-VIN is shown in Fig. 2. For
the input feature map M , each node contains a node po-
sition x ∈ R2. Varied navigation tasks may lead to the
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Fig. 2: Overview of the message passing planner network (MP-VIN). It takes the map M as the input, which contains the node position
x ∈ R2 and is optionally appended by the goal information (the red node is goal node) or observations depending on the navigation task.
Then, the output is applied value iteration for k times. The state value map hV and Q-value map hQ are updated during value iterations.
The final output is an action map Π: for each node, it is a continuous relative movement ∆x ∈ R2.

augmentation of additional features, including goal features,
observations, or a combination of both. For example, in the
Grid World experiment (Sec. V-A), only the goal feature (a
boolean value) is provided for each node. In the Miniworld
experiment (Sec. V-C), both the goal feature and egocentric
RGB observation are provided. In the semantic goal navigation
experiment (Sec. V-E), only the RGB observation is provided,
rendering the goal implicit.

Regarding the value iteration process, our MP-VIN is anal-
ogous to the original VIN formulation. However, what sets
our approach apart is the improvement brought about by the
inclusion of the geometric graph using an equivariant message
passing layer (discussed in the next section). There are two
advantages of using graph format: (1) cover the environment
with irregular graphs to achieve variable resolution, and (2)
output continuous actions.

B. O(2)-Equivariant Message Passing Layer: Equivariant
Value Iteration on Graph

Discretization to Graph. We could employ standard 2D
convolution on regular grids for value iteration, as seen in
VIN. However, irregular graphs render grids unsuitable. In
the prior study of Niu et al. [34], an earlier iteration of graph
convolution was employed. However, it exhibited equivariance
only with respect to R2 translations, and it did not encompass
considerations for rotation or reflection symmetries (O(2)).
Here, we derive from first principles using the original con-
tinuous form of value iteration.

The integral term in VI can be written as a mapping Φ

h′(x) = Φ[h](x) =

∫
R2

K(x,x′)h(x′), (5)

where K : R2 × R2 → Rcout×cin is the kernal function 3.
h : R2 → Rcin and h′ : R2 → Rcout are input and output
feature map. If translation equivariance is desired, the kernel
can be further simplified from two-argument to one-argument
case, and the mapping is convolution [7, 35]. The continuous
steerable convolution ⋆ is defined (via cross-correlation) by
[16, 17, 33]:

h′(x) = [K ⋆ h] (x) =

∫
R2

K(x′ − x)h(x′), (6)

3Note that the kernel K here is different from the notation K we use to
represent the number of images.

where K : R2 → Rcout×cin is a (steerable) kernel.
If we sample nodes in R2 and construct edges by transition
S × A, the continuous convolution on R2 can be discretized,
which is similar to strategy of PointConv [15] 4. We use
nonlinear message passing to replace linear convolution. We
use two MLPs for computing messages (propagateθ) and
updating node features (updateθ), and has form

mij = propagateθ (hi,hj ,xi,xj) ,

h′
i = updateθ

hi,
∑

j∈N (i)

mij

 .
(7)

Implementation of Equivariance. We implement E(2)-
equivariant message passing on the graph that is equivariant
under two parts:

Translation R2. In the plannar convolution on 2D grid,
it is known to be equivariant to translation because it only
relies on relative position between two cells as input and
never takes absolute coordinates. Analogously, we use relative
position between nodes xi−xj as input to the message passing
function [15]:

mij = propagateθ (hi,hj ,xi − xj) . (8)

It is a direct generalization of translation-equivariant 2D
convolution that relies only on relative positions or local
coordinates (shown in Eq. 6), allowing generalization to larger
maps.

Rotation and Reflection O(2). We use steerable equivariant
network to implement O(2)-equivariance [13, 15–17, 35].
The O(2) group is compact and thus its representations are
decomposable into irreducible representations [16, 33], thus
convolutions can be performed in Fourier domain and more
efficient. We use it to build equivariant MLPs of propagate
and update (effectively 1×1 convolution). The kernel K of
G-steerable convolution needs to satisfy constraint [16, 33],
where G can be any (discrete) subgroup of O(2):

K(gx) = ρout (g) ◦K(x) ◦ ρin (g)
−1 ∀g ∈ G, x ∈ R2, (9)

where ρin and ρout stand for representations of the layer’s input
and output, respectively. This kernel constraint guarantees that

4Brandstetter et al. [15] discuss other strategy for 3D steerable messsage
passing, which expands the feature maps to spherical harmonics. Analogously,
it is possible to expand the features to cyclic harmonics.
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the layer is G-equivariant: K(gx)ρin (g) = ρout (g) ◦K(x).
We refer the readers to Weiler and Cesa [16], Cohen and
Welling [17] for more details.

