
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2024 1

Transferability in the automatic off-line design of
robot swarms: from sim-to-real to embodiment and
design-method transfer across different platforms

Miquel Kegeleirs1∗ , Member, IEEE, David Garzón Ramos1∗ , Member, IEEE, Ken Hasselmann2 ,
Lorenzo Garattoni3 , Gianpiero Francesca3 , and Mauro Birattari1 , Senior Member, IEEE

Abstract—Automatic off-line design is an attractive approach
to implementing robot swarms. In this approach, a designer
specifies a mission to be accomplished by the swarm, and
an optimization process generates suitable control software for
the individual robots through computer-based simulations. Most
relevant literature has focused on effectively transferring control
software from simulation to physical robots. Here, we investigate
i) whether the design methods that generate control software
are transferable across robot platforms and ii) whether control
software generated via such methods is itself transferable. We
experiment with two ground mobile platforms with equivalent
functional capabilities. Our measure of transferability is based
on the performance drop observed when control software and/or
design methods are ported from one platform to another. Results
indicate that, while the control software generated via auto-
matic design is possibly transferable, better performance can
be achieved when a transferable method is directly applied to
the new platform.

Index Terms—Automatic design, swarm robotics, transferabil-
ity, methods and tools for robot system design, evolutionary
robotics.

I. INTRODUCTION

IN robotics, the notion of transferability has been associated
with different problems: simulation to reality (sim-to-real)

transfer, embodiment transfer, task/skill transfer, knowledge
transfer—among others, see [1]–[3]. The most common of

Manuscript received: July, 23, 2023; Revised October, 15, 2023; Accepted
January, 16, 2024.

This paper was recommended for publication by Editor Tetsuya Ogata upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (DEMIURGE
Project, grant agreement No 681872), Belgium’s Wallonia-Brussels Feder-
ation through the ARC Advanced project GbO-Guaranteed by Optimization,
Belgian Fonds de la Recherche Scientifique – FNRS, and the Colombian
Ministry of Science, Technology and Innovation – Minciencias.

1Miquel Kegeleirs, David Garzón Ramos, and Mauro Birattari are
with IRIDIA, Université libre de Bruxelles, Belgium; 2Ken Hasselmann
is with Royal Military Academy, Belgium; 3Lorenzo Garattoni and Gi-
anpiero Francesca are with Toyota Motor Europe. Correspondence to
mauro.birattari@ulb.be.

∗Miquel Kegeleirs and David Garzón Ramos contributed equally to this
work and should be recognized as co-first authors. Original software was
implemented by Miquel Kegeleirs. Chocolate and EvoStick were de-
veloped by Gianpiero Francesca. NEAT, CMA-ES, and xNES were provided
and adapted by Ken Hasselmann. The experiments were performed by Miquel
Kegeleirs with the assistance of David Garzón Ramos. The manuscript was
drafted by David Garzón Ramos and revised by Miquel Kegeleirs and Mauro
Birattari. All authors contributed to the development of the ideas, read the
manuscript, and provided comments. The research was directed by Mauro
Birattari.

Digital Object Identifier (DOI): see top of this page.

these problems, sim-to-real transfer, or how to generate control
software that is robust to crossing the reality gap, has received
particular attention in swarm robotics, and efficient approaches
to tackle it are now available [4]. In this letter, we discuss how
a similar notion of transferability applies to two other problems
in the automatic design of robot swarms: embodiment transfer
and design-method transfer.

A robot swarm [5], [6] is a highly redundant group of robots
that operate autonomously without relying on centralized con-
trol or external infrastructure. Instead, the robots rely on local
sensing and communication to self-organize [7]. By acting
collectively, the robots can accomplish missions that they
could not accomplish individually [8]. Designing the collective
behavior of a swarm is challenging. No universally applicable
methodology exists for developing the control software of
the individual robots so that a desired collective behavior
emerges [9]. Typically, designers manually refine control soft-
ware until the desired collective behavior is obtained. Yet,
this trial-and-error process is costly, time-consuming, and does
not guarantee reproducible or transferable results. Automatic
off-line design [10], [11] is an appealing alternative. In this
approach, the problem of designing control software is re-
formulated as an optimization problem. Given mission speci-
fications and a platform description, an optimization algorithm
searches for suitable control software for the robots—that
is, a suitable aggregation of available building blocks into a
predefined control architecture (e.g., basic modular behaviors
or neurons of an artificial neural network) and/or appropriate
values for their parameters. The design process is conducted
via computer-based simulations, and the resulting control
software is then transferred to physical robots and assessed
in the target environment.

The automatic design of robot swarms can be seen as a
reinforcement learning problem: the goal is to find a policy—
i.e., a behavioral rule mapping observations into actions—
that maximizes a reward (expressed by a given objective
function) [12]. As Kaelbling et al. pointed out [13], classical
automatic design methods—e.g., those based on neuroevolu-
tion [14]—perform a direct search in the space of behaviors
without relying on the notion of state (which typically cannot
be estimated by the individual agent) and the related notion
of value of a state.

Due to the sim-to-real transfer problem, control software
produced in simulation via automatic off-line design suffers
from the effects of the reality gap [15]: unavoidable differ-

https://orcid.org/0000-0002-9018-4995
https://orcid.org/0000-0001-7099-4213
https://orcid.org/0000-0002-8196-9889
https://orcid.org/0000-0002-6382-0335
https://orcid.org/0000-0001-6066-9345
https://orcid.org/0000-0003-3309-2194

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2024

ences between simulation and reality can cause a performance
drop [4], [16]–[18]. When comparing design methods, the
smaller the performance drop, the greater a method’s ability
to cross the reality gap.

