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MotionPerceiver: Real-Time Occupancy Forecasting
for Embedded Systems

Bryce Ferenczi1†, Michael Burke1, Tom Drummond1,2

Abstract—This work introduces a novel and adaptable ar-
chitecture designed for real-time occupancy forecasting that
outperforms existing state-of-the-art models on the Waymo Open
Motion Dataset in Soft IOU. The proposed model uses recursive
latent state estimation with learned transformer-based functions
to effectively update and evolve the state. This enables highly
efficient real-time inference on embedded systems, as profiled on
an Nvidia Xavier AGX. Our model, MotionPerceiver, achieves
this by encoding a scene into a latent state that evolves in time
through self-attention mechanisms. Additionally, it incorporates
relevant scene observations, such as traffic signals, road topology
and agent detections, through cross-attention mechanisms. This
forms an efficient data-streaming architecture, that contrasts with
the expensive, fixed-sequence input common in existing models.
The architecture also offers the distinct advantage of generating
occupancy predictions through localized querying based on a
point-of-interest, as opposed to generating fixed-size occupancy
images that render potentially irrelevant regions.

Index Terms—Deep Learning for Visual Perception; Computer
Vision for Transportation; Representation Learning

I. INTRODUCTION

MOTION forecasting is a crucial step in trajectory
planning for autonomous vehicles, integral to optimal

decision making and preventing collisions with other agents
in a dynamic environment. This task, however, is fraught with
complexities, owing to the multifaceted factors that influence
the trajectories of other agents. These factors encompass the
environmental context, per-agent goals, navigable area and so-
cial interactions between agents. Compounding this challenge
is the heterogeneity of the data structures derived from the
sensor suite of autonomous vehicles. This data spans a spec-
trum of temporal attributes, ranging from time-sensitive (e.g.
the position of other agents or traffic signals) to time-invariant
(e.g. lane markings or pedestrian crossings). This data diversity
creates challenges around representation, as it can manifest
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(a) Last Observation
(t = 0s)

(b) Before Next Ob-
servation (t = 0.4s)

(c) Next Observation
(t = 0.5s)

Fig. 1. MotionPerceiver implements recursive state estimation for motion
forecasting. Here, an initial scene observation (a) at t = 0s is forecast (b)
0.4s into the future. This learned prediction begins to accumulate error and
uncertainty for targets in motion, and shows no occupancy for an agent that
was not initially detected. Frame (c) shows the predicted occupancy after
a scene observation has applied an update to the latent state at t = 0.5s.
Agent occupancy is refined, without explicit data association, and a new agent
added to the state. Images are color coded green → true positive (occupancy
prediction > 0.5), blue → false positive, red → false negative, black →
rasterized road graph, red dots → traffic signals.

in sparse and concise forms, resembling a singular point
in the environment, or more intricate forms, exemplified by
lane markings encoded as directional splines. Furthermore, the
volume of data within a scene varies significantly, influenced
by instance-based features, such as agents and lane markings.
Practical use within autonomous systems introduces a num-
ber of additional requirements: real-time capability, efficient
query processes for downstream algorithms, and uncertainty
estimation to enable risk-based motion planning.

This paper introduces MotionPerceiver, a real-time mo-
tion forecasting model explicitly designed to handle these
representation challenges, seamlessly integrating information
from a broad range of sensors. At its core, MotionPerceiver
models a scene as a latent state that continually evolves
in time with updates derived from latent representations of
scene observations as they become available. Importantly, this
architecture uses a design cue from Perceiver-IO [1], using
fixed latent state dimensions to facilitate deterministic memory
and computational cost. MotionPerceiver leverages a learned
time evolution function to predict the future latent state, rooted
in multi-head self-attention mechanisms to capture dynamic
interactions among features embedded in the latent state, such
as vehicles and pedestrians. In order to assimilate incoming
data, such as agent positions and traffic signals, we employ
cross-attention to facilitate information transfer to the pro-
jected latent state. This scheme can be considered analogous
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to a recursive state estimation process, improving the predicted
latent scene representation as novel information emerges (Fig.
1). Predicting occupancy is performed by querying the latent
state at the desired time, using an encoding of the desired
query position. For a comprehensive occupancy prediction
of the scene, a grid of positions can be used to generate a
rasterized birds-eye-view image.

