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Deploying and Evaluating LLMs to Program Service Mobile Robots
Zichao Hu1, Francesca Lucchetti2, Claire Schlesinger2, Yash Saxena1, Anders Freeman3,

Sadanand Modak1, Arjun Guha2, Joydeep Biswas1

Abstract—Recent advancements in large language models
(LLMs) have spurred interest in using them for generating
robot programs from natural language, with promising initial
results. We investigate the use of LLMs to generate programs for
service mobile robots leveraging mobility, perception, and human
interaction skills, and where accurate sequencing and ordering
of actions is crucial for success. We contribute CODEBOTLER,
an open-source robot-agnostic tool to program service mobile
robots from natural language, and ROBOEVAL, a benchmark
for evaluating LLMs’ capabilities of generating programs to
complete service robot tasks. CODEBOTLER performs program
generation via few-shot prompting of LLMs with an embedded
domain-specific language (eDSL) in Python, and leverages skill
abstractions to deploy generated programs on any general-
purpose mobile robot. ROBOEVAL evaluates the correctness of
generated programs by checking execution traces starting with
multiple initial states, and checking whether the traces satisfy
temporal logic properties that encode correctness for each task.
ROBOEVAL also includes multiple prompts per task to test for the
robustness of program generation. We evaluate several popular
state-of-the-art LLMs with the ROBOEVAL benchmark, and
perform a thorough analysis of the modes of failures, resulting
in a taxonomy that highlights common pitfalls of LLMs at
generating robot programs. We release our code and benchmark
at https://amrl.cs.utexas.edu/codebotler/.

I. INTRODUCTION

We are interested in deploying service mobile robots to per-
form arbitrary user tasks from natural language descriptions.
Recent advancements in large language models (LLMs) have
shown promise in related applications involving visuomotor
tasks [1], [2], planning [3]–[6], and in this paper, we investi-
gate the use of LLMs to generate programs for service mobile
robots leveraging mobility, perception, and human interaction
skills, where accurate sequencing and ordering of actions is
crucial for success. We contribute CODEBOTLER and ROBOE-
VAL: CODEBOTLER is an open-source robot-agnostic tool to
generate general-purpose service robot programs from natural
language, and ROBOEVAL is a benchmark for evaluating
LLMs’ capabilities of generating programs to complete service
robot tasks.

CODEBOTLER leverages an embedded domain-specific lan-
guage (eDSL) in Python to abstract key robot skills, and
includes robot-agnostic bindings for such tasks using ROS Ac-
tions [7]. Given few-shot examples, CODEBOTLER uses LLMs
to convert natural language task descriptions into programs in
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the eDSL, which are then executed on real robots using a
lightweight interpreter to interface with robot-specific skills.

While the capabilities of LLMs at producing robot programs
are impressive, they are still susceptible to a variety of
failures. To understand empirically the failure modes of LLMs
in producing robot programs, we introduce the ROBOEVAL
benchmark. Given a program generated by CODEBOTLER,
ROBOEVAL first executes it in a symbolic simulator to gener-
ate multiple program traces from different initial world states,
and then checks these traces against a set of temporal checks
that define correct behavior for the task for each initial world
state.

Existing code completion benchmarks tackle simple data
processing functions [8] or low-level robot skills [1], which
are amenable to simple input-output unit tests. However, code
generation for general-purpose service robot programs cannot
be evaluated just on input/output sequences. For example,
given a task “Check how many conference rooms have no
markers”, it is insufficient to just test whether the LLM-
generated program executes to state the correct answer — to
ensure correctness, a correct program must first visit all confer-
ence rooms and check for markers there before arriving at the
result. We also observe that there are significant variations in
the correctness of generated programs with small variations in
the phrasing of the natural language task descriptions [9]. We
thus contribute three key ideas to test for both correctness and
robustness of LLM-generated robot programs: 1) we evaluate
the execution traces of programs; 2) we check whether the
execution traces satisfy temporal logic properties that encode
correctness for each task; and 3) we vary the prompts and
to test for robustness. Fig. 1 shows the system diagram of
CODEBOTLER and ROBOEVAL.

We further categorize the types of failures of different
LLMs in the ROBOEVAL benchmark and find several common
categories of failures, including Python run-time errors, errors
in executing infeasible robot actions, and errors in satisfying
task requirements. We analyze the types of errors in each
category and find several common modes of failures across
LLMs. We believe this analysis will be invaluable in furthering
research on LLM-guided robot program generation. Driven by
our initial findings, we include a simple rejection sampling
procedure that shows immediate improvements in reducing
robot execution errors of LLM-generated robot programs.