Building on this idea, we study the transferability of au-
tomatic design methods and control software across different
platforms. Transferring a design method from one platform
to another enables the effortless design of new tailored robot
swarms—at the expense of the high computational power
required in the design process. This also spares a human
designer the complex task of developing from scratch an
automatic method for a new platform. On the other hand,
directly transferring the control software enables a faster and
less expensive deployment of robot swarms, however not fully
tailored for platform at hand.

We empirically show that transferring either the design
methods or the control software gives rise to challenges akin
to those presented by the reality gap. We do so by following
experimental protocols previously introduced to study the sim-
to-real problem in the automatic design of robot swarms.
We conduct two experiments: 1) six methods evaluated in
simulation with swarms of twenty robots and 2) two methods
evaluated in simulation and in reality with swarms of three
robots. In each experiment, we perform two studies: A) an
automatic design method conceived for one platform is used
to generate control software for another (i.e., design-method
transfer), and B) control software designed for one platform is
deployed to another (i.e., embodiment transfer). The two plat-
forms considered are ground robots endowed with functionally
equivalent sensing and actuation capabilities.

II. RELATED WORK

The sim-to-real transfer problem is a crucial challenge in
robotics and has gained growing attention in the recent years.
Several ideas have been proposed to address this problem—
for recent reviews focusing on reinforcement learning, see [1],
[2]. Among the most prominent ones, domain randomization
and domain adaption aim at improving simulation to generate
control software that is directly transferable [19], [20]. Indeed,
a key hypothesis is that the effects of the reality gap are the
result of unfaithful simulation, in other words, simulators are
not able to reproduce the complexity of the real world [1],
[2]. However, in most studies the control software is typically
assessed in simulation only and never transferred to the real
robots [1], [2]. Rather than finding a solution to successfully
cross the reality gap, other alternatives focus on how to
avoid its occurrence. For example, transfer learning comprises
two steps: a behavior is first generated in simulation and is
then used as a target to train the robots directly in the real
world [21], [22]. The main limitation of transfer learning is
that it is time-consuming and involves using physical robots
in the design process. Hybrid approaches are also emerging,
where high-fidelity simulation and randomization are coupled
with the two-step process of transfer learning [23].

Unfortunately, the ideas proposed are tailored to specific
missions. It is, therefore, difficult to compare them and un-
derstand whether they could be reused or ported to another
mission. A general, mission-independent approach is missing.

Further, possibly as a consequence of this lack of generality,
no proper metric to evaluate transferability exists. Several
studies associate the notion of robustness against perturbations
with the one of sim-to-real transferability: the hypothesis
is that if an instance of control software performs well in
simulation on several variants of the target scenario, it would
transfer well to the real world—which is seen as yet another
variant. Typically, studies relying on this hypothesis do not
eventually validate the results through real-robot experiments.

Finally, the literature on sim-to-real transfer has primarily
focused on specific domains such as manipulation [24] and
aerial navigation [25], while contributions from other domains,
such as swarm robotics [17], are comparatively less prevalent.

Regarding other transferability problems, the literature is
sparser. Often, the terminology used to describe these prob-
lems lacks consistency, making it difficult to categorize the
different contributions. In particular, little work exists on em-
bodiment transfer in the sense of transferring control software
from one robot platform to another. Liu et al. [26] proposed
an evolutionary model to transfer policies from robot to robot,
but the assessment was done in simulation only. Bozcuoğlu
et al. [27] and Kazhoyan et al. [28] performed extensive
skill and knowledge transfer experiments on two different
household robots to manipulate kitchen furniture and objects.
However, most experiments were done with multiple units
of one of the two platforms (the PR2 robot), with robot-to-
robot transfer being limited to high-level plans rather than full
control software. Design-method transfer is more specific to
swarm robotics—as automatic design is prominent in this field.

III. TRANSFERABILITY IN SWARM ROBOTICS

In the automatic design of robot swarms, sim-to-real transfer
has been extensively studied, with emphasis on the notion
of reality gap introduced by Jakobi et al. [15] in neuroevo-
lutionary robotics. Similarly to many reinforcement learning
methods, neuroevolution does not typically cross the reality
gap successfully [18].

Concerning sim-to-real transfer, the literature on neuroevo-
lution shares similar hypotheses with the one on (deep)
reinforcement learning, notably the one that the sim-to-real
problem is a consequence of the fact that simulations are
a too simplistic representation of the real word, which is
more complex [29], [30]. As a consequence, the literature
emphasizes the adoption of accurate simulators to address the
problem. Ligot et al. [17] proposed a different hypothesis: the
sim-to-real problem is the result of the differences between
simulation and the real world, independently on whether one is
more or less complex than the other. Hence, to cross the reality
gap, methods that are intrinsically robust to the transition from
one to the other might be more successful than methods relying
on accurate simulation.

As an alternative to neuroevolution, Francesca et al. pro-
posed AutoMoDe [4], an automatic modular design method
that is intrinsically resilient to the reality gap. Birattari et
al. [31] argued that the high representational power of the
control software produced by neuroevolutionary methods, the

KEGELEIRS, GARZÓN RAMOS, et al.: TRANSFERABILITY IN THE AUTOMATIC OFF-LINE DESIGN OF ROBOT SWARMS 3

neural networks, impairs its ability to cross the reality gap: the
sim-to-real problem faced in the automatic design of robot
swarms is reminiscent of the generalization problem faced
in machine learning. AutoMoDe builds control software by
assembling predefined modules, which reduces the represen-
tation power of the control software and increases its ability
to cross the reality gap. Several studies in automatic modular
design have shown good sim-to-real transfer [32]–[34].