Motion forecasting necessitates operating at a rate surpass-
ing real-time to incorporate new observations of the scene.
To efficiently process a causal signal, it is preferable to only
process new incoming information, rather than redundantly
reprocessing old data. Algorithms that use a fixed-sequence
for input are inefficient since they begin inference from scratch
and reprocess historical information. Unfortunately, this is the
dominant paradigm used by the majority of motion forecasting
architectures ([2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15]). A more streamlined approach would be
to augment the prior motion forecast with new information.
Furthermore, scalability is also paramount, to cope with a large
numbers of agents. Solutions that scale super-linearly or are
not parallelisable are impractical for real-world deployment.
MotionPerceiver’s latent state prediction-update scheme is
designed with a computationally-deterministic data streaming
paradigm in mind. This allows the previous computational
investment in building the latent state representation to be
retained, while seamlessly incorporating new measurements.

Finally, robustness to noisy or incomplete data is essential
for real-world deployment where occlusions and sensor blind
spots are common. Sequence-based models commonly use
agent tracklets as input, which can be corrupted during occlu-
sions or a faulty tracking algorithm that outputs switched ids.
MotionPerceiver’s latent state update does not use temporal
data association at the input, and is robust to this problem. In
summary, the core contributions of this work are:

• A novel transformer-based architecture that uses recursive
state estimation to forecast occupancy using agent detec-
tions and seamlessly integrates contextual information.

• The first data-streaming based motion forecasting model
that reports real-time inference on an edge device.

This model outperforms existing models in predicted occu-
pancy (Soft IoU) on the Waymo Open Motion dataset.

II. RELATED WORK

Motion forecasting is the task of predicting the future
position of agents in a scene. There are two reference frames
which are commonly used, agent-centric and scene-centric.
Agent-centric methods [7] transform the scene into each
agent’s point-of-view for prediction. This paradigm can be-
come prohibitively expensive due to inference cost scaling per
agent in the scene. Scene-centric methods holistically encode
the entire scene and jointly predict motion of all agents.
This is the dominant architecture in the literature, and the
paradigm followed by MotionPerceiver. A variety of scene-
encoding architectures have been explored in this category
including: point-pillars [6], [16], [9], fully-convolutional [7],
[11], transformer [8], graph [5] and hybrid methods [4].

Trajectory forecasting involves predicting continuous
splines that represent the future trajectory for each agent.

This can take the form of a probabilistic set, representing a
multi-modal decision distribution of the target [3], [7], [13],
[14]. A variety of higher-level architectural designs have been
explored to accomplish this task. State-of-the-art trajectory
planners commonly follow a paradigm of finding a set of likely
goals, and generate feasible trajectories towards these [3],
[17]. Anchors are also used as a foundation for multi-modal
prediction forecasting. Anchors can be derived statistically
from the dataset [18] or learned during training [14]. Other
methods forecast future trajectories without using anchors
or goals as grounding [7], [10], [13], [15]. An important
formalisation is to predict control inputs for the motion model
of the agent to prevent physically infeasible predictions [13],
[14]. The weakness of per-agent trajectory forecasting is the
high complexity this formulation can elicit in larger, crowded
scenes. A path-planning algorithm has to parse, optimize and
validate a multi-modal trajectory distribution for each agent,
adding a large number of constraints.

Agent-based Occupancy forecasting on the other-hand, is
the goal of predicting if a point in space will be occupied by
an agent in the future. This paradigm is more amenable to path
planning algorithms as they can check whether a position in
the navigable area is occupied with a single query. This for-
mulation, in isolation, erases the identities of agents. Methods
which also predict the flow of occupancy over time [4], [5],
[6], [8], [9], [11] enable retracing from where occupancy has
originated, and the agent responsible. Occupancy forecasting
implicitly permits multi-modal predictions as the occupancy
attributed to a particular agent is able to spread beyond the
real size of the agent as its position becomes more uncertain
further in the future. Occupancy prediction is performed by
MotionPerceiver due to its ease-of-use in downstream planning
or trajectory optimisation algorithms.