In summary, this paper contributes:
1) CODEBOTLER, an open-source tool to generate robot

programs from natural language using LLMs, and to
enable robot-agnostic deployment of such programs;

2) ROBOEVAL, a benchmark to evaluate LLM-generated
robot programs for service mobile robots;

3) a comprehensive analysis and taxonomy of failures of
LLM-generated robot programs; and
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Trace:
1.GoTo("elevator”)
2.Check("person”)
3.Ask("...")
4.Say("...")
5.GoTo("...")
6.Say("...")
7.GoTo("...")

…

Trace n

elem
.

(c) Robot Deployment

                                  (a) CodeBotler

Large Language Model

(b) RoboEval

def task_program():
  go_to("elevator”)
  while True:
    if is_in_room("person"):
      response = ask("", "Are you here for the
      conference?", ["Yes", "No"])
      if response == "Yes":
        say("Welcome to the university. Please follow me.")
        break
    time.sleep(1)
  go_to("conference room”)
  say("We have arrived. Enjoy your time here")

Go to the elevator. When someone shows up, ask if they're here for the 
conference. If yes, welcome them and lead them to the conference room. If not, 
wait for the next person. Once there, let them know they have arrived and wish 
them a great visit!

Generate code

User prompt
Symbolic Simulator Temporal Trace Evaluator

Python Error /
Robot Execution Error SAT/UNSAT

Go to the elevator Wait for someone 
to show up

Ask if they are here 
for the conference

Let them know they 
have arrived

…
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goto(elevator)

check(person)
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  RoboEval Temporal Logic Constraints
Constraint 1: 
Tc1 = AfterFirst(goto(elevator))
       .BeforeFirst(ask(...))
       .Exist(check(person)) 
Constraint ...

RTL Specification:
  Tc1 and Tc2 and ... 1

Fig. 1: The system diagram of CODEBOTLER and ROBOEVAL. CODEBOTLER receives a user prompt and queries a large
language model (LLM) to generate a robot program (a). It can execute the program to send instructions to a robot via ROS
Actionlib (c). Separately, ROBOEVAL evaluates programs generated from its benchmark tasks using a symbolic simulator and
a temporal trace evaluator to determine whether each program satisfies the task constraints or not (b).

4) a rejection sampling mechanism to reduce robot execution
failures of LLM-generated robot programs.

II. RELATED WORK

LLMs for Robotics Applications. Using LLMs to perform
robotics tasks [1]–[6], [10]–[21] has attracted a lot of attention
because of their impressive out-of-box and commonsense
reasoning capabilities [22]. One approach uses LLMs as
task planners to break down a free-form natural language
task description into multiple sub-goals. Language Models
as Zero-Shot Planners [4] expresses these sub-goals in the
form of natural language and builds an interpreter to convert
these subgoals into robot actions. LLM+p [6] outputs these
sub-goals in the form of the well-defined planning domain
definition language (PDDL). Another approach leverages the
code-writing capabilities of LLMs to generate programs for the
robot to execute. Code-as-Policies [1] defines a robot-centric
formulation of language model-generated programs (LMPs). It
proposes a hierarchical method to query an LLM and generate
executable Python programs that invoke parameterized robot
primitives. Voxposer [13] builds on the Code-as-Policies’ LMP
formulation and defines a set of primitives that enables the
LLMs to generate Python programs to create voxel cost
maps. Then, it plans on the voxel cost maps and carries
out the specified manipulation tasks. CODEBOTLER builds on
the LMP formulation, in which we define a set of 8 robot
primitives specific to service mobile robots.

Evaluating LLMs. The evaluation of LLMs is an ongoing
effort due to the scope and variability of model genera-
tions [23]–[25]. Much progress has been made in evalu-
ating code-writing LLMs [8], [9], [26], [27]. While these
programming tasks assess language understanding, reasoning,
algorithms, and basic mathematics, they do not address the
skills of embodied agents. In the domain of embodied agents,
ProgPrompt [2] creates a dataset of 70 household high-fidelity
3D simulation tasks to evaluate the code-writing capabilities
of LLMs. High-fidelity 3D simulations are useful for capturing
complex agent-environment dynamics but not essential for

verifying program logic, and creating them can be time-
consuming. To address this limitation, we create ROBOEVAL,
a lightweight benchmark that uses a symbolic simulator to
evaluate the temporal correctness of a robot program.

III. CODEBOTLER: ROBOT-AGNOSTIC DEPLOYMENTS

CODEBOTLER is a lightweight open-source tool that 1)
defines robot-agnostic skills; 2) provides a user-friendly web
interface to accept instructions and generate language model
programs (LMPs) using LLMs; and 3) executes LMPs inde-
pendently of robot platforms by sending commands to robots
via ROS Actionlib. To illustrate the capabilities of CODE-
BOTLER, we present its design in the following subsections.