Even though approaches to address the sim-to-real problem
have been proposed, few studies focused on other transferabil-
ity problems. As a first step in embodiment transfer, Kaiser et
al. [35] developed a ROS2 package providing some predefined,
manually designed, hardware-independent swarm behaviors
that can be reused by different robots. However, generic
control software automatically designed for a specific robot
platform has never been reused directly on another platform.

Control software for robot swarms is often generated by
an (automatic) design method [10] Hence, it is also possible
to study how a design method, typically conceived for a
specific platform, can be transferred to another one. The
neuroevolution literature provides examples of ad-hoc adap-
tation and transformation of methods to apply them to various
platforms and missions [36]. This indicates that, with some
expert intervention, transferring neuroevolutionary methods is
possible. Yet, although a method can occasionally resemble a
previous one, no direct, unmodified transfer has been reported
so far. The same applies to AutoMoDe: some variants of
Chocolate [4] were applied to slightly different robots—
e.g., robots endowed with communication capabilities [37] and
robots that can perceive colors [33]. Some manually-applied
adaptation of Chocolate was required, including modifying
algorithms and redefining modules. Yet, methods of the Au-
toMoDe family were so far conceived for the e-puck robot,
and differences between them are restricted to handling the
addition of a new sensor/actuators. Neither in neuroevolution
nor in AutoMoDe, the focus has ever been on creating methods
that are intrinsically transferable between platforms, or that can
produce control software that is transferable.

We contend that the methods and tools developed to address
sim-to-real transfer can be applied to these other less studied
transferability problems in the context of the automatic design
of functionally equivalent robot swarms.

Our first working hypothesis is that transferring software
from a platform X to a platform Y is akin to transferring
software from an environment EX (simulation) to an environ-
ment EY (reality). Indeed, in accordance with the statement
of Ligot et al. [17], the reality gap occurs because EX and
EY are different, not because of their relative complexity.

Our second working hypothesis is that functionally equiv-
alent robots can execute equivalent control software, which
can be designed by the same design method. A key notion in
our research is indeed that of functionally equivalent robots:
two robots X and Y are functionally equivalent if 1) for
each sensor of robot X , there is a sensor in robot Y that
provides similar data, 2) for each actuator of robot X , there
is an actuator in robot Y that provides a similar capability,
and 3) there is a consistent ratio between the dimensions
of the two robots and the ranges of sensing/action of their

TABLE I
EXPERIMENTAL SETUP FOR EXPERIMENTS 1 AND 2

Experiments

Platforms Mercator (M), e-puck (E)
Missions AGGREGATION, FORAGING, GRID EXPLORATION

Experiment 1 Experiment 2
Setup
Number of robots 20M, 20E 3M, 3E
Arena size (m2) M: 73.95, E: 4.88 M: 5.49, E: 0.36

Design methods
AutoMoDe Chocolate, Maple Chocolate
Neuroevolution EvoStick, NEAT, EvoStick

CMA-ES, xNES
Protocol
Design phase Simulation Simulation
Deployment phase Pseudo-reality Reality

Transferability analysis

Study Label Designed for Tested on
EE e-puck e-puckA
MM Mercator Mercator
EM e-puck Mercator
ME Mercator e-puck
EE+MM e-puck | Mercator e-puck | MercatorB
EM+ME e-puck | Mercator Mercator | e-puck

sensors/actuators. The reference model system developed by
Hasselmann at al. [38] allows one to directly transfer a method
from one platform to another by modifying the platform’s
model, without altering the method itself. We relied on these
ideas to conceive a new platform that preserves the functional
capabilities of the e-puck, while being larger and operating
with different hardware [39].

To prove our hypotheses, we conceived experiments to
evaluate A) design-method and B) embodiment transfer. Our
goal is to promote reusability of software in swarm robotics
by transferring existing work to new robotics platforms, rather
than starting from scratch. It is also our contention that, by
extending the concept of reality gap to a broader transfer gap,
future work on less studied transfer problems will benefit from
the long experience of sim-to-real transfer.

IV. EXPERIMENT 1

Table I summarizes the experimental setup. We consider
two swarms: one comprising twenty e-puck [40] robots, and
the other, twenty Mercator [39] robots. The swarm size is the
same we used in previous studies [16], [18], [32]. The sensing
and actuation capabilities of the two platforms can be formally
described by the same reference model RM 1.2 [38]—see
Table II. While the two platforms are equipped with different
hardware, their capabilities are functionally equivalent. This is
key to enabling the transferability between the two platforms
and allows a comparison. The e-puck and Mercator (Fig. 1)
differ in size, with the e-puck being roughly one-third the size
of the Mercator. They also differ in linear speed and sensor
range. However, their speed/size and sensor-range/size ratios
are approximately the same.