Sensor-based Occupancy Forecasting estimates birds-
eye-view (BEV) or volumetric occupancy of a scene us-
ing time-of-flight sensors such as Lidar and/or Radar. This
contrasts with the object conditioned occupancy forecasting
considered by MotionPerceiver. Intrinsic challenges to this
task are sparse-to-dense reconstruction, and reasoning around
sensor-occluded areas of the scene. A common approach is
to predict occupancy from a Lidar point-cloud observation,
forecast to the next observation’s space-time location, then
enforce consistency with the next point-cloud [19], [20], [21].
Radar introduces additional challenges due to various noise
modalities such as reflection and receiver saturation. Despite
these challenges, its longer range, penetration and lower cost
make it an ideal candidate for use in autonomous vehicles.
Hence, [22] develop a model to predict occupancy from Radar,
using accompanying Lidar supervision for training.

Including scene context is an important capability for
forecasting models, especially for predicting over longer time
horizons. Context can be invariant over time – this typically
includes topographical information such as lane markings,
potholes or signage. Time-sensitive context includes dynamic
entities such as traffic signalling equipment and other agents
in the environment. Motion forecasting models within au-
tonomous driving settings predominantly use lane markings
as context [3], [5], [23], [8], [17]. Lane marking information,
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represented as directed splines, are rarely used as raw input to
a model. Preprocessing into a more amenable representation is
needed. Commonly, lane markings are rasterized into an image
that can be processed by a CNN for feature extraction [8], [7].
Alternatively, VectorNet [24] uses a hierarchical graph neural
network for encoding. Individual splines are initially processed
into features of fixed dimension, then global interactions
are modeled between these features, resulting in a concise
representation of each spline as a feature of fixed dimension.
A smaller subset of models include traffic signals [4], [6], [9],
[10], but this is likely attributed to some popular datasets [25],
[26] not containing high quality traffic signal information and
its limited quantitative effect on performance. MotionPerceiver
is explicitly designed to be extendable and integrate a variety
of features that may influence agent dynamics, which is
important as new contextual features become available in
driving datasets.

The vast majority of forecasting models consume a fixed
sequence of observations for inference due to the simplicity
of capturing spatio-temporal features as a single input. The
most common method is concatenating the history of an
agent into a feature-vector [24], [5], [15]. A small num-
ber of methods accumulate timestamped positions of agents
in a point-cloud [6], [9]. In general, these sequence based
models have the disadvantage that inference is started anew
for each forecast when a new scene observation is captured.
Furthermore, accurate tracking and data association methods
are required to build the history for each agent (a tracklet).
Motion forecasting performance could be potentially degraded
if malformed tracklets are introduced by tracking algorithm
errors. MotionPerceiver uses a streaming based approach that
avoids repetition of inference and use of tracklets. Here, we
update our forecast as new observations come in, based on our
previous forecast.

III. PRELIMINARIES

A. Transformer attention

The multi-head attention function of the transformer [27],
denoted as MHA, has become pervasive in deep learning.
The output of each attention head, Hi, i ∈ {1, . . . , h}, is
a weighted sum of Vi, using learned correlations between
queries Qi and keys Ki,

Hi = Attn(QW q
i ,KW k

i ,VW v
i ) = softmax(

QiK
T
i√

dk
)Vi,

(1)
where each attention head uses a different projection of inputs
Q, K and V, using learned parameters W q

i ∈ Rd×dq ,W k
i ∈

Rd×dq ,W v
i ∈ Rd×dv . For clarity, d is the dimension of the

model output, dq is the dimension of K and dv is the dimen-
sion of V. The result from each head is linearly combined
using learned parameter W o ∈ Rhdv×d

Ĥ = MHA(Q,K,V) = concat(H1, . . . ,Hh)W
o. (2)

A typical transformer block includes a residual pass through
a multi-layer perceptron (mlp), to produce final output H′,

H′ = mlp(Ĥ) + Ĥ. (3)

We use transformer blocks as the foundation of each Motion-
Perceiver function to model the interactions between features
in the latent state and observations from the scene.