C. CK-Equivariant Lifting Layer: Processing Camera Array

In the previous section, we extend from discrete symmetry
in SymVIN to continuous symmetry, such as continuous
rotations SO(2). Injecting such equivariance into the entire
network requires us to know how to continuously rotate
sensory input by g ∈ SO(2). This can be naturally achieved
by two types of observations: (1) 360◦ point cloud input
from a LiDAR (naturally continuous) or (2) 360◦ cylindrical
camera. However, (1) may not seamlessly incorporate semantic
information from RGB images, and (2) is hard to obtain and
process. Thus, we need to relax this requirement of SO(2)-
transformable input modality. As a solution, we introduce a
learnable layer lift that can map camera images from dif-
ferent views to a SO(2)-transformable feature. This enhances
our ability to exploit symmetry in the planning process.

We visually illustrate this in Fig. 3. For example, assume
we have a robot equipped with four cameras facing north, east,
west, and south (shown in the top left, as top down view). The
observation from this camera array could only be cyclically
permuted by ⟲ 90◦ (or reflected), shown in the bottom left
using the blue arrow. By using a equivariant learnable layer
lift, it lifts the image features to become features on circle
S1 ≃ SO(2) shown on the right. They are transformable by
SO(2), as shown via green arrow. We use small black circles
to highlight that the feature at that point corresponds to that
image.

Although the output is SO(2)-transformable, the left side
is only C4-transformable, so the layer lift can only be
restricted to be C4-equivariant. The restriction from G =
SO(2) to subgroup H = C4 is called restricted representation.
This layer is a special kind of equivariant induction layer
[36]. It can lift features on a subgroup H ≤ G to a group
G and is H-equivariant. Intuitively, it needs to satisfy the
equivariance constraint only for ⟲ 90◦ ∈ C4, which is a
subgroup C4 ≤ SO(2):

lift(⟲ 90◦ · images) =⟲ 90◦ · features, (10)

where we assume 4 images and output SO(2) features, while
it can be any group such that C4 is its subgroup.

V. EXPERIMENTS

We evaluate our proposed approach MP-VIN and baselines
on four different tasks. Among these tasks, we perform
point goal navigation under different environments: known
structured environments (Grid World), known unstructured
environments (Graph World), unknown structured environ-
ments (Miniworld), and unknown unstructured environ-
ments (Miniworld-Graph).

Methods. We experiment four variants of our methods, with
or without translation (R2) or rotation/reflection (using G =

4One solution for D4 group is to use quotient representations, but it not
generally applicable for higher-degree rotations such as D8 or infinitesimal
rotations SO(2).

Fig. 3: Our proposed lift layer and its equivariance.

D8 ≤ O(2)) equivariance: No-Sym, D8, R2, and R2⋊D8. We
use two grid-based methods: VIN [8] and SymVIN [7] (with
D4-equivariance). These methods are grid-based; therefore, we
apply several modifications, including pre-processing and post-
processing, to ensure fair comparisons. These modifications
are detailed in the later sections. We also replace and compare
our message passing module with the Graph Convolutional
Networks [37] (GCN-VIN) and Graph Attention Networks
[38] (GAT-VIN).

A. Planning on known maps: Grid World

Setting. In this task, we randomly generate synthetic mazes
with size m×m (Grid World). We validate the performance
on two different sizes m ∈ {15, 27}. Each cell on the maze
map is represented as occupied (0) or unoccupied (1). There
are four actions available for each cell on the map: north, east,
west, and south. We randomly select a goal on the map and
generate a goal map, where the cell containing the goal is
marked as 1. Each cell is labeled by the ground-truth action
using Dijkstra’s algorithm.

To apply our planners for graphs, we transform the grid
representation into connectivity graphs [34]. Each node of the
graph is a cell in the 2D grid and is associated with a 4-D node
feature vector, which has (1) (x, y) location, (2) whether the
node is an obstacle, and (3) whether the node is the goal. Any
two nodes are connected by an edge if they are neighbors on
the grid map, i.e., obstacles are not connected.