We design control software for e-pucks and Mercators
using automatic methods originally conceived for the e-puck:
two modular design methods of the AutoMoDe [31] family,

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2024

TABLE II
REFERENCE MODEL RM 1.2

Input e-puck Mercator Description

prox ([0, 1] ; [−1, 1]π) ([0, 1] ; [−1, 1]π) proximity vector
light ([0, 1] ; [−1, 1]π) ([0, 1] ; [−1, 1]π) light vector
gnd {b, g,w} {b, g,w} ground reading
n [0, 2] [0, 2] no. of neighbors
V ([0, 1] ; [−1, 1]π) ([0, 1] ; [−1, 1]π) neighbors vector

Output e-puck Mercator Description

vk∈{l,r} [−10, 10] cm/s [−30, 30] cm/s target velocity

Period of the control cycle: 0.1 s

Fig. 1. From left to right, e-puck and Mercator robots.

Chocolate and Maple, and four neuroevolutionary de-
sign methods [18], EvoStick, NEAT, CMA-ES and xNES.1

Chocolate [16] is the state-of-the-art AutoMoDe method
and produces control software in the form of finite-state
machines. Maple [32] is a variant of Chocolate that
produces control software in the form of behavior trees, and is
identical to Chocolate in every other aspect. EvoStick [4]
is a straightforward implementation of the neuroevolutionary
approach. NEAT [41] (neuroevolution of augmenting topolo-
gies) is an evolutionary algorithm that automatically shapes
the network topology and tune its parameters. The hyper-
parameters are tuned as originally recommended by Stanley
and Miikkulainen [41]. CMA-ES [42] (covariance matrix adap-
tation evolutionary strategy) is considered as one of the most
effective evolutionary algorithms available. The values of the
hyper-parameters are those used by Hasselmann et al. [18].
xNES [43] (exponential natural evolutionary strategies) is
a popular variant of CMA-ES. The values of the hyper-
parameters are the same as in CMA-ES. Previous results
confirm that all the methods considered here can generate
control software for various missions, including aggregation,
foraging, and coverage [4], [16]–[18].

We consider three missions: AGGREGATION, FORAGING,
and GRID EXPLORATION—see Fig. 2.

In AGGREGATION, the robots must aggregate on a black
area. The environment also comprises a white area and a light
source placed outside the arena, on the side of the black area.
The robots can use the light and the white area to orientate
themselves. The objective function to maximize is FAAC =

1The four neuroevolutionary methods are initialized with a fully connected
feed-forward neural network and no hidden layer.

M
er

ca
to

rs
e-

pu
ck

s

AGGREGATION FORAGING GRID EXPLORATION

30 cm

100 cm

Fig. 2. Experimental scenarios in AGGREGATION, FORAGING, and GRID
EXPLORATION (illustrated with the environments used in Experiment 2). The
workspace of the e-pucks is about one-third the size of Mercators’ workspace.

∑T
t=1 N(t), where T is the duration of the experiment and

N(t) is the number of robots on the black area at time t.
In FORAGING, the robots must retrieve as many objects as

possible from two sources (black circular areas) and deposit
them in the nest (white area). Because the platforms we
consider have no grasping capabilities, we abstract the actions
of retrieving and depositing objects: a robot retrieves an object
when entering a source and deposits it when entering the nest.
The objective function to maximize is FFTS = No , where
No is the total number of objects retrieved and deposited.

In GRID EXPLORATION, robots must explore the environ-
ment virtually divided in a 10x10 grid and continuously visit
every cell of the grid. For each cell, we record the time t
elapsed since the last time it was visited by a robot. Each time
the cell is visited by a robot, t is reset to 0. The objective
function to maximize is FGE =

∑T
i=1(

1
Ncells

∑Ncells

j=1 −tij),
where T is the duration of the experiment, Ncells is the total
number of cells, and tij is the elapsed time at simulation time
i since the cell j was visited by a robot.

We adjust the size of each environment according to the rel-
ative size of the robots: the e-pucks operate in an environment
that is one-third the size of the Mercators’ one. Each experi-
ment lasts for T = 120 s. We produce a total of 360 instances
of control software using Chocolate, Maple, EvoStick,
NEAT, CMA-ES, and xNES—ten for each platform, mission,
and method.2 The design phase is conducted in simulation
and the deployment phase is conducted in pseudo-reality. The
notion of pseudo-reality was introduced by Ligot et al. [17] as
a simulation model, different from the one used in the design
process, that is to be used to evaluate control software. Ligot et
al. showed that there is a correlation between the performance
drop experienced by control software when transferred from
simulation (the model used for the design) to pseudo-reality,
and the one experienced when transferred from simulation to
real robots [17], [34].

A design method produces every instance of control soft-
ware with a budget of 100.000 simulations. We assess each

2The control software produced by all the methods is available at
https://github.com/demiurge-project/Results-Transferability.git

https://github.com/demiurge-project/Results-Transferability.git

KEGELEIRS, GARZÓN RAMOS, et al.: TRANSFERABILITY IN THE AUTOMATIC OFF-LINE DESIGN OF ROBOT SWARMS 5

Chocolate-EE
Chocolate-MM

Maple-EE
Maple-MM

EvoStick-EE
EvoStick-MM

NEAT-EE
NEAT-MM

CMA-ES-EE
CMA-ES-MM

xNES-EE
xNES-MM

25 50 75 100
Simulation

25 50 75 100
Pseudo-reality

Study A: Average rank (the lower, the better)
Chocolate-EE+MM
Chocolate-EM+ME

Maple-EE+MM
Maple-EM+ME

EvoStick-EE+MM
EvoStick-EM+ME

NEAT-EE+MM
NEAT-EM+ME

CMA-ES-EE+MM
CMA-ES-EM+ME

xNES-EE+MM
xNES-EM+ME

50 100 150
Simulation

50 100 150
Pseudo-reality

Study B: Average rank (the lower, the better)ba

c
Simulation
Pseudo-reality

Fig. 3. Experiment 1: a) Study A, comparison of design methods when assessed on the platform for which they were conceived—e-pucks (EE)—and when
assessed on the other—Mercators (MM); b) Study B, comparison of control software when assessed on the platform for which it has been produced (EE+MM)
and when assessed on the other platform (EM+ME); c) raw results on the three missions. In a) and b), results are aggregated across the three missions using
a Friedman test. For each method and platform, we present average ranks and 95% confidence intervals. Results displayed on a gray background are obtained
in simulation; those on a white background, in pseudo-reality.