B. Sinusoidal Position Encoding

Transformer models are often paired with a positional en-
coding scheme, enabling better identification of distance-based
correlations between tokens. Common positional features in
motion forecasting include coordinates (x, y) → p ∈ R2 and
pose (x, y, θ) → p̂ ∈ R3, where x and y denote position,
and θ represents heading in a reference frame. The sinusoidal
position encoding scheme uses a series of fn evenly spaced
frequency components fi, from fmin to fmax. To encode a
scalar position p, each element is calculated

Pi(p) =

{
sin(fiπp) i < fn

cos(fiπp) else,
(4)

and concatenated to form the sinusoidal encoding vector,

P(p) = concat(P1(p), . . . ,P2·fn(p)) (5)

For a vector, p̂, this procedure is repeated for each element,

P(p̂) = concat(P(p̂x),P(p̂y),P(p̂θ)). (6)

IV. MOTIONPERCEIVER

A. Problem formulation

Our goal is to make predictions of the future occupancy
within a region of interest, conditioned on observations that in-
clude the positions, orientations and velocities of other agents
in a scene, traffic signalling information, and other contextual
information such as road lane markings. We assume that agent
id is not available, and the number of agents observed can vary
over time, due to occlusions, or agents entering and leaving the
scene. We consider a streaming data paradigm, where sensors
are providing these observations periodically, in real time.

B. Tokenizing Observations

A key advantage of the MotionPerceiver architecture is
adaptability to ingest diverse data sources, needing only a
reasonable strategy to encode information into a set of No

tokens with dimension Co, It = {I0t , . . . , I
No
t }, Int ∈ RCo .

In this section, we outline the method used for transforming
raw agent, traffic signal and road-graph observations into a
form MotionPerceiver can consume. Using a scene region-
of-interest of 160 × 160m, position is normalized to [−1, 1]
and sinusiodally encoded with (6). We use fmin = 1Hz,
fmax = 320Hz and fn is specified per-feature, dependent
on desired fidelity.

A number of properties from the agent observation are
used to construct the tokenized representation used by Mo-
tionPerceiver. Observed pose p̂, is sinusoidally encoded with
fn = 64. Vehicle dimensions, (h,w), are incorporated to
rasterize a correctly sized occupancy mask. Rate-of-change
˙̂p, enables identification of vehicles in motion with one ob-
servation. These features are concatenated to produce a vector
representation of each visible agent A = (P(p̂), ˙̂p, h, w) with
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Fig. 2. An illustration of the use of MotionPerceiver’s architecture for real-time occupancy prediction. At t = 0, the latent state is initialised with the first
observation of agents in the scene. The evolution of this latent state is shown using dark blue arrows. Tokenized observations from the scene (light red)
are queried by the latent state for information. Rasterized road-graph context (light blue) can be encoded once and provide contextual information at each
time-step. The latent state can be queried with a position (light orange) to receive an estimate of occupancy probability at each time-step. When there is no
observation information (t = 1), the latent state is simply propagated forward in time and updated with road-graph context. This is the operation used for
forecasting future occupancy or interpolation between observations. At time-steps when scene observations are available (t = 2), the latent state queries the
observation for information, reducing accumulated errors and adding newly observed agents. Dimensions Nx × Cx describes the number of tokens Nx and
channels per token Cx. Additional inference diagrams can be found at https://sites.google.com/monash.edu/motionperceiver.
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Fig. 3. Self- and cross-attention is used to apply changes to the latent state.
The latent state (dark blue), is always used as the query. Self-attention sources
the key-value from the latent state (dark red), communicating information be-
tween the NL variables in the latent state. Cross-attention uses the observation
as the key-value (light red) for the latent state to query and transfer information
from the observation to the latent state.

dimension Ca. Hence, for inference, a variable number of
agents Na, observed at time t, are transformed into a set of
tokens At = {A1, . . . , ANa}t.

To construct a traffic signal token, observed position p is
sinusoidally encoded with fn = 32 and concatenated with a
one-hot encoding of the signal type T 1, producing feature
vector T = (P(p), T ) of dimension Ct. For Nt traffic signals
observed at time t, we create a set Tt = {T 1, . . . , TNt}t.