A. CODEBOTLER Language Design
CODEBOTLER leverages an embedded domain-specific lan-

guage (eDSL) in Python to abstract 8 commonly available ser-
vice robot skills. Fig. 2a shows the definition of each skill. The
design of the CODEBOTLER eDSL encompasses skills such as:
1) get_current_location and get_all_rooms that
inspect the robot’s state and the world configurations, so they
do not need to be hard-coded or manually specified in the
prompt, as in previous work [1], [2], [13], 2) is_in_room
that utilizes the zero-shot visual-language models (VLMs)
for perceptual reasoning, 3) ask that provides a structured
interface for human interaction through multiple-choice ques-
tions, facilitating both the LMP in processing human responses
and interaction with a robot via touch-screen or audio input.
4) pick, place, and go_to that represent core robot
manipulation and navigation abilities. These abstractions allow
CODEBOTLER to be used for robot-agnostic deployments. An
LMP can often be reused across different maps and robots
through the user interface.

B. User Interface (UI) and Robot Program Generation
The CODEBOTLER UI includes a task input pane, a program

preview pane, and a status monitor to track the generation of
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Trace Elements
e ::= goto(regex)
   |    say(regex)
   |    ask(regex1, regex2)
   |    check(regex)
   |    pick(regex)
   |    place(regex)

Trace
tr ::= [e1,e2,…,en]           
    |     tr.BeforeFirst(e)   
    |     tr.BeforeLast(e)   
    |     tr.AfterFirst(e)     
    |     tr.AfterLast(e)      

# Get the current location of the robot.
def get_current_location() -> str

# Get a list of all rooms.
def get_all_rooms() -> list[str]

# Check if an object is in the current room.
def is_in_room(object : str) -> bool

# Go to a specific named location.
def go_to(location : str) -> None

# Ask a person a question, and offer a set of 
specific options for the person to respond. 
Returns the response selected by the person.
def ask(person : str, question : str, 

 options: list[str]) -> str

# Say the message out loud.
def say(message : str) -> None

# Pick up an object if you are not already holding 
one. You can only hold one object at a time.
def pick(obj: str) -> None

# Place an object down if you are holding one.
def place(obj: str) -> None

RTL Constraint
𝜋 ::= tc | tc and 𝜋 | tc or 𝜋 | not 𝜋

Trace Constraint
tc ::= tr.Exists(e)     

(a) CodeBotler Robot Skills

Task: Tell Alice in her office to meet me in the lobby if she would like to have lunch now.

Atomic 
Proposition
Operator

Constraint

Trace elements

Constraints

    Linear Temporal Logic (LTL)                                                   RoboEval Temporal Logic (RTL)

y = yes  n = no  g = goto(office)  
a = ask(lunch)  s = say(meet)

∧ = And  | ∨ = Or  | ㄱ = Not  
F = Finally | G = Globally | 
U = Until    | N = Next 
𝜋 ⊨ g ∧ N [ F a ∧ (y ∧ N F s 
∨ n ∧ N Gㄱs)]

g = goto(office)   a = ask(lunch)   s = say(meet)

if yes:
    𝜋 ⊨ tr.AfterFirst(g).AfterFirst(a).Exists(s)
if no:
    𝜋 ⊨ not tr.AfterFirst(g).AfterFirst(a).Exists(s)
        and tr.AfterFirst(g).Exists(a)

(b) RoboEval Temporal Logic (RTL) Formula

(c) LTL vs. RTL Example

Trace
List of trace elements
Return the trace before the first matching element
Return the trace after the first matching element
Return the trace before the last matching element
Return the trace after the last matching element

Returns True if the trace contains the trace element

Fig. 2: CODEBOTLER robot skills (a), ROBOEVAL temporal logic (RTL) formula (b), and the LTL specifications vs. the RTL
specifications of an example task (c). In section (c), the terms office, meet, and lunch are used to represent the regex patterns.
The RTL specifications are simpler to express and have improved readability.

programs on the robot. When given a user task, CODEBOTLER
combines it with a prompt prefix containing robot skills and
a few example programs, and then queries an LLM for pro-
gram generation. In addition, CODEBOTLER supports many
LLM interfaces, including the OpenAI API [28], the Google
PaLM API [29], and HuggingFace models (AutoModel and
Text-Generation-Inference).

C. Robot Deployment With CODEBOTLER

CODEBOTLER is designed to work with the ROS system
and acts as a client by utilizing the ROS Actionlib [7].
When CODEBOTLER executes an LMP and encounters a state-
ment that invokes a robot skill (e.g., go_to("lobby")), it
publishes a goal (e.g., "lobby") to the appropriate remote
topic (e.g., "/go_to_server") for a ROS action server
on the robot to pick up. This approach makes CODEBOTLER
independent of any specific robot platform and permits CODE-
BOTLER to operate both onboard and externally to the robot.
Additionally, it provides robot deployers with the flexibility to
customize the ROS action server to accommodate their specific
needs for these primitives1.