Results. MP-VIN with R2 ⋊ D8 symmetry demonstrates
faster learning efficiency than its graph-based variants and
VIN (the left of Fig. 4). We surprisingly find that MP-
VIN with R2 ⋊D8 has much smoother learning curves than
its variants without D8 symmetry (R2 and No-Sym). This
indicates that injecting Euclidean symmetry may improve
the loss landscape. In terms of absolute performance gain,
by adding D8 symmetry to MP-VIN with R2, we obtain
another 0.69% and 12.07% success rate on the 15 × 15 and
27× 27 mazes, respectively. However, it is still outperformed
by SymVIN, which uses steerable 2D convolution to process
the input. It is reasonable as it directly uses the regular grid
structure, while our graph version can handle unstructured
grpahs and is more expressive, while we apply both of them
on grid maps. When the map size increases, MP-VIN with
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Fig. 4: Learning curves on the Grid World experiments (left two) and the Graph World experiments (right two). The shadow area shows
the standard error. Dashed lines are for non-MP-VIN methods (VIN, SymVIN, GCN-VIN, and GAT-VIN).

R2⋊D8 symmetry demonstrates the second-least performance
degradation, showing better generalization to larger maps.

B. Planning on known graphs: Graph World

Setting. We validate the performance of our approach in un-
structured graph environments (Graph World). We follow
the setup of [34] to generate the random graphs. We randomly
generate N nodes, each with coordinates between (0, 0) and
(m,m). These nodes are connected using a KNN graph. We
randomly select some nodes as the obstacle nodes, and one
node as the goal node.

To verify the performance of grid-based approaches in
Graph World, we discretize the environment [34]. We round
down the coordinates of each node to map it to a cell on
the grid. The obstacle feature is carried over to the grid. Ulti-
mately, we verify its performance on the graph by transforming
the discrete actions into continuous actions (represented in
[x, y] coordinate). For example, north is transformed into
[1, 0], and east is transformed into [0, 1].

Results. MP-VIN with R2 ⋊ D8 symmetry demonstrates
the strongest performance in this task in terms of learning
efficiency and smoothness of learning curve (Fig. 4). This is
because the graphs generally do not have regular structure,
i.e. four neighbors only in four directions. Thus, all methods
encounter performance degradation, while grid-based methods
struggle more in such unstructure graphs.

Fig. 5: Data efficiency and size generalization. We demonstrate
data efficiency across 100, 256, and 512 training samples. For models
trained on each dataset, we show size generalization by training them
on the smallest size and directly testing them on larger ones.

Data Efficiency. As shown in Fig. 5, we evaluate the
data efficiency by assessing the model tranined on varied
dataset sizes (100, 256, 512 samples). Even when trained with
only 100 samples, our approach, incorporating E(2) symmetry,
consistently outperforms the baselines (w/o E(2) symmetry)
trained with 512 samples. These results confirm the substantial
gains in data efficiency achieved by leveraging Euclidean
symmetry.

Size Generalization. Fig. 5 illustrates our evaluation of size
generalization ability. We train our model on a small graph
consisting of 225 nodes and subsequently test it on larger
graphs without any further fine-tuning. Remarkably, even as
the complexity of the environment increases, our approach
consistently outperforms the compared methods by a large
margin. This underscores the added value of incorporating
E(2) symmetry in enhancing the model’s generalizability to
diverse environments.

Fig. 6: Learning curves on the Miniworld experiment (top) and
Miniworld-Graph experiment.

C. Mapping and planning under unknown maps: Miniworld

Setting. We compare different methods in a more chal-
lenging visual environment (Miniworld), where the models
learn mapping and planning simultaneously. We leverage the
Miniworld simulator [11] to render the randomly generated
maze into a 3D visual environment. Different from the Grid
World, we are not given a map in this experiment. Instead, we
use egocentric RGB observations. For each cell in the maze
environment, we obtain the RGB images from the cameras
facing four orientations (0◦, 90◦, 180◦, 270◦). We transform
the dataset into a graph using the same approach as mentioned
in Sec. V-A. In order to estimate the map of the environment,
we encode the visual observations into occupancy features
using a mapper network [7, 9].