A rasterization strategy is used to tokenize road-graph
information for MotionPerceiver. Lane markings are rasterized
as a Hi × Wi image and passed through a convolutional
neural network (CNN), creating a Hp × Wp feature image.
Each pixel value R̂, is a high-dimensional representation of
a section of the map. This is concatenated with a sinusoidal
encoding (fn = 16) of its location p, creating a feature vector
R = (R̂,P(p)) of dimension Ce. Hence, from a variable
number the lane markings in a scene, we create a fixed set of
tokens R = {R1, . . . , RNe} where Ne is the number of pixels
Hp × Wp. This decouples run-time cost from the density of
road-graph content in the scene2.

C. Recursive State Estimation Using Transformers
MotionPerceiver, shown in Fig. 2, models agents navigating

a dynamic social environment. We learn how a represen-
tation of the scene, described as a set of latent variables
S = {S1, . . . , SNL

}, Sn ∈ RCL , evolves in time (shown
in the dark blue path of Fig. 2). Self- and cross-attention
based functions allow the model to capture and express social
dynamics between the agents in the latent state and context
when predicting the future.

To initialize the latent state, S, a set of learned parameters,
query the first observation of agents, A0, with cross-attention.
This is followed by 6 self-attention applications. This forms
our StateInitialization module, depicted in Fig. 2. From
here, we begin performing recursive state estimation with
MotionPerceiver.

The time evolution process modeled as learned function F ,
only depends on the previous state St−1|·, to predict the next
state St|t−1, akin to a Markovian dynamics model,

St|t−1 = F(St−1|·). (7)

Here, we adopt Kalman filter notation, St|t−1, to represent a
state at time t, given observations at time t − 1. The latent
state St−1|· is used for the arguments in (2),

Q = St−1|·, K = St−1|·, V = St−1|·, (8)

creating a self-attention between the NL variables in the latent
state. This process is visualized in the dark blue and dark red
path(s) of Fig. 3 where St−1|· is the “Latent State” input. This
self-attention function is repeated 6 times in a block to create
the TimePropagate module in Fig. 2.

To transfer information from tokenized observation It to the
latent state, a learned update function U is used after the state
has been propagated to the time frame when the information
was captured,

St|t = U(F(St−1|·), It) = U(St|t−1, It). (9)

1Examples of signal types include green straight and red turn.
2Creating a rasterized image of splines is relatively inexpensive.

https://sites.google.com/monash.edu/motionperceiver
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Here, the latent variables of St|t−1 query the key-value pairs
derived from It using (2),

Q = St|t−1, K = It, V = It. (10)

This cross-attention process is depicted in Fig. 3 and follows
the light red path for “Observation” It, and the dark blue path
for “Latent State” St|t−1. This is used in the RoadContext,
AgentObservation and SignalObservation modules. An
additional self-attention is applied after cross-attention in the
RoadContext and SignalObservation modules.

The latent state can be queried with a set of positions
P = {p1, . . . ,pNq} to yield predicted occupancy logits, ôt,
given the current state of the scene St|· with learned emission
function O,

ôt = O(P,St|·) = Pr(P|St|·). (11)

Once again, this is performed using cross-attention (2),

Q = P(P), K = St|·, V = St|·. (12)

A potential weakness of point-wise methods is missing near-
field context. If greater accuracy is desired, a region of pixels
can be queried and decoded with a small CNN (Conv Decode).
Importantly, this does not nullify our “local query” capability,
we still query a patch rather than the full scene.

Intuitively, these operations can be considered analogous
to a recursive Bayesian estimation filtering operation, with a
learned latent dynamics model making future predictions over
a state, and a learned update model refining the latent state
with later observations. The attention mechanisms learn to
introspect and update specific latent variables. An emission
model generates a probabilistic occupancy map as a function
of the latent state conditioned on a series of observations.

