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DRAGON: A Dialogue-Based Robot for Assistive
Navigation with Visual Language Grounding

Shuijing Liu, Aamir Hasan, Kaiwen Hong, Runxuan Wang, Peixin Chang, Zachary Mizrachi,
Justin Lin, D. Livingston McPherson, Wendy A. Rogers, and Katherine Driggs-Campbell

Abstract—Persons with visual impairments (PwVI) have dif-
ficulties understanding and navigating spaces around them.
Current wayfinding technologies either focus solely on naviga-
tion or provide limited communication about the environment.
Motivated by recent advances in visual-language grounding and
semantic navigation, we propose DRAGON, a guiding robot
powered by a dialogue system and the ability to associate
the environment with natural language. By understanding the
commands from the user, DRAGON is able to guide the user
to the desired landmarks on the map, describe the environment,
and answer questions from visual observations. Through effective
utilization of dialogue, the robot can ground the user’s free-
form language to the environment, and give the user semantic
information through spoken language. We conduct a user study
with blindfolded participants in an everyday indoor environment.
Our results demonstrate that DRAGON is able to communicate
with the user smoothly, provide a good guiding experience, and
connect users with their surrounding environment in an intuitive
manner. Videos and code are available at https://sites.google.com/
view/dragon-wayfinding/home.

Index Terms—Human-Centered Robotics, Natural Dialog for
HRI, AI-Enabled Robotics.

I. INTRODUCTION

WAYFINDING, defined as helping people orient them-
selves in an environment and guiding them from place

to place, is a longstanding challenge for persons with visual
impairments (PwVI) [1], [2]. To improve the quality of PwVI’s
lives, we present a guiding robot that can connect language to
the surrounding world to verbally interact with PwVI.

To pair wayfinding with communication, a line of previous
works gives users signals such as navigation instructions [3],
[4] and basic environment information [5], [6]. As a step
further, other wayfinding technologies recognize and convey
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Fig. 1: DRAGON identifies the intents of the user through dialogue, grounds
language with the environment, and guides the user to their desired goal.

the semantic meaning of the surrounding environment such as
naming the landmarks [7]–[9]. However, these methods require
special environmental setups, such as multiple RFID tags and
bluetooth beacons. To improve the aforementioned systems
with recent advances in machine learning [10]–[12], we aim
to remove dependence on these types of special infrastructure
by integrating advances in visual-language grounding into
conversational wayfinding.

More broadly, technologies in vision-language naviga-
tion and voice-controlled robots have made significant
progress [10]–[12]. These navigation agents are able to per-
form various tasks according to natural language commands
such as “bring me a cup” with simple onboard sensors.
This is usually achieved by encoding visual landmarks in a
semantic map and associating language with these landmarks
during navigation, which is referred to as visual-language
grounding [11], [13]. However, these general-purpose frame-
works assume that humans can provide step-by-step navigation
instructions. These systems are not built for PwVI, who often
need help perceiving the environment and planning paths.
Thus, building a robot guide that can intuitively exchange
semantic information with users remains an open challenge.

In this paper, we propose DRAGON, a Dialogue-
based Robot for Assistive navigation with visual-language
Grounding. In Fig. 1, since PwVIs have limited vision,
DRAGON uses speech to communicate with the user and
a physical handle for fully autonomous navigation guidance.
The dialogue and navigation can be executed simultaneously.
When the user gives a speech command, Speech Recognition
(SR) and Natural Language Understanding (NLU) modules
first extract the user’s intents and desired destinations. The
user command does not have any templates or constraints
on vocabulary or expressions. Based on the outputs of NLU,
one of the following grounding functionalities is triggered:
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(1) finding users’ desired destinations with a visual-language
model [14] and guiding them to the destinations; (2) describing
nearby objects; and (3) answering questions from users. With
(2) and (3), DRAGON can help users gain awareness of their
surroundings during navigation.

To find users’ intended goals on a map, we propose a
novel landmark recognition module based on CLIP [14]. After
a straightforward mapping process, the landmark recognizer
is able to select the landmark whose image best matches
the user descriptions. Our landmark recognizer is able to
associate flexible and open-vocabulary commands with few
constraints on user expressions. If the description is am-
biguous, our system will disambiguate user intents through
additional dialogue. Then, the corresponding goal location is
passed to the path planners for navigation guidance. Combined
with the robot’s navigation module, the powerful and reliable
landmark recognizer is essential to ensure the success and user
experience of DRAGON.