IV. THE ROBOEVAL BENCHMARK

ROBOEVAL consists of a simulator, an evaluator, and a
benchmark suite of tasks. Given P , the space of natural
language prompts describing service mobile tasks, and Π, the
set of possible LMPs, CODEBOTLER generates LMPs π ∈ Π
given a prompt p ∈ P . The symbolic simulator accepts a world
state w ∈ W and an LMP π ∈ Π, and produces a program
trace r ∈ R. The evaluator accepts a trace and a temporal
constraint c ∈ C, and returns whether the trace satisfies the
constraint or not (SAT/UNSAT).

CODEBOTLER : P → Π

Simulator : Π×W → R

Evaluator : R× C → {SAT,UNSAT}

1The code for our implementation of the robot skills can be found at
https://github.com/ut-amrl/codebotler amrl impl.

The results derived from traces over multiple world states and
multiple task prompts yield the success rate for an LLM on
a particular task. The ROBOEVAL benchmark thus consists of
tasks Ti(i ∈ [1, N ]), where each task consists of M prompts,
and K world states. Each world state has a corresponding
temporal check. Each ROBOEVAL task thus consists of a
tuple of prompts and multiple world-states to check against
a constraint (one constraint per world state):

Ti =
〈
{pji |j ∈ [1,M ]}, {⟨wk

i , c
k
i ⟩|k ∈ [1,K]}

〉
We present next 1) the ROBOEVAL simulator, 2) the

ROBOEVAL evaluator, and 3) the tasks in the ROBOEVAL
benchmark.

A. The ROBOEVAL Simulator

For each task Ti, the ROBOEVAL benchmark includes
multiple world states to check against. Each world state
wk

i ∈ W consists of 1) a list of rooms in the world that
GetAllRooms() returns, and which GoTo() is valid for;
2) a list of objects in the world that IsInRoom() returns true
for; 3) a list of objects that can be manipulated using Pick()
and Place(); and 4) a list of responsive humans, their
locations, and regular expressions that define their responses
to Ask(). Thus, a single LMP may produce very different
traces when simulated with different initial world states. The
simulator consists of a Python interpreter and a symbolic
simulation of each robot skill, and the result of running an
LMP π is recorded as a trace r as a sequence of robot
skills that were executed, along with the parameters (e.g., the
location parameter of a GoTo call). All Python errors or robot
execution errors are logged during simulation.

B. The ROBOEVAL Evaluator

Given a trace rki produced by simulating an LMP π with
an initial world state wk

i , the ROBOEVAL evaluator checks
whether rki satisfies the temporal check cki that defines correct
execution of the task for that world state. cki may consist

https://github.com/ut-amrl/codebotler_amrl_impl
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RoboEval Benchmark Tasks

ElevatorTour FindBackpack GetDrink GrilledCheese HalloweenList LunchBreak LunchTime

CountSavory MailDelivery MovieMessenger SayGoodDay SetTemperature StaplerDelivery StaplerSupply WeatherPoll

Task details

Prompt

Paraphrase 1: Go to every office, and if there is someone there, ask them whether they'd like a cupcake, ham sandwich, donut, or beef jerky. Come back and tell 
me how many people chose a savory option. 
Paraphrase 2: Visit all offices. If anyone is present; ask them to choose from the options of cupcake, ham sandwich, donut, or beef jerky. Let me know how many 
people selected a savory option when you return.
Paraphrase 3: …    Paraphrase 4: …    Paraphrase 5: … 

Attributes Navigation, Perception, Commonsense Reasoning, Arithmetic, Conditional Statements Number of Initial World States 4

1. Prompt
○ Paraphrase 1: Go to every office, and if there is someone there, ask them whether they'd like a cupcake, ham sandwich, donut, or beef jerky. Come back 

and tell me how many people chose a savory option. 
○ Paraphrase 2: Visit all offices. If anyone is present; ask them to choose from the options of cupcake, ham sandwich, donut, or beef jerky. Let me know how 

many people selected a savory option when you return.
○ Paraphrase 3: ….

2. Attributes: Commonsense Reasoning, Arithmetic, Conditional Statements
3. Defined Initial World States: 4

Task details

Prompt

Paraphrase 1: Go to every office, and if there is someone there, ask them whether they'd like a cupcake, ham sandwich, donut, or beef jerky. Come back 
and tell me how many people chose a savory option. 
Paraphrase 2: Visit all offices. If anyone is present; ask them to choose from the options of cupcake, ham sandwich, donut, or beef jerky. Let me know how 
many people selected a savory option when you return.
Paraphrase 3: ….

Attributes Commonsense Reasoning, Arithmetic, Conditional Statements

World States 1. 2

Halloween
Shopping

Fig. 3: The ROBOEVAL benchmark includes 16 tasks, each with 5 prompt paraphrases. The figure displays these tasks’ names
and a detailed example of the task CountSavory.

of multiple conditions, expressed in conjunctive normal form
over multiple temporal constraints. We review Linear Tempo-
ral Logic, which is well-suited to codifying such constraints
in order to check for correctness.