D. Loss Function

To predict pixel-wise occupancy, a focal loss [28] is used
to address class imbalance between occupied and unoccupied
pixels. Formally, focal loss Lf , is defined for occupancy pre-
diction logit ô and ground truth binary occupancy o, where σ
is the sigmoid activation function and γ is the focal weighting
factor,

F = σ(ô)o+ (1− o)(1− σ(ô)), (13)
Lf = − log(ô)(1−F)γ (14)

An additional weighting factor α is used to weight positive
samples,

αf = αô+ (1− α)(1− o) (15)

and is uniformly averaged over all time-steps Ntime and
occupancy pixels Npixel for final loss L,

L =
1

NtimeNpixel

∑
Ntime

∑
Npixel

αfLf . (16)

E. Uncertainty Calibration

For an imbalanced binary classification task, focal loss
parameters γ and α, can be adjusted to balance the false-
negative and false-positive rate. For temporal prediction this
is likely to be a function of prediction time. Finding the
ideal focal parameters at every time step would entail an
expensive hyper-parameter search, so we train with a fixed
set of parameters, and calibrate the model output instead by
applying a simple scaling function to ô, increasing the decay
rate of predicted occupancy by a factor β,

ô =

{
βô if ô < 0

ô else .
(17)

F. Online Inference

A key design feature of MotionPerceiver is the real-time
streaming-based architecture. To deploy this in an online
application, the latent state that aligns with timing of the next
anticipated observation is preserved. Retaining a single latent
state entails a constant memory requirement of NL×CL. The
next scene observation update can be applied to the retained
latent state, thereby facilitating the seamless resumption of
the forecasting process. This is conceptually a more efficient
paradigm compared to more common sequence-based meth-
ods. While recurrent models theoretically enable streaming,
these models perform poorly in motion forecasting [29], or
are applied to latents or tokens produced by passing in fixed
windows of information. To the best of our knowledge, there
are no streaming-based architectures reported in the literature
capable of matching fixed sequence models in performance.

If the sensor sample period and the requested forecasting
period differ, more than one TimePropagate function can be
trained to evolve the latent state at different periods. This more
computationally efficient for inference than a least-common-
multiple TimePropagate that needs to be applied multiple
times to match the desired period.

V. EXPERIMENTAL RESULTS

A. Training Environment

We train and evaluate on Waymo Open Motion Dataset
[30] (WOMD), which consists of 104k 9 second sequences
captured at 10Hz. Each sequence contains data including
agent pose, traffic light signals and road topography. Unless
otherwise specified, past phase data is sampled at 2Hz. We use
the same inertial frame as the WOMD evaluation benchmark.
All models are trained with PyTorch [31]3. We use the
ADAMW optimizer with an initial learning rate of 1e−3 and
fixed batch size between 48−64, depending on GPU memory
available. A polynomial learning rate schedule is adopted with
decay power of 0.9 and epoch target of 75. For occupancy
focal loss (16), α = 0.75 and γ = 2 are used. To generate
an occupancy prediction, the latent state is queried with a
evenly spaced 80 × 80m grid of 256 × 256px, matching the
ground truth occupancy mask. To conserve GPU memory,
timesteps to query and apply the loss are sparsely sampled

3Code is available at https://github.com/5had3z/motion-perceiver.

https://github.com/5had3z/motion-perceiver
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TABLE I
ARCHITECTURE ABLATION ON WAYMO OPEN MOTION VALIDATION SPLIT

Latent Dims Uncertainty Input Data Conv Two Soft IoU AUC #
(N x C) Calibration Agents Signal Road Decode Phase +3s +6s Mean Mean Params
128x256 ✓ ✓ - - - - 0.443 0.320 0.424 0.677 5.84M
128x256 ✓ ✓ ✓ - - - 0.452 0.329 0.433 0.685 6.57M
128x256 ✓ ✓ - ✓ - - 0.454 0.328 0.433 0.684 7.50M
128x256 ✓ ✓ ✓ ✓ - - 0.464 0.333 0.442 0.693 7.56M
64x128 ✓ ✓ ✓ ✓ ✓ - 0.414 0.308 0.400 0.651 2.27M

128x256 - ✓ ✓ ✓ ✓ - 0.405 0.265 0.382 0.716 7.66M
128x256 ✓ ✓ ✓ ✓ ✓ - 0.486 0.351 0.463 0.710 7.66M
128x256 - ✓ ✓ ✓ ✓ ✓ 0.501 0.334 0.460 0.778 10.7M
128x256 ✓ ✓ ✓ ✓ ✓ ✓ 0.563 0.400 0.524 0.772 10.7M

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Future (Seconds)

So
ft

Io
U

/
A

U
C

Soft IoU AUC
Two Phase
All Context
No Context

Fig. 4. Soft IoU and AUC at evaluation waypoints on Waymo Open Motion
Validation split. Inclusion of contextual features (roadgraph + traffic signals)
has a greater effect at later waypoints. Two phase prediction specialization
improves performance across the whole sequence.

between 0 and 6 seconds. Random sampling mitigates spurious
prediction artefacts that may arise on unsampled timesteps if
only a consistent set is used. Additionally, we detach gradients
between each timestep. This not only speeds up training, but
also enforces the Markov assumption (7).