Our main contributions are as follows: (1) As an interactive
navigation guide for PwVI, DRAGON enables voice-based
dialogue, which carries rich information and has grounding
capabilities; (2) We propose a novel landmark mapping and
recognition method that can associate free-form language
commands with image landmarks. Our method can be easily
plugged into the standard navigation module of mobile robots;
(3) A user study with five blindfolded participants (N=5)
demonstrates that DRAGON is able to understand user intents
through dialogue and guide them to desired destinations in an
intuitive manner. To the best of our knowledge, our work is
the first to show that visual-language grounding via dialogue
benefits robotic assistive navigation.

II. RELATED WORKS

A. Wayfinding robots and technologies

Navigation guidance: To guide PwVI from point A to
point B following a planned path, unactuated devices, such as
smartphones and wearables, rely on haptic or audio feedback
to give instructions such as going straight and turning right [4],
[7], [8], [17]. However, delays and misunderstandings might
lead to inevitable deviations, which take time and effort to
recover from [5], [7]. On the other hand, robots provide a
physical holding point, which offers kinesthetic feedback to
minimize deviations and reduce the mental load of users [15],
[18], [19]. Such physical guidance can be combined with

aforementioned verbal or haptic navigation instructions to
further improve performance at the cost of a more expensive
system [3], [6]. To ensure both efficiency and low cost, we
mount a handle on our robot to give intuitive real-time steering
feedback in navigation.

Semantic communication: A large part of blind navigation
technologies ignores exchanging environmental information
with users [3], [18], [20]. To deal with this issue, CaBot applies
object recognition to describe the user’s neighborhood, yet
the user cannot hold conversations with the robot or choose
their destinations [6]. To enable users to choose a semantic
goal (e.g. a restroom), some works mark points of interest
using bluetooth beacons [7], [8] or RFID tags [9], [15], which
requires heavy instrumentation. As an alternative, extracting
semantic information from ego-centric camera images is much
cheaper and easier. For example, SeeWay uses skybox images
to represent landmarks [17]. Similarly, Landmark AI offers
semantic-related functionalities including describing the envi-
ronment, reading road signs, and recognizing landmarks using
a phone camera [16]. However, these phone applications are
not robots and thus cannot physically guide users or provide a
stable mounting point for cameras. In contrast, Table I shows
that DRAGON brings conversational wayfinding to the next
level: A robot can simultaneously offer physical guidance and
enable users to trigger various functionalities through dialogue.

B. Command following navigation
Tremendous efforts have been made in understanding and

grounding human language instructions for various robotic
tasks [10]–[12]. In command following navigation, a modular
pipeline usually consists of three modules: (1) an NLU system
to map instructions to speaker intent; (2) a grounding module
to associate the intent with physical entities; and (3) a SLAM
and a planner to generate feasible trajectories [13], [21],
[22]. Other works attempt to learn end-to-end policies from
simulated environments or datasets [23]–[26]. However, due
to sim-to-real gaps in perception, language, and planning,
deploying these policies to the real world remains an open
challenge for applications in the low data regime such as
wayfinding [27]. Therefore, we adopt the modular pipeline
to ensure performance in the real world.

C. Semantic landmark recognition
Understanding the semantic meanings of a scene is a vital

step towards interactive navigation [11], [13]. Some works

TABLE I: Benchmark for conversational wayfinding technologies. A ✓ means that the functionality is implemented. A ❍ means partial implementation. A
blank cell means the functionality is absent. (In [15], the users have to enter a number sequence into a keypad to specify their destinations. [16] can only
describe a fixed set of pre-mapped landmarks and can only answer two fixed questions.)

Method User-chosen Speech dialogue Environment VQA Form Environmental

semantic goals Input Output description Instrumentation

GuideBeacon [7] ✓ ✓ ✓ Phone application Bluetooth beacons
NavCog3 [8] ✓ ✓ ✓ ❍ ❍ Phone application Bluetooth beacons
LandmarkAI [16] ✓ ✓ ✓ ✓ ❍ Phone application GPS
SeeWay [17] ✓ ✓ ✓ Phone application WiFi
Robotic Shopping cart [15] ❍ ✓ Robot RFID tags
CaBot [6] ✓ ✓ Robot Remote joystick
Ballbot [3] ✓ ✓ ✓ Robot WiFi + Remote computer
Ours ✓ ✓ ✓ ✓ ✓ Robot WiFi + Remote computer
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Fig. 2: An overview of the system and platform of DRAGON. (a) Submodules, message passing, and user interface. (b) The robot platform.

reconstruct volumetric maps for the environment, where each
grid is associated with a semantic label [11], [22], [28]. Other
works build more abstract scene graphs [29], [30]. However,
implementing these methods on a real robot is expensive, as
they require accurately calibrated depth cameras and high-
performing instance segmentation models.