Linear Temporal Logic. An LTL formula follows the
grammar shown in Fig. 2c — it composes atomic propositions
π ∈ Π with logical operators ¬,∧,∨ and temporal operators
F ,G,U ,N . Given LTL formulas ϕ1, ϕ2 defined over a tempo-
ral sequence, Fϕ1 is true iff ϕ1 is true eventually at some point
along the sequence, Gϕ1 is true iff ϕ1 is true over the entire
sequence, and ϕ1Uϕ2 is true iff ϕ1 for a sub-sequence and ϕ2

is true for the remainder of the sequence after that. Nϕ is true
for a sequence iff the next element in the sequence satisfies
ϕ.

ROBOEVAL Temporal Logic While LTL suffices for writ-
ing robot task specifications, these LTL formulas can become
complex as task complexity increases. For example, consider
an example task T1 where a user asks the robot, “tell Alice
in her office to meet me in the lobby if she agrees to lunch”.
To complete this task, the robot 1) first needs to go to Alice’s
office; 2) then ask Alice whether she would like to have lunch;
and 3) finally if she agrees, tell her to meet in the lobby. Fig. 2c
shows the complete LTL specification for this task. Declaring
such specifications is quite tedious and error-prone. To address
this challenge, we observe that 1) specifying temporal logic
is easier and less error-prone for specific scenarios (e.g., one
scenario for if Alice says yes, and a different scenario for
no), and 2) the temporal formulas for robot tasks necessarily
depend on the robot skills. We thus introduce the ROBOEVAL
Temporal Language (RTL), a language derived from LTL
that is particularly well-suited to specifying temporal logic
formulas for robot tasks. Fig. 2b shows the grammar of RTL,
and Fig. 2c shows the corresponding RTL formula for task T1.
An additional advantage of the condition expressed in RTL vs.
LTL is improved readability.

C. The ROBOEVAL Benchmark Tasks
The ROBOEVAL benchmark contains a suite of 16 tasks.

Fig. 3 shows the names of the these tasks, along with a
detailed example of the task CountSavory 2. These tasks
are designed to check whether an LMP can 1) ground language
instructions to correct function calls to robot primitives; 2) per-
form accurate sequencing of robot actions; 3) handle complex

2A comprehensive list of the task descriptions can be found at
https://amrl.cs.utexas.edu/codebotler/

control flows based on different world configurations; 4) solve
arithmetic problems; 5) comprehend open-world knowledge.
In addition, research has shown [30] that LLMs may not be
as robust as previously thought, and trivial prompt variations
could cause significant performance variations for LLMs [9],
[31]. For this reason, we provide 5 different paraphrases of the
task prompt to evaluate the robustness of an LLM in dealing
with slight prompt variations.

V. BENCHMARK RESULTS AND ANALYSIS

To gain insights into the capabilities and limitations of
different state-of-the-art LLMs for generating service mobile
robot LMPs, we use the ROBOEVAL benchmark to empirically
answer the following questions:

1) First, how do different LLMs perform in generating
programs for tasks in the RoboEval benchmark?

2) Second, when a generated service robot LMP fails, what
are the causes?

To investigate these two questions, we evaluate five LLMs:
1) GPT-4 [32], 2) GPT-3.5 [22] (text-davinci-003),
and 3) PaLM2 [33] (text-bison-001) as state-of-the-art
API-only proprietary models; and 4) CodeLlama [34]
(Python-34b-hf) and 5) StarCoder [35] as open-access
models. When evaluating code generation models, we use
standard values of T = 0.2 for temperature and p = 0.95 for
nucleus sampling [8]. In the following subsections, we discuss
our analysis of each question in detail.

A. Performance Of LLMs On The RoboEval Benchmark

The ROBOEVAL benchmark consists of 16 tasks, each with
5 prompt paraphrases, totaling 80 different prompts. For each
prompt, we generate 50 program completions and calculate
the pass@1 score [8], a common metric for LMP evaluation.
This score indicates the probability of an LMP being correct
if an LLM generates only one LMP for a given prompt.

Overall Performance Analysis. We first investigate the
overall performance of each LLM in generating LMPs. Since
each LLM gets a pass@1 score for every prompt, we compute
the percentage of prompts that have a pass@1 score greater
than or equal to a threshold value, which ranges from 1 to
0. We present this information in Fig. 5 as a Cumulative
Distribution Function (CDF). Although relaxing the pass@1
score threshold for each LLM increases prompt coverage, there
are still certain prompts (ranging from 48.75% for StarCoder

https://amrl.cs.utexas.edu/codebotler/
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GPT-4 GPT-3.5 PaLM2 CodeLLama StarCoder

Say
GoodDay
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Drink

Stapler
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(a) Task Performance Breakdown
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(b) Commonsense Reasoning
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0.30