B. Performance metrics

Performance in occupancy forecasting is characterized using
Area Under Curve (AUC) and Soft Intersection-over-Union
(Soft IoU). AUC, the area underneath the receiver operating
characteristic (ROC) curve, is calculated by sampling the true
and false positive rates at positive sample thresholds between
0 and 1. Soft IoU is defined as

SoftIoU =

∑
Npixel

oô∑
Npixel

(o+ ô− oô)
. (18)

C. General Insights

We report architectural and feature ablations of MotionPer-
ceiver in Table I, investigating the effects of latent state dimen-
sion sizes, uncertainty calibration and adding scene context.

(a) +0s (b) +2s (c) +4s

Fig. 5. Multi-modal predictions modeled by MotionPerceiver. In this example,
the vehicle in the center is predicted to either continue straight or turn left
at the intersection. Images are color coded green → true positive (occupancy
prediction > 0.5), blue → false positive, red → false negative, black →
rasterized road graph.

We also explore the effects of “Two Phase” training, discussed
further in Section V-D, which uses different TimePropagate
modules for the past and future phase. For evaluation, mean
Soft IoU and AUC are computed at 1s waypoints after the
present. In general, MotionPerceiver is conservative at predict-
ing occupancy, overestimating the probability of occupancy
when it is unlikely. Hence, applying uncertainty calibration
(17) with β = 2 results in improved Soft IOU and slight
degradation in AUC (Uncertainty Calibration, Table I). We
also note incorporating contextual information has greater
benefit over extended temporal horizons (Fig. 4). Decoding
the occupancy query output with a two layer CNN instead of
an MLP also shows a modest performance improvement (Conv
Decode, Table. I). Hence, a minor trade off between accuracy
and latency is available.

We also qualitatively observe several interesting emergent
behaviours of the model4. AgentObservation performs its
function effectively: removing accumulated uncertainty and
error in predicted occupancy, and adding unobserved agents
to the latent state (Fig. 1). Agents that are unobserved in the
update are preserved in the latent state, but their associated
occupancy fades over time. For agents in motion, this man-
ifests as a directed smear, attributed to learned uncertainty
estimation over the target’s future state. Additionally, Mo-
tionPerceiver produces multi-modal predictions, particularly at
decision boundaries for agents (Fig. 5). MotionPerceiver also
shows evidence of learning social dynamics, predicting traffic

4Samples can be viewed in the supplementary material provided at
https://sites.google.com/monash.edu/motionperceiver

https://sites.google.com/monash.edu/motionperceiver
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(a) +0s (b) +2s (c) +4s

Fig. 6. Typical social dynamics are learnt and incorporated in the prediction.
In this example, the turning vehicle waits for the vehicle with right of way.

behaviour such as waiting before merging (Fig. 6).

D. Comparison with Existing Methods

For this evaluation, we introduce two modifications to
the general baseline model, sampling all past observa-
tions and forecasting at the evaluation period. Hence, two
TimePropagate modules are used, we refer to this archi-
tecture as “Two Phase”. One in the past to propagate 100ms
to the next observation, another to propagate at 1s increments
for forecasting. This simple change improves our benchmark
score (Two Phase, Table I) and can indicate that larger
TimePropagate increments improves forecasting accuracy,
due to less iterations for the same duration. When evaluated
on the WOMD withheld test split, our approach demonstrates
a significant improvement in Soft IoU compared to existing
submissions (Table. II). We note that Soft IoU is a poten-
tially more appropriate statistic for forecasting probabilistic
occupancy than AUC, particularly due to the multi-modal
nature of the task [32]. Models that are poorly calibrated have
significantly worse Soft IoU in Table. II than counterparts with
similar AUC, a metric that rewards overconfident unimodal
predictions.