instance once in simulation and once in pseudo-reality, both
on the platform on which it was designed and on the other.
Concerning the pseudo-reality models, for the e-pucks we
use the one defined by Ligot et al. [17]; for the Mercators
we derived an equivalent model from the one of the e-puck.
The evaluation of the performance in each of the three mis-
sions is represented by boxplots. Additionally, two Friedman
tests [44] present aggregated results to support discussion on
design-method and embodiment transfer—studies A and B,
respectively. Any statement like “X performs significantly
better/worse than Y ” means that the confidence intervals of the
Friedman test for X and Y do not overlap. This protocol has
been used in [4], [16], [17], [32], [37] and is further discussed
in [45]. We conduct simulations in ARGoS3 [46], a simulator
widely used in swarm robotics research.

Study A – Design-method transfer: We aggregate the per-
formance across the three missions using a Friedman test—
see Fig. 3-a. In simulation, the control software produced by

all methods demonstrates meaningful behavior and effectively
performs the missions for both e-pucks and Mercators. In
general, the control software produced by neuroevolution
(EvoStick, NEAT, CMA-ES, and xNES) performs similarly
or better than the one produced by AutoMoDe (Chocolate
and Maple)—with the exception of FORAGING, for which
the control software produced by NEAT and xNES perform
significantly worse than the others, on both platforms. In
pseudo-reality, the control software produced by AutoMoDe
maintains satisfactory behavior on both platforms. In contrast,
the control software produced by neuroevolution methods does
not typically reproduce simulation results on either platform
and suffers a significant drop in performance. In general, the
control software produced by neuroevolution performs simi-
larly or worse than the one produced by AutoMoDe—with the
exception of NEAT for AGGREGATION on the Mercators, but
it still suffers a significant drop in performance in comparison
with the simulation.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2024

Study B – Embodiment transfer: Also in this case, we
aggregate the performance across the three missions using a
Friedman test—see Fig. 3-b. In simulation, before the transfer,
the control software produced by neuroevolution performs
better than the one produced by AutoMoDe. After transferring
the control software, we observe that the one produced by
AutoMoDe methods performs better than the one produced
by neuroevolutionary methods—see Fig. 3-c. There are two
notable exceptions: i) in AGGREGATION, control software
produced by Maple for the e-puck does not transfer well to
the Mercator; ii) in FORAGING, control software produced by
neuroevolutionary methods for the Mercator transfers better to
the e-puck than the one produced by AutoMoDe methods. This
is due to functional differences between the e-puck and the
Mercator.3 Yet, overall, we observe a larger performance drop
when transferring the control software for neuroevolutionary
methods than for AutoMoDe method. In pseudo-reality, both
before an after the transfer, AutoMoDe methods yield signifi-
cantly better results than neuroevolutionary ones—see Fig. 3-
b. The performance drop is similar for all methods but, after
the transfer, neuroevolutionary methods essentially yields poor
behaviors while AutoMoDe ones keep satisfactorily behaviors.

V. EXPERIMENT 2
Experiment 2 is similar to Experiment 1, but is performed

with real robots in the deployment phase. The following are
the main differences in the experimental setup: i) we consider
swarms of three robots (the size is an experimental limitation
due to the fact that only three Mercators are available at
the moment); ii) we evaluate two methods Chocolate and
EvoStick. We selected these methods because they are the
ones that have been most consistently examined in studies on
the automatic design of collective behaviors for e-pucks [31].

The missions are the same as in Experiment 1. The size of
each environment is adapted to the smaller number of robots—
see Table I. The protocol is the same of Experiment 1, with the
only difference that here we produce a total of 120 instances of
control software using Chocolate and EvoStick—ten for
each platform, mission, and method. The design phase is con-
ducted in simulation and the deployment phase is conducted
in reality. Likewise Experiment 1, a design method produces
every instance of control software with a budget of 100.000
simulations. We assess each instance once in simulation and
once on physical robots, both on the platform on which it
was designed and on the other. Multimedia Materials provide
videos of all evaluations on the real robots.

Study A – Design-method transfer: We aggregate the per-
formance across the three missions using a Friedman test—
see Fig. 4-a. In simulation, the results are similar to those of
Experiment 1. Also the results on real robots are similar to
those of pseudo-reality, except that control software produced

3In particular, as Mercators navigate at higher speed than the e-pucks, they
are programmed to avoid obstacles from farther, making obstacle detection
more sensitive. On the other hand, AutoMoDe modules, originally designed
for e-pucks, use less sensitive obstacle avoidance. As a result, in the first case,
the obstacle sensitivity of the Mercators conflicts with the modules of Maple.
In the second case, the e-pucks benefit from higher obstacle sensitivity—hence
less collisions—in the neuroevolutionary case, but not with AutoMoDe, which
is restricted to use predefined modules.

by EvoStick suffers a larger drop in performance: the
behaviors of e-pucks are meaningless, and those of Mercators
are meaningful but incomplete/suboptimal.