Fig. 4: 5 LLMs are evaluated on the ROBOEVAL benchmark. Each benchmark task contains 5 different prompt paraphrases
and each bar represents the average pass@1 score of an LLM for generating responses across all 5 prompts within a given
ROBOEVAL benchmark task. Each error bar indicates the range from the highest to the lowest pass@1 score across all prompts.
On the left side (a), the performance of LLMs on each task of the ROBOEVAL benchmark is displayed. On the right side (b),
the chart shows the performance of LLMs on tasks that have been adapted to exclusively evaluate the models’ proficiency in
performing commonsense reasoning.
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Fig. 5: Cumulative Distribution Function (CDF) curves depict
the percentage of prompts for which each LLM can generate
correct LMPs at various pass@1 score thresholds. A perfect
LLM would show a horizontal line at 100%, indicating it can
generate correct LMPs for all prompts with a pass@1 score
of 1. To maintain visual clarity, we limit the x-axis to 10−3

since all CDF plots eventually reach 100%.

to 1.25% for GPT-4) where LLMs consistently fail to generate
correct LMPs.

Performance of LLMs on Individual Tasks. We then look
into the performance of each LLM for specific tasks. We
present this information in Fig. 4a. Since each task has 5
different prompt paraphrases and a pass@1 score is calculated
for each prompt, we average the pass@1 score across 5
prompts. Additionally, we plot an error bar to visualize the
variation between the highest to the lowest pass@1 score over
all prompts for each task.

From the error bars, we note a considerable disparity
between a model’s best and worst pass@1 scores for a given
task. This suggests that models are not robust to changes in
the phrasing of the prompt. Single-word changes can result
in substantial performance variations. A common example
is changing the verb “ask” to “inquire”; “Ask him about
his available ingredients” in the GrilledCheese task thus
becomes “inquire about his available ingredients”. This seems

to affect some code model’s ability to call the robot ask
function.

From this chart, we further note a high variation in perfor-
mance across tasks. The top row contains the high-performing
tasks, where four or more models score over 0.7 on pass@1,
while the bottom row contains the low-performing tasks where
three or more models score below 0.2 pass@1. To identify
why such a high variation exists, we run an ablation ex-
periment. We notice that tasks involving commonsense rea-
soning (CountSavory, GrilledCheese, LunchTime,
SetTemperature) tend to underperform. Hence, we ablate
all but commonsense RTL checks on these tasks. For example,
the full CountSavory checks require that the robot navigates
to every office as well as understanding that beef jerky and
ham sandwich are savory options; for the ablation, we remove
these navigation checks. We plot the resulting average pass@1
scores of this experiment on Fig. 4b. If models are failing
commonsense reasoning, we expect the performance to be
unchanged after ablation. However, we notice that models
are largely improving in performance. This suggests that the
problem lies elsewhere, which we will analyze next.

B. Causes of Failures of LMPs

Given that LLMs still have room for improvement on the
ROBOEVAL benchmark, we want to understand the causes of
failures for LLMs to generate robot programs. We classify
these failures into three categories: 1) Python Errors, includ-
ing syntax, runtime, and timeout errors; 2) Robot Execution
Errors, that occurs when a program attempts to execute an
infeasible action, such as navigating to a non-existent (hallu-
cinated) location; and 3) Task Completion Errors, where the
program runs correctly in the simulator but fails RTL checks
for task completion. We use ROBOEVAL’s symbolic simulator
to detect and classify Python Errors and Robot Execution
Errors, and we use ROBOEVAL’s evaluator to capture the Task
Completion Errors. Fig. 6a shows the breakdown of these
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(a) Overall Error Breakdown
StarCoder
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(b) Python Error Breakdown
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GPT-4

6.7% 10.1% 16.1% 65.8%

35.0% 18.6% 45.7%

22.0% 3.4% 73.4%

3.3% 8.8% 84.3%

100.0%

ValueError
UnboundLocalError
IndexError
NameError
ZeroDivisionError
SyntaxError
KeyError
TypeError
TimeoutError

(c) Robot Execution Error Breakdown
StarCoder

CodeLlama

PaLM2

GPT-3.5

GPT-4

5.7% 59.7% 6.6% 20.8% 7.2%

67.3% 6.7% 5.9% 18.1%

46.0% 9.3% 21.7% 22.6%

10.2% 64.5% 23.5%

92.9% 3.6% 3.6% PickInvalidObject
AskEmptyOptions
GoToInvalidLocation
AskNoPerson
PlaceNoObject
PickWhileHolding

(d) Task Completion Error Breakdown
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9.1% 33.5% 9.2% 42.5%

7.7% 28.7% 5.4% 4.3% 51.2%

3.2% 12.6% 23.8% 6.2% 5.9% 43.1% 4.6%

22.1% 73.6%

31.7% 68.2%
Manipulation at Location
Event Ordering
Initial/Terminal
Location
Exhaustive Search
Ask at Location
Say at Location
Check Entity at Location

Fig. 6: Causes of failures for LMPs on the ROBOEVAL benchmark.

failure categories for each LLM. We observe that despite
having fewer parameters, the CodeLLMs (CodeLlama and
StarCoder) generally make fewer Python errors. This suggests
that LLMs trained on a larger proportion of code may be more
adept at generating successful completions in the DSL defined
in the prompt.