TABLE II
WAYMO OPEN MOTION WITHHELD TESTING SPLIT COMPARISON

Model Soft IoU AUC # Params
Spatial Temporal Convolution 0.217 0.744 -

LookAround [11] 0.234 0.801 28.5M
HOPE [4] 0.235 0.803 81M

Temporal Query 0.393 0.757 -
Motionnet 0.411 0.694 -

VectorFlow [5] 0.488 0.755 17.1M
STrajNet [8] 0.491 0.778 14.5M

OFMPNet [33] 0.502 0.770 13.3M
YRNet 0.508 0.712 -
Ours 0.523 0.770 10.7M

Ours + Occ. Flow 0.535 0.779 10.7M

E. Multi-task Training

The original WOMD challenge included an “occupancy
flow” task to predict where occupancy has originated from,
predominately to recover vehicle identities. The task of pre-
dicting the past from the current state runs counter to our ar-
chitecture that intends to predict the future in a uni-directional

stream. However, for fair comparison, we jointly train occu-
pancy flow and obtain marginally improved occupancy results
(Ours + Occ. Flow, Table II). These marginal gains could
potentially be attributed to extra regularization induced by
jointly learning a geometrically similar, but distinct task.
This is implemented by adding two extra channels to the
model output, representing x and y flow, and learned with
a simple pixel-wise Huber loss, weighted by 0.1. We note that
a simplified version of occupancy flow ground-truth is used,
change in vehicle heading is not considered, the change in
agent position is simply broadcast over the flow-mask. With
this discrepancy in mind, we obtain a flow end-point-error of
4.900 on the test split, in line with other models.

F. Runtime Latency

There is an absence of reporting on the applicability of
motion forecasting models for real-time edge inference. Since
this is a core benefit of the proposed architecture, we bench-
mark our system on a common platform, the Nvidia Jetson
AGX. To facilitate this, we export MotionPerceiver’s modules
as individual ONNX models to benchmark with trtexec 5.
We report results in Table III with the following parameters:
the number of input tokens for signal and agent updates
are 16 and 128 respectively, OccupancyQuery generates a
200 × 200px image, and the rasterized topology input for
RoadgraphEncoder is 200× 200px.

TABLE III
TENSORRT INFERENCE LATENCY

Module Inference (ms)
StateInitialisation 1.202
OccupancyQuery 9.260
T imePropagate 0.905

AgentObservation 0.379
SignalObservation 0.460
RoadgraphEncoder 0.062

RoadContext 0.395

Based on these results, our inference latency to forecast 8s
into the future is 8 · (TimePropagate + RoadContext) =
9.68ms, assuming that TimePropagate has been trained to
predict 1s increments. In parallel, another TimePropagate
that matches the scene observation period is applied to antic-
ipate the next update.

VI. LIMITATIONS AND FURTHER WORK

MotionPerceiver does not explicitly preserve instance iden-
tity in occupancy predictions. This makes the model robust to
sensor occlusions and missing information. Although identity
is not needed for path planning, future work can explore
recovering this by analysing transformer attention.

Importantly, to be used for path-planning, the model needs
to be conditioned on ego-agent actions or those of other
agents. A method to achieve this could be to inject updates of
potential agent trajectories when forecasting. MotionPerceiver
is lightweight enough that several trajectories can be proposed
in parallel. Future work should focus on integrating this

5https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec

https://github.com/NVIDIA/TensorRT/tree/main/samples/trtexec
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with trajectory optimisation strategies that leverage efficient
inference with MotionPerceiver.

VII. CONCLUSION

This paper introduces MotionPerceiver, a motion forecasting
architecture designed explicitly for fast and online use. The
proposed architecture encodes a scene into a latent state that is
evolved forward in time with a learned time evolution function
and updated with future observations. This learned recursive
state estimation approach is more computationally efficient
than existing sequence-based architectures, and performs on-
par with larger state-of-the-art models in AUC, and outper-
forms all others in Soft IoU. Visualized sequences show that
MotionPerceiver is able to learn and incorporate typical social
dynamics for prediction such as right-of-way, incorporate
observations from multiple sources (eg. traffic lights, road
graph), and learn to make realistic probabilistic occupancy
predictions.
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