Study B – Embodiment transfer: Also in this case, we
aggregate the performance across the missions using a Fried-
man test—see Fig. 4-b. Simulation results are similar to
those of Experiment 1. On the physical robots, Chocolate
demonstrates a performance drop after transferring the control
software between e-pucks and Mercators, but it demonstrates
satisfactory behavior in both cases. However, EvoStick
demonstrates only poor behavior, with or without transfer.

The raw results obtained by the two methods under analysis
on the three missions are given in Fig. 4-c.

VI. DISCUSSION

Performance difference between simulation and reality is
a known effect of the reality gap: previous research has
shown that AutoMoDe is more robust to the reality gap than
neuroevolution [17], [18]. Yet, so far, the different degree
of robustness to the reality gap between AutoMoDe and
neuroevolution had been only reported for e-pucks. The results
presented in this letter show that a similar different degree of
robustness can be observed also on the Mercators.

Study A – Design-method transfer: In simulation, the swarm
of e-pucks performs similarly or better than the one of
Mercators, for all methods. This result was expected, as all
design methods under analysis were conceived for the e-puck
and were applied to Mercators without any adaptation. In
(pseudo-)reality, the swarm of e-pucks perform similarly or
better than the one of Mercators when they execute control
software produced by AutoMoDe methods. On the other hand,
the swarm of Mercators performs similarly or better than
the e-pucks when they execute control software produced by
neuroevolutionary methods. This result was unexpected and
suggests that neuroevolutionary methods, although originally
conceived for the e-pucks, are more robust to the reality gap
when designing control software for Mercators. This indicates
that the effects of the reality gap are not only method-
dependent but also platform-dependent. Yet, the results ob-
tained by neuroevolution in (pseudo-)reality are in any case
outperformed by those obtained with AutoMoDe.

By comparing the relative performance of AutoMoDe meth-
ods and neuroevolutionary ones, we can conclude that, under
the experimental conditions we considered, AutoMoDe trans-
fers better from e-pucks to Mercators than neuroevolution.

Study B – Embodiment transfer: In simulation, the perfor-
mance drop caused by the transfer is larger for neuroevo-
lution than for AutoMoDe. In Experiment 2, we observe a
rank inversion between Chocolate and EvoStick. Similar
observations can be made in Experiment 1, for example
between Maple and EvoStick or CMA-ES. It is known
that EvoStick can achieve good performance in simulation
by overfitting the design process to the simulated model of the
e-puck [17]. We argue that this prevented a proper transfer to
Mercator—as it happens when transferring control software
between simulation and reality. In other words, the notion of
overfitting used to explain differences in sim-to-real transfer

KEGELEIRS, GARZÓN RAMOS, et al.: TRANSFERABILITY IN THE AUTOMATIC OFF-LINE DESIGN OF ROBOT SWARMS 7

Chocolate-EE

Chocolate-MM

EvoStick-EE

EvoStick-MM

10 20 30
Simulation

10 20 30
Reality

Study A: Average rank (the lower, the better)

Chocolate-EE+MM

Chocolate-EM+ME

EvoStick-EE+MM

EvoStick-EM+ME

20 30 40 50 60
Simulation

20 30 40 50 60
Reality

Study B: Average rank (the lower, the better)ba

c

Reality

Fig. 4. Experiment 2: see caption of Fig. 3 for a description of the content. Here, results displayed on a gray background are obtained in simulation; those
on a white background, with real robots.

seems to apply similarly to robot-to-robot transfer. When
examining the results, it appears that this performance drop
occurs independently of which robot is the source and which
is the target. This is coherent with the interpretation of the
reality gap according to which the performance drop observed
when porting control software from simulation to reality is due
to differences between the source and target environments—
irrespective of their relative complexity [17].

In (pseudo-)reality, the results show that, although all meth-
ods suffer from a performance drop, the control software
produced by neuroevolution is particularly affected and barely
demonstrates meaningful behaviors. This is particularly clear
in Experiment 2, where EvoStick demonstrate poor be-
haviors, with or without transfer. This confirms that, overall,
control software produced by AutoMoDe transfers better than
the one produced by neuroevolution.

Finally, the comparison of the results of the two studies,
in both Experiment 1 and Experiment 2, shows that better
results are obtained by transferring the design method (Study
A) than by transferring the control software (Study B), for
both AutoMoDe and neuroevolutionary methods. Indeed, for
each platform, results obtained when the control software is
designed for that platform are always similar or better than
those obtained when the control software is transferred from
the other platform (EE better than ME, MM better than EM—
see Fig. 3-c and Fig. 4-c).

VII. CONCLUSION

The results show that automatic design methods and the
control software they produce can be transferred from one
robot platform to another, provided that the two have equiva-
lent sensing and actuation capabilities. The best results are
obtained by transferring a method, that is, by applying an
automatic design method originally conceived for a platform
to another one, as opposed to transferring the control software
it produces for the original platform to the other one.

Yet, control software designed by an automatic design
method still exhibit meaningful behavior when transferred
to another platform. We will further investigate if control
software produced for a platform, and already available, can be
used as a starting point in a design process to generate control
software for another platform—so as to improve and/or speed
up the design process itself. Still, this requires to first transfer
the design method to the new platform, or to translate the
obtained control software for the new method.