Results. Since this task is based on a 15×15 grid using vi-
sual observations, the experiment results are similar to the Grid
World. MP-VIN with R2⋊D8 symmetry demonstrates higher
learning efficiency than MP-VIN with only R2 symmetry and
VIN. However, every method faces a performance drop due
to the mapping uncertainty. We observe that the performance
gap of MP-VIN with R2 ⋊ D8 symmetry (0.61%) is lower
than that of SymVIN (4.18%). Therefore, the performance
gap between MP-VIN with R2 ⋊D8 symmetry and SymVIN
becomes narrower.
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TABLE I: Averaged test success rate (%) with standard deviation. The best result is bolded. The second-best result is underlined.

Method Grid World Graph World Miniworld
15× 15 27× 27 128 nodes 256 nodes Grid Graph

VIN [8] 78.51±1.81 50.15±3.94 18.75±1.95 20.09±6.87 57.14±8.92 18.90±2.87

SymVIN [7] 95.85±5.02 93.73±7.33 24.40±2.11 27.53±4.73 91.67±2.58 27.98±4.34

MP-VIN (No Sym) 87.07±4.53 55.99±39.56 63.10±17.26 54.76±3.29 − −
MP-VIN: D8 87.19±2.78 38.53±16.17 52.38±5.02 32.89±3.47 − −
MP-VIN: R2 90.81±1.02 72.45±31.94 70.24±2.69 58.33±5.93 79.76±24.06 96.58±2.46

MP-VIN: R2 ⋊D8 91.50±1.04 84.52±6.04 72.17±5.08 61.90±5.33 90.89±1.63 96.96±1.00

D. Mapping and planning under unknown graphs: Miniworld-
Graph

While Miniworld is a 3D-rendered visual environment, the
state and action spaces are still discrete (grid-based). To show
real-world feasibility, we aim at a more realistic setting in this
experiment.

Setting. We sample random navigation graphs (256 nodes)
in the Miniworld environment. The edges between nodes
represent navigability. Like the Miniworld experiment in
Sec. V-C, each node contains a panoramic egocentric RGB
observation facing four directions. We use a similar mapper
to estimate the map from the visual observations. Differently,
we estimate the occupancy graph instead of the occupancy
grid.

Results. Similar to the Miniworld experiment on grid rep-
resentation, we observe the MP-VIN with R2⋊D8 symmetry
has higher learning efficiency than MP-VIN with only R2

symmetry. Grid-based approaches suffer in this task since
it is hard for CNN to process the expressive unstructured
environment, also indicated in the previous Graph World
experiment. In both Miniworld experiments, we observe that
MP-VIN with R2 ⋊ D8 symmetry has a much smoother
learning curve and lower variance than MP-VIN with only
R2 symmetry. This indicates that by adding R2 symmetry, we
could further optimize the network with better stability.

E. Planning with semantic goal

Fig. 7: Visualization of our navigation environment. On the left,
we show the constructed geometric graph in an HM3DSem scene.
The density of color represents the distance to the goal. On the right,
we demonstrate the observation example on each node, which consists
of four egocentric RGB images facing four directions.

Setting. To confirm the validity of our approach in a more
realistic setting, we perform a proof-of-concept semantic nav-
igation task using the real-world collected Habitat-Matterport
3D semantics dataset (HM3DSem) [39]. Our model learns to
seek an object in the environment given only RGB observa-
tions. In our experiment, we consider the most common object

among all environments (“refrigerator”). We assume access to
fully-observable environment information, i.e. camera obser-
vations at any location.

To achieve this, we randomly sample nodes in the navi-
gatable areas using the Habitat simulator [12]. We construct
a graph on the sampled nodes using a radius graph. The
edges that lead to infeasible motion (e.g. crossing the wall)
are removed. We use the provided ground-truth object location
to label the ground-truth action for each node. Note that the
object location is unknown during testing. We obtain four
egocentric RGB images for each node, which are the only
observations given to our model.

For each scene, we randomly sample 20 graphs, in which
each graph contains 128 nodes. Each RGB image has the size
of 3 ×H ×W , and we set H = W = 128 in our following
experiments. We extract image features (d = 128) from the
RGB observation using ResNet-34. During training, we freeze
the entire ResNet except for the last output layer. The image
features are fed into the differentiable planner to generate the
optimal plan.