In the following subsections, we will analyze each error in
detail.

Python Error Analysis. Fig. 6b shows the specific error
breakdown of the Python Error. The Python Error encom-
passes a multitude of errors, but their distribution exhibits
a long-tailed pattern. In GPT-3.5 and GPT-4, NameError
is predominant because of undefined variables. PaLM2 and
CodeLLama, on the other hand, often generate TypeError
due to the misuse of data types, while Starcoder commonly
encounters TimeoutError when the LMPs get stuck in loops.

Robot Execution Error. Fig. 6c shows the error breakdown
of the Robot Execution Error. There are 6 root causes of robot
execution errors:

1) GoToInvalidLocation/PickInvalidObject: the program
calls go_to or pick with a hallucinated argument;

2) PlaceNoObject/PickWhileHolding: the program tries to
pick/place an object when it is not/already holding one;

3) AskNoPerson: the program calls ask at a location with
no person nearby; and

4) AskEmptyOptions: the program calls ask with an empty
list of options for the person to choose from.

We first observe that hallucination plays a substantial role
in causing errors, Specifically, the GoToInvalidLocation and
PickInvalidObject errors contribute to 33.7% of the total robot
execution errors in GPT-3.5, 67.7% in PaLM2, 73.2% in
CodeLlama, and 80.5% in StarCoder. We also notice that an-
other important source of errors arises from the PlaceNoObject
and PickWhileHolding errors, as well as AskNoPerson errors

for GPT-3.5. These errors require the program to be aware of
the internal state of the robot or keep track of the external
world state. The prevalence of these errors suggests a gap in
LLM’s ability to keep track of changing states by binding
agents to current states. Some of these errors also result from
a failure to respect the behavior of our robot functions. For
example, our pick function only allows the robot to pick an
object if it is not already holding one. However, the model may
not include this information in its completion and attempt to
pick up multiple objects.

Task Completion Error. Fig. 6d shows the breakdown
of the Task Completion Errors. We classify every temporal
check in the ROBOEVAL benchmark into one of the following
categories:

1) {Say/Ask/Manipulation/CheckEntity} AtLocation: The
task requires executing a specific action (say, ask,
pick, place or check) at a specific location, but the
program fails to do so;

2) Initial/Terminal: The program does not accurately per-
form an initial or final action;

3) EventOrdering: The program does not carry out actions
in the prescribed sequence or has redundant navigation;

4) Location: The program commands the robot to visit a
location irrelevant to the task; and,

5) ExhaustiveSearch: The program does not visit all loca-
tions required to complete the task.

We notice that the most common task completion errors in
each LLM are the SayAtLocation error and the Initial/Terminal
error. These two types of errors constitute the majority of task
completion errors, making up 100% of the errors in GPT-4,
95.7% in GPT-3.5, 66.9% in PaLM2, 79.9% in CodeLlama,
and 76.0% in StarCoder.

After analyzing the programs that produce these errors, we
find that most are related to a recurring statement in many
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Fig. 7: Cumulative Distribution Function (CDF) of the LLMs’
performance across different max retry limits. As the max retry
limit increases, all five LLMs improve in performance.
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Fig. 8: Cumulative Distribution Function (CDF) of
the fraction of program completions that can be
executed over different max retry limits.

Task: Compile a list of ingredients for grilled cheese. Go to Zarko’s office, and 
ask him which of them he has. Come back and tell me what he does not have. 

Successful Completion:
def task_program():
    missing_ingredients = []
    start_loc = get_current_location() # <---- record the starting location
    go_to("Zarko's office")
    for ingredient in ["bread", "butter", "cheese"]:
        response = ask("Zarko", "Do you have " + ingredient + "?", ["Yes", "No"])
        if response == "No":
            missing_ingredients.append(ingredient)
    go_to(start_loc) # <---- return to the starting location
    say("Zarko does not have " + ",".join(missing_ingredients))

Failed Completion:
def task_program():
    missing_ingredients = []
    go_to("Zarko's office")
    for ingredient in ["bread", "butter", "cheese"]:
        response = ask("Zarko", "Do you have " + ingredient + "?", ["Yes", "No"])
        if response == "No":
            missing_ingredients.append(ingredient)
    go_to(get_current_location()) # <---- does not return to the starting location
    say("Zarko does not have " + ",".join(missing_ingredients))

Fig. 9: Examples of successful (top) and failed (bottom)
program completions related to the “come back” instruction.