The results also show that neuroevolutionary methods suffer
a larger performance drop than AutoMoDe ones when trans-
ferred to another platform. This holds also when transferring
control software. That is, AutoMoDe is more robust to the
design-method transfer and embodiment transfer. AutoMoDe
has proven to be intrinsically more robust to the reality gap
than neuroevolution. Its robustness to the sim-to-real transfer
is a property given by its modular nature and the restricted
representational power of the control software produced [18].
We conclude that methods that are resilient to the reality gap—
the transfer from one model to another—are resilient also to
other types of transfer. It is our contention that the notion of
reality gap can be generalized into a broader transfer gap.
To corroborate this contention, future work should investigate
whether protocols to predict the robustness of design methods
to the reality gap [34] can be used to predict the transferability
of control software across platforms.

As of today, there are several platform-specific methods
that can automatically generate collective behaviors for robot
swarms. Our contribution is meant to motivate further research
on the evaluation of these methods in more capable robot
platforms, and on the realization of new methods that are
intrinsically robust to the transfer process. Constraining the
representational power of the generated control software is a
key factor in achieving this robustness. In modular design, this
comes naturally. In neuroevolution, regularization techniques
could be used to improve resilience [18].

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2024

REFERENCES

[1] E. Salvato, G. Fenu, E. Medvet, and F. A. Pellegrino, “Crossing the
reality gap: A survey on sim-to-real transferability of robot controllers
in reinforcement learning,” IEEE Access, vol. 9, pp. 153 171–153 187,
2021.

[2] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep
reinforcement learning for robotics: a survey,” in SSCI 2020. IEEE,
2020, pp. 737–744.

[3] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learning
modular neural network policies for multi-task and multi-robot transfer,”
in ICRA 2017. IEEE, 2017, pp. 2169–2176.

[4] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari,
“AutoMoDe: a novel approach to the automatic design of control
software for robot swarms,” Swarm Intell., vol. 8, no. 2, pp. 89–112,
2014.

[5] E. Şahin, “Swarm robotics: from sources of inspiration to domains of
application,” in SAB 2004, ser. LNCS, vol. 3342. Springer, 2005, pp.
10–20.

[6] G. Beni, “From swarm intelligence to swarm robotics,” in SAB 2004,
ser. LNCS, vol. 3342. Springer, 2005, pp. 1–9.

[7] M. Dorigo, M. Birattari, and M. Brambilla, “Swarm robotics,” Scholar-
pedia, vol. 9, no. 1, p. 1463, 2014.

[8] M. Dorigo, G. Theraulaz, and V. Trianni, “Swarm robotics: past, present,
and future [point of view],” Proceedings of the IEEE, vol. 109, no. 7,
pp. 1152–1165, 2021.

[9] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm
Intell., vol. 7, no. 1, pp. 1–41, 2013.

[10] M. Birattari, A. Ligot, D. Bozhinoski, M. Brambilla, G. Francesca,
L. Garattoni, D. Garzón Ramos, K. Hasselmann, M. Kegeleirs, J. Kuck-
ling, F. Pagnozzi, A. Roli, M. Salman, and T. Stützle, “Automatic off-line
design of robot swarms: a manifesto,” Front. Robot. AI, vol. 6, p. 59,
2019.

[11] M. Birattari, A. Ligot, and K. Hasselmann, “Disentangling automatic and
semi-automatic approaches to the optimization-based design of control
software for robot swarms,” Nat. Mach. Intell., vol. 2, no. 9, pp. 494–
499, 2020.

[12] S. Doncieux, N. Bredeche, J.-B. Mouret, and A. Eiben, “Evolutionary
robotics: what, why, and where to,” Front. Robot. AI, vol. 2, p. 4, 2015.

[13] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: a survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[14] S. Nolfi, Behavioral and Cognitive Robotics: An Adaptive Perspective.
Institute of Cognitive Sciences and Technologies, National Research
Council, 2021.

[15] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: the
use of simulation in evolutionary robotics,” in ECAL ’95, ser. LNAI,
vol. 929. Springer, 1995, pp. 704–720.

[16] G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni, R. Miletitch,
G. Podevijn, A. Reina, T. Soleymani, M. Salvaro, C. Pinciroli, F. Mascia,
V. Trianni, and M. Birattari, “AutoMoDe-Chocolate: automatic design
of control software for robot swarms,” Swarm Intell., vol. 9, no. 2–3,
pp. 125–152, 2015.

[17] A. Ligot and M. Birattari, “Simulation-only experiments to mimic the
effects of the reality gap in the automatic design of robot swarms,”
Swarm Intell., vol. 14, pp. 1–24, 2020.

[18] K. Hasselmann, A. Ligot, J. Ruddick, and M. Birattari, “Empirical
assessment and comparison of neuro-evolutionary methods for the
automatic off-line design of robot swarms,” Nat. Commun., vol. 12, p.
4345, 2021.

[19] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in ICRA
2018, 2018, pp. 3803–3810.

[20] F. Muratore, F. Treede, M. Gienger, and J. Peters, “Domain random-
ization for simulation-based policy optimization with transferability
assessment,” in CoRL 2018, ser. PMLR, vol. 87. PMLR, 2018, pp.
700–713.

[21] S. Barrett, M. E. Taylor, and P. Stone, “Transfer learning for reinforce-
ment learning on a physical robot,” in AAMAS-ALA 2010, vol. 1, 2010.