Results. We utilize MP-VIN without symmetry as the
baseline, and compare MP-VIN with R2 ⋊ C4 symmetry.
The result is shown in Tab. II. Our findings demonstrate
that incorporating C4 symmetry into MP-VIN leads to an
improvement of 4.57% in the success rate.

TABLE II: Performance in semantic navigation task.

Method Successful Rate (%)

MP-VIN (No Sym) 69.70±1.07

MP-VIN: R2 ⋊ C4 74.27±3.12

VI. CONCLUSION AND DISCUSSION

In this letter, we explored the applicability of exploiting
Euclidean symmetry within the context of a navigation plan-
ner. We contributed a novel equivariant differentiable planner.
The effectiveness of the proposed approach is extensively
assessed across four distinct tasks involving structured and
unstructured environments, with known and unknown maps.
The empirical findings demonstrate a significant enhancement
in learning efficiency when Euclidean symmetry is integrated
into 2D navigation planning. Furthermore, the results indicate
that leveraging Euclidean symmetry yields more stable opti-
mization and yields superior overall performance. In the future,
we hope to extend our work to navigation task that has higher
dimension, such as semantic navigation [2–4].

Limitations. Inheriting from VIN, our message passing
planner also considers only fully-observable states and takes
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observations of all states as input at once [7–9], which is
impractical in real-world navigation. One potential direction
is to consider partial observation, as done in [40]. Another
potential direction is to combine with differentiable filter to
counter the uncertainties [32]. To facilitate deployment on a
real robot, it may be helpful to consider augmenting our state
space with an additional orientation dimension [40].

In this letter, our primary emphasis lies within the Eu-
clidean group E(2). Nevertheless, in future works, potential
performance improvement may be achieved by broadening the
scope of the group employed, e.g. incorporating the scaling
and general linear group.
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APPENDIX

We provide mathematical preliminaries, extended discussion
on method and derivation, experimental details, and additional
results.

We briefly introduce some preliminaries and used notations.
For a more complete account, please check [7] for symmetry
in planning and [13, 16, 17, 33] for equivariant convolution
networks.

A. Group Representations

Let V be a vector space over C. A representation (ρ, V ) of
G is a map ρ : G→ Hom[V, V ] such that

∀g, g′ ∈ G, ∀v ∈ V, ρ(g · g′)v = ρ(g) · ρ(g′)v

Concisely, a group representation is a embedding of a group
into a set of matrices. The matrix embedding must obey
the multiplication rule of the group. Over R and C all
representations break down into irreducible representations.

a) Restriction Representation: Let H ⊆ G. Let (ρ, V )
be a representation of G. The restriction representation of
(ρ, V ) from G to H is denoted as ResGH [(ρ, V )]. Intuitively,
ResGH [(ρ, V )] can be viewed as (ρ, V ) evaluated on the sub-
group H of G. Specifically,

∀h ∈ H, ∀v ∈ V, ResGH [ρ](h)v = ρ(h)v.

B. Group Convolution and Steerable Convolution

The understanding of this point helps to understand how a
group acts on various feature fields and the design of state
space for path planning problems. We use the discrete group
p4 = Z2 ⋊ C4 as example, which consists of Z2 translations
and 90◦ rotations.

The group convolution with filter ψ and signal x on grid
(or p ∈ Z2), which outputs signals (a function) on group p4

[ψ ⋆ x](t, r) :=
∑
p∈Z2

ψ((t, r)−1p) x(p). (11)

A group G has a natural action on the functions over its
elements; if x : G → R and g ∈ G, the function g.x is
defined as [g.x](h) := x(g−1 · h).

For example: The group action of a rotation r ∈ C4 on the
space of functions over p4 is

[r.y](p, s) := y(r−1(p, s)) = y(r−1p, r−1s), (12)

where r−1p spatially rotates the pixels, r−1s cyclically per-
mutes the 4 channels.

The G-space (functions over p4) with a natural action of p4
on it:

[(t, r).y](p, s) := y((t, r)−1 · (p, s)) = y(r−1(p− t), r−1s)
(13)

The group convolution in discrete case is defined as

[ψ ⋆ x](g) :=
∑
h∈H

ψ(g−1 · h) x(h). (14)

The group convolution with filter ψ and signal x on p4
group is given by:

[ψ ⋆ x](t, r) :=
∑
s∈C4

∑
p∈Z2

ψ((t, r)−1(p, s)) x(p, s). (15)

Using the fact

ψ((t, r)−1(p, s)) = ψ(r−1(p−t, s)) = [r.ψ](p−t, s), (16)

the convolution can be equivalently written into

[ψ ⋆ x](t, r) :=
∑
s∈C4

∑
p∈Z2

[r.ψ](p− t, s) x(p, s)

 . (17)

So
(∑

p∈Z2 [r.ψ](p− t, s) x(p, s)
)

can be implemented in
usual shift-equivariant convolution CONV2D.