of our tasks: “Come back and tell me...” (Fig. 9 shows an
example). This statement is often used in tasks in which we
want a service robot to go to a different location, complete
a task, and then return to us with an update on its progress.
This is the most common instruction that fails across models,
and also the error that is directly responsible for many of
our low-performing tasks. Programs that fail the “come back”
instruction often do not use the get_current_location
primitive to record the robot’s starting location, and as a
result, cannot refer to the starting location at the end of
the program. This also causes LLMs to hallucinate locations
and produce the GoToInvalidLocation errors — rather than
referencing a non-existent start_loc variable, some LLMs
generate a location based on context clues and send the robot
to that location (for example, returning to the kitchen in
GrilledCheese, although no kitchen is mentioned in the
prompt). We observe that in tasks without a “come back”
instruction, but an explicit return statement like “return to the
mail room” do not suffer from the same error.

VI. IMPROVING ROBOT PROGRAM GENERATIONS

Based on the analysis of the failures of LMPs in ROBOE-
VAL, we are interested in understanding how to improve
service robot program generation using LLMs. Recognizing

the breadth of potential improvements, this study focuses on
an initial step: we propose a rejection sampling strategy to
identify and reduce LMP failures (Python Errors and Robot
Execution Errors) before deploying the LMP on the robot.

To detect errors in an LMP, the ROBOEVAL symbolic
simulator takes in the current world state and executes the
LMP. If an error is identified (Python Errors and Robot
Execution Errors), CODEBOTLER will prompt an LLM for
a new program and submit the program to the symbolic
simulator to execute again. This cycle repeats until an LMP
successfully passes in the symbolic simulator for deployment
on the robot or until a maximum retry limit is reached.

This proposed strategy has one limitation: the symbolic
simulator may not know a-priori the true state of the world,
including the current locations of humans and movable objects,
or how humans might respond to the robot’s questions. We
address this limitation by proposing a task-agnostic world
state. This world state contains the permanent entities (e.g.,
known rooms) and employs state sampling to simulate random
potential world states for non-static entities, such as possible
human locations, movable objects, and human responses.
Subsequently, each LMP undergoes multiple simulation runs
(we chose 5 in our experiments) in the symbolic simulator to
ensure statistical reliability when identifying LMP failures.

We evaluate this strategy on all five LLMs with four
different maximum retry limits (2, 4, 8, 100) and compare them
with the baseline (without rejection sampling). Fig. 7 shows
the CDF curves of the percentage of prompts that can be
successfully generated given a threshold of the pass@1 score
for each LLM with respect to different maximum retry limits.
We observe an improvement in performance across all LLMs
as the maximum retry limit is increased.

We then investigate how effective the rejection sampling
strategy is in eliminating the program execution errors. We
compute the percentage of total program completions that can
be eventually executed over different maximum retry limits
and plot it as a CDF in Fig. 8. Interestingly, we observe
that it is possible for some LLMs (PaLM2, CodeLlama, and
Starcoder) to never generate successful completions for certain
tasks. As a result, while the rejection sampling strategy can
improve the performances of LLMs, it is not enough to resolve
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all program execution errors.
This observation, coupled with prior findings of LLMs’ con-

sistent failures in generating correct LMPs as detailed in Sec-
tion V-A, points to a systemic challenge in LMP generation. It
highlights the issue of abstraction matching [36], which entails
aligning ambiguous natural language expressions of user intent
with their precise, unambiguous code representations. In future
work, we would like to explore more sophisticated strategies,
such as utilizing grounded abstraction matching, to solve this
problem.

VII. CONCLUSION, LIMITATIONS, & FUTURE WORKS

In this work, we present CODEBOTLER and ROBOEVAL.
CODEBOTLER is an open-source robot-agnostic tool to gen-
erate general-purpose service robot programs from natural
language, and ROBOEVAL is a benchmark for evaluating
LLMs’ capabilities of generating programs to complete service
robot tasks. We evaluate the performance of five LLMs in
generating robot programs and perform an analysis of the
causes of failures. Our analysis reveals that the errors exhibit
a long-tail distribution, with LLMs predominantly struggling
with hallucination issues and grounding the phrase “come
back”. Finally, we propose a rejection sampling strategy to
handle program failures. This method has led to improved
performance for all five LLMs.

This work has several limitations that could be addressed
in future research. Firstly, CODEBOTLER currently does not
support low-level behaviors, such as “follow Alice to her
office”. Secondly, CODEBOTLER generates LMPs in an open-
loop fashion, rendering it incapable of reacting to unexpected
changes in the environment. Thirdly, this study does not con-
sider the strategies for crafting prompts that could improve the
performance of LLMs in generating service robot programs.
Finally, although the RTL constraints are designed to reduce
the workloads of writing specifications compared to LTL
constraints, the users still need to manually specify constraints
for each task. Therefore, investigating the Tree-of-Thoughts
concept [37] to dynamically generate RTL checks with LLMs
might be valuable.
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