[22] J. Hua, L. Zeng, G. Li, and Z. Ju, “Learning for a robot: Deep
reinforcement learning, imitation learning, transfer learning,” Sensors,
vol. 21, no. 4, 2021.

[23] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff,
and D. Fox, “Closing the sim-to-real loop: Adapting simulation random-
ization with real world experience,” in ICRA 2019. IEEE, 2019, pp.
8973–8979.

[24] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement
learning for deformable object manipulation,” in CoRL 2018, ser. PMLR,
vol. 87. PMLR, 2018, pp. 734–743.

[25] S. Daftry, J. A. Bagnell, and M. Hebert, “Learning transferable policies
for monocular reactive MAV control,” in ISER 2016. Springer, 2017,
pp. 3–11.

[26] X. Liu, D. Pathak, and K. M. Kitani, “REvolveR: Continuous evolu-
tionary models for robot-to-robot policy transfer,” https://arxiv.org/abs/
2202.05244, 2022.

[27] A. K. Bozcuoğlu, G. Kazhoyan, Y. Furuta, S. Stelter, M. Beetz,
K. Okada, and M. Inaba, “The exchange of knowledge using cloud
robotics,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp.
1072–1079, 2018.

[28] G. Kazhoyan, S. Stelter, F. K. Kenfack, S. Koralewski, and M. Beetz,
“The robot household marathon experiment,” in ICRA 2021. IEEE,
2021, pp. 9382–9388.

[29] J. C. Zagal, J. Ruiz-del Solar, and P. Vallejos, “Back to reality: crossing
the reality gap in evolutionary robotics,” IFAC Proceedings Volumes,
vol. 37, no. 8, pp. 834–839, 2004.

[30] S. Koos, J.-B. Mouret, and S. Doncieux, “The transferability approach:
crossing the reality gap in evolutionary robotics,” IEEE Trans. Evol.
Comput., vol. 17, no. 1, pp. 122–145, 2013.

[31] M. Birattari, A. Ligot, and G. Francesca, “AutoMoDe: a modular
approach to the automatic off-line design and fine-tuning of control
software for robot swarms,” in Automated Design of Machine Learning
and Search Algorithms, ser. NCS. Springer, 2021, pp. 73–90.

[32] A. Ligot, J. Kuckling, D. Bozhinoski, and M. Birattari, “Automatic
modular design of robot swarms using behavior trees as a control
architecture,” PeerJ Computer Science, vol. 6, p. e314, 2020.

[33] D. Garzón Ramos and M. Birattari, “Automatic design of collective
behaviors for robots that can display and perceive colors,” Applied
Sciences, vol. 10, no. 13, p. 4654, 2020.

[34] A. Ligot and M. Birattari, “On using simulation to predict the perfor-
mance of robot swarms,” Sci. Data, vol. 9, p. 788, 2022.

[35] T. K. Kaiser, M. J. Begemann, T. Plattenteich, L. Schilling, G. Schild-
bach, and H. Hamann, “ROS2SWARM - a ROS 2 package for swarm
robot behaviors,” in ICRA 2022, 2022, pp. 6875–6881.

[36] S. Nolfi, J. Bongard, P. Husbands, and D. Floreano, Evolutionary
Robotics. Springer International Publishing, 2016.

[37] K. Hasselmann and M. Birattari, “Modular automatic design of collec-
tive behaviors for robots endowed with local communication capabili-
ties,” PeerJ Computer Science, vol. 6, p. e291, 2020.

[38] K. Hasselmann, A. Ligot, G. Francesca, D. Garzón Ramos, M. Salman,
J. Kuckling, F. J. Mendiburu, and M. Birattari, “Reference models for
AutoMoDe,” IRIDIA, ULB, Tech. Rep. TR/IRIDIA/2018-002, 2018.

[39] M. Kegeleirs, R. Todesco, D. Garzón Ramos, G. Legarda Herranz, and
M. Birattari, “Mercator: hardware and software architecture for experi-
ments in swarm SLAM,” IRIDIA, ULB, Tech. Rep. TR/IRIDIA/2022-
012, 2022.

[40] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-
puck, a robot designed for education in engineering,” in ROBOTICA
2009. Instituto Politécnico de Castelo Branco, 2009, pp. 59–65.

[41] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127, 2002.

[42] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comput., vol. 9, no. 2, pp.
159–195, 2001.

[43] T. Glasmachers, T. Schaul, S. Yi, D. Wierstra, and J. Schmidhuber,
“Exponential natural evolution strategies,” in GECCO 2010. ACM,
2010, pp. 393–400.

[44] W. J. Conover, Practical Nonparametric Statistics, 3rd ed., ser. Wiley
Series in Probability and Statistics. John Wiley & Sons, 1999.

[45] A. Ligot, A. Cotorruelo, E. Garone, and M. Birattari, “Towards an
empirical practice in off-line fully-automatic design of robot swarms,”
IEEE Trans. Evol. Comput., vol. 26, no. 6, pp. 1236–1245, 2022.

[46] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,
N. Mathews, E. Ferrante, G. A. Di Caro, F. Ducatelle, M. Birattari, L. M.
Gambardella, and M. Dorigo, “ARGoS: a modular, parallel, multi-engine
simulator for multi-robot systems,” Swarm Intell., vol. 6, no. 4, pp. 271–
295, 2012.

https://arxiv.org/abs/2202.05244
https://arxiv.org/abs/2202.05244

	Introduction
	Related work
	Transferability in swarm robotics
	Experiment 1
	Experiment 2
	Discussion
	Conclusion
	References