The inner sum
∑

p∈Z2 is equivalently for the sum in
steerable convolution, and the outer sum

∑
s∈C4

implement
rotation-equivariant convolution that satisfies H-steerability
kernel constraint. Here, the outer sum is essentially using the
regular fiber representation of C4.

In other words, group convolution on p4 = Z2 ⋊ C4 group
is equivalent to steerable convolution on base space Z2 with
the fiber group of C4 with regular representation.

C. Details on Pipeline

We provide an example code for MP-VIN in the listing 1
and for MP-VIN with R2 ⋊D8 symmetry in listing 2. r_mp
and q_mp are our message passing layer. r_equiv_mp and
q_equiv_mp are their respective equivariance implementa-
tions. We refer readers to our code repository for the full
implementation once the paper is accepted.

D. Equivariance of Message Passing for Value Iteration

Theorem 1 The Bellman operator is equivariant under
Euclidean group E(2).

Proof. The proof is analogous to the proof for discrete case
in [7] and equivariant convolution in [16].

For any group element g ∈ E(d) = Rd⋊O(d), we transform
the Bellman (optimality) operator step-by-step and show that
it is equivariant under E(d):

Lg [T [V ]] (s) (18)
(1)
= T [V ](g−1s) (19)
(2)
= max

a
R(g−1s,a) +

∫
ds′ · P (s′ | g−1s,a)V (s′) (20)

(3)
= max

ā
R(g−1s, g−1ā) +

∫
d(g−1s̄) · P (g−1s̄ | g−1s, g−1a)V (g−1s̄)

(21)
(4)
= max

ā
R(s, ā) +

∫
d(g−1s̄) · P (s̄ | s,a)V (g−1s̄) (22)

(5)
= max

ā
R(s, ā) +

∫
ds̄ · P (s̄ | s,a)V (g−1s̄) (23)

(6)
= T [Lg[V ]](s) (24)

For each step:
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1 # Input: graph, #iterations K
2
3
4
5
6 # the first two dimensions are spatial coordinates
7 # the last remaining dimensions are features
8 pos = graph[:, :2]
9 feat = graph[:, :2]

10
11
12
13
14
15 r = r_mp(pos, feat)
16
17 # Init value function V
18 v = torch.zeros(r.size())
19
20
21 for _ in range(K):
22 # Concat and convolve V with P
23 rv = torch.cat([r, v], dim=1)
24 q = q_mp(pos, rv)
25
26 # Max over action channel
27 # N represents node number
28 # > Q: (batch_size x N) x q_size
29 # > V: (batch_size x N) x 1
30 v, _ = torch.max(q, dim=1)
31
32 # Output: ’q’ (to produce policy map)

Listing 1: The main value iteration procedure for MP-VIN.

1 # Input: graph, #iterations K
2
3 from e2cnn.nn import GeometricTensor
4 from e2cnn.nn import tensor_directsum
5
6 # the first two dimensions are spatial coordinates
7 # the last remaining dimensions are features
8 pos = graph[:, :2]
9 feat = graph[:, :2]

10 pos_geo = GeometricTensor(pos, type=field_type_pos)
11 feat_geo = GeometricTensor(feat, type=field_type_feat)
12
13 r_geo = r_equiv_mp(pos_geo, feat_geo)
14
15 # Init V and wrap V in e2cnn ’geometric tensor’
16 v_raw = torch.zeros(r_geo.size())
17 v_geo = GeometricTensor(v_raw, field_type_v)
18
19 for _ in range(K):
20 # Concat (direct-sum) and convolve V with P
21 rv_geo = tensor_directsum([r_geo, v_geo])
22 q_geo = q_equiv_mp(pos_geo, rv_geo)
23
24 # Max over group channel
25 # N represents node number
26 # > Q: (batch_size x N) x (|G| * q_size)
27 # > V: (batch_size x N) x (|G| * 1)
28 v_geo = q_max_pool(q_geo)
29
30 # Output: ’q_geo’ (to produce policy map)

Listing 2: The equivariant value iteration procedure for MP-
VIN with symmetries.

• (1) By definition of the (left) group action on the feature
map V : S → R, such that g · V (s) = ρ0(g)V (g−1s) =
V (g−1s). Because V is a scalar feature map, the output
transforms under trivial representation ρ0(g) = Id.

• (2) Substitute in the definition of Bellman operator.
• (3) Substitute a = g−1(ga) = g−1ā. Also, substitute
g−1s̄ = s′.

• (4) Use the symmetry properties of Geometric MDP:
P (s′ | s,a) = P (g · s | g · s, g · a) and R(s,a) =
R(g · s, g · a).

• (5) Because g ∈ E(2) is isometric transformations
(translations R2, rotations and reflections O(2)) and the
state space carries group action, the measure ds is a G-
invariant measure d(gs) = ds. Thus, ds̄ = d(g−1s̄).

• (6) By the definition of the group action on V .

The proof requires the geometric graph of the navigation
MDP to have Euclidean symmetry and the state space carries
a group action of Euclidean group. Therefore, the Bellman

operator of a Geometric MDP is E(d)-equivariant.

E. Equivariant Lifting Layer

Suppose the number of cameras/images for each position
x ∈ R2 in M is K, so the multi-view image I = (I1, . . . , IK)
belongs to RK×H×W . For example, if K = 4, we write it as
I = (I1, I2, I3, I4). For this particular case, rotating a robot
can only be 90◦ ·k rotations from C4 (cyclic group with k·2π/4
rotations), which corresponds to cyclically permuting images
in I (by regular representation ρreg) of C4: ρreg(⟲ 90◦) · I =
ρreg(⟲ 90◦) · (I1, I2, I3, I4) = (I4, I1, I2, I3).

However, this blocks us from using higher-order symmetry
G in later planning network. To this end, we propose using a
trainable equivariant layer to lift the H-features to G-features,
which is to induce how multi-view images I = (I1, . . . , IK)
are transformed under a larger group5 G ≥ H . Such induction
layer needs to satisfy the steerable kernel constraint with input
and output representation:

ρin = ρCK
reg , ρout = ResGCK

[
ρGreg

]
, (25)

lift(ρCK
reg (g) · images) = ResGCK

[
ρGreg

]
(g) · features,

(26)

where ρin is (e.g., regular) representation of CK and ρout is
restricted representation (ResGH ) of (e.g., regular) representa-
tion of SO(2) to CK . The restricted representation limits the
equivariant constraints to only the subgroup H = CK .

Intuitively, this layer only enforces H-equivariant (H =
CK) but not G: cyclically permuting images ⟲ 90◦ should
result in ⟲ 90◦ rotated output. However, it outputs G-
equivariant features, thus proceeding layers are able to apply
G-equivariance. In implementation, we use discrete subgroup
such as D8 ≤ O(2), since continuous groups do not have
finite-dimensional regular representation to permute I =
(I1, . . .).

F. Implementation of MLPs

In this section, we introduce message passing operation,
which is the basis of our MP-VIN and its variants. In an
undirected graph G, the node u contains node feature xu. The
edge connecting nodes (u, v) contains edge feature euv . To
pass the message along the edges for T steps, T message
passing layers are stacked together.

mt+1
u =

⊕
v∈N(v)

propagateθ(h
t
u, h

t
v, euv), (27)

here mt+1
u represents the message at node u at time step

t+1, and htu is the hidden state.
⊕

could be any permutation
invariant and differentiable functions such as summation

∑
.

The message at each node is then updated by

ht+1
u = updateθ(h

t
u,m

t+1
u ). (28)

In the previous equations, propagateθ and updateθ are
two differentiable functions (following the notations defined in
our Methodology Section IV), and MLPs are commonly used.

5This requires CK to be a subgroup of G, which is always the case for
G = SO(2) and for G = CK′ or DK′ when K′ is divisible by K.
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In the experiments, we optimize all approaches using RM-
Sprop optimizer. This is the standard training setting in VIN
and its variants. We also try the Adam optimizer, but the
performance gain is not statistically significant. We choose
the learning rate of 1e-3 and the batch size of 32.

For the dataset size, we choose 10K/2K/2K for the train/-
val/test dataset for the Grid World experiment, and 1K/200/200
for the remaining experiments.

G. Planning on known maps

In this experiment, we choose the value iterations K =
{20, 40} for m = {15, 27} respectively. The value is prop-
agated in the network using either convolution (grid-based)
or message passing layer (graph-based). Therefore, when the
map size is larger, it takes more iterations to propagate.

H. Planning on known graphs

We set the iteration numbers K = 20 on both 128 nodes
and 256 nodes task. Among all nodes, we randomly select
10% of the nodes as the obstacle nodes in our experiments.

To allow fair comparisons with grid-based approaches in
Graph World, we adopt the following steps to discretize the
environment [34]. We round down the coordinates of each
node to the nearest integer, such that each node in the graph
is mapped to a cell on the grid 6. Each obstacle node is marked
as occupied on its respective cell location in the grid, and the
remaining cells are marked as unoccupied. Since the rounding
operation is a subjective mapping, we consider a cell to be
occupied if any of the nodes are occupied. We train the grid-
based approaches using this transformed grid, and verify its
performance on the graph by transforming the discrete actions
into continuous actions (represented in [x, y] coordinate).

In our approach, the output of our network corresponds to
the relative spatial coordinate [∆x,∆y], enabling transitions
within the navigation graphs. This differs from grid-based
methods that employ NEWS actions (↑,←, ↓,→). To facilitate
a fair comparison with grid-based methods on geometric
graphs, we discretize the graph into a grid space. Furthermore,
to align with the output of grid-based methods, we also
discretize the actions. Specifically, each action is matched
with its nearest neighbor among {[1, 0], [−1, 0], [0, 1], [0,−1]}.
Subsequently, the resulting 2D vector is translated into the
corresponding NEWS action.

I. Mapping and planning under unknown maps

a) Maze setting.: In our experiment, we render the 3D
visual environment using the Miniworld environment. In our
experiment, we test on the map size of 15× 15.

b) Grid mapper.: We implement of baseline mapper
network baseline on Lee et al.. The mapper is a fully convo-
lutional network and consists of two parts: an image encoder
and a map decoder. The image encoder encodes the panoramic
observation into a latent vector, and the map decoder predicts
the map from it.

6Each node in the graph is guaranteed to find its corresponding cell location
in a m×m map.

The image encoder takes m×m panoramic RGB observa-
tions facing four directions. Each RGB image has a resolution
of 32 × 32 × 3. Therefore, the shape of the input tensor
is m × m × 4 × 32 × 32 × 3. We pass the input tensor
through three CNNs: [(32, 10, 4, 4), (64, 5, 2, 2), (256, 4, 1, 0)].
Each tuple represents the filter number, kernel size, stride
number, and padding. We transform the output into a 15× 15
map with a feature dimension of 256.

The map decoder reconstructs the map using the feature on
each cell. It consists of two CNNs: [(32, 3, 1, 1), (1, 3, 1, 1)].
We use Sigmoid as our last activation function to predict a
map with binary value.

J. Mapping and planning under unknown graphs

a) Graph mapper.: The graph mapper shares a similar
structure with the grid mapper but differs in the representation.
The graph mapper consists of two components: an image
encoder and a graph decoder.

The image encoder has the same structure as the one in the
grid mapper. However, the input tensor to the image encoder
has the shape of (m×m)× 4× 32× 32× 3.

The graph decoder reconstructs the occupancy graph from
the latent vector. Therefore, we leverage two fully-connect
layers with the size of [32, 1].

K. Ablation: Symmetry Group
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Fig. 8: Learning curves on the Miniworld experiment (top)
and Miniworld-Graph experiment.

We perform this ablation study on the effectiveness of
different choices of symmetry groups. Specifically, we study
C8, D4, and D8 group. We demonstrate the learning curves
in Fig. 8 and Tab. III. Our results show that D8 group has an
improvement over D4 since it has more degrees of rotation
symmetry. Even though C8 and D4 groups both have eight
transformations, D4 group performs significantly better in the
27× 27 map. This is because the maze environment contains
more reflection symmetry than rotation symmetry.

TABLE III: Averaged test success rate (%) and standard
deviation for our experiments.

Group Grid World
15× 15 27× 27

C8 91.10±1.93 40.51±6.94

D4 90.59±1.00 82.11±6.29

D8 91.50±1.04 84.52±6.09
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