Another line of work collects images as landmarks to create
topological graphs [31]–[33]. In navigation, the goal location
is retrieved by computing the similarity between a goal image
and all stored landmarks. However, the above works only
consider image goals, which are less natural than language
in human-centered applications. Inspired by Shah et al. [13]
and Huang et al. [11], we use CLIP [14] to associate image
landmarks with users’ language commands. Compared with
previous works that use closed vocabulary object detectors,
which are limited to a predefined set of semantic classes
[28]–[30], our method can handle more flexible and open-
vocabulary commands. We use CLIP to select landmarks
and keep traditional cost maps for planning, enabling easy
integration of our method into the navigation stack of mobile
robots.

III. SYSTEM OVERVIEW

In this section, we describe the setup and configuration of
our robot guide with special considerations for PwVI users.
Fig. 2(a) shows an overview of our proposed system with
three main components: (1) The TurtleBot platform (yellow);
(2) Audio communication interface (purple); (3) Dialogue and
grounding modules (red). The modules communicate with
each other through ROS. We expand part (1) and (2) in this
section and part (3) in Sec. IV.

A. Robot platform

Overview: We use the Turtlebot2i as our robot platform.
As shown in Fig. 2(b), the robot is fitted with the following
sensors and equipment: (1) An RP-Lidar A3 laser range finder
is mounted on the top of the robot structure for SLAM; (2)
An Intel RealSense D435i camera is mounted on the top of
a monopod facing forward for scene description and question
answering; (3) A wireless headset is used to communicate with
the user. The headset is lightweight and maximally protects
the users’ privacy, while the absence of wires avoids tripping
hazards; (4) A T-shaped handle is attached to the top rear side
of the robot as a holding point for the user’s arm. The handle
allows users to choose their preferred holding configurations

such as one hand or two hands. The robot is connected to a
desktop computer which provides more computation resources
through WiFi.

Planning and Navigation: The robot operations are man-
aged by the ROS move_base navigation stack, which is a
standard package to autonomously navigate a mobile robot to a
given goal pose. Before navigation, we create a 2D occupancy
map of the environment using laser-based SLAM and mark the
semantic landmarks at the same time (see Fig. 3 and Sec. IV-B
for details). At the beginning of each trial, the goal pose is
obtained from the dialogue with the user (further specified in
Sec. IV). During navigation, adaptive Monte Carlo localization
is used to localize the robot on the map. We use the dynamic
window approach (DWA) [34] and A∗ as local and global
planners, respectively. The minimum translational velocity is
restricted to be non-negative to prevent the robot from moving
backward and colliding with the user. The maximum velocity
of the robot can be adjusted by the user (see Sec. IV-D).

B. Audio Communication Interface

Speech is a natural choice for human-robot communication,
particularly in cases where the human has limited vision [2],
[35], [36]. To this end, as shown in purple in Fig. 2(a), we
develop an audio communication interface that consists of:
(1) Input: When audio is captured by the audio_capture
package, the OpenAI Whisper speech recognition model [37]
transcribes speech commands to text, which are passed to the
NLU module. The SR module continuously transcribes the au-
dio from the microphone and publishes the text transcriptions
to a ROS topic in real time; (2) Output: We use the Google
text-to-speech (TTS) service to convert the text output from
the visual-language modules and navigation module to speech,
which is then narrated to the user via the headset. The TTS
is another ROS topic that converts and plays the synthesized
sound constantly.

IV. DIALOGUE AND GROUNDING

The goal of DRAGON is to connect the user with the envi-
ronment through conversation. In this section, we describe how
our dialogue system understands user language (Sec. IV-A),
maps and localizes semantic landmarks (Sec. IV-B), provides
information about the environment (Sec. IV-C), and adjusts the
navigation preference of the user (Sec. IV-D). Our grounding
system is visualized in the red parts of Fig. 2(a). The inputs
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to the subsystem are the transcribed texts from SR and the
outputs are synthetic speech from TTS.

A. Natural language understanding (NLU)

The NLU takes a transcribed sentence as input and outputs
user intents and entities of interest. The intent recognizer is
a multi-label classifier with all classes shown in Table II.
The intents are designed based on the needs of our tasks.
The entities are locations, objects, and object attributes which
include the material and functionalities of an object. We use
Dual Intent and Entity Transformer for intent classification and
entity recognition [38]. We train the model using a custom
dataset with 1092 sentences collected by ourselves. For each
intent, we collect various expressions including misspelled and
phonetically similar phrases, which makes our NLU robust
to the nuances of human language and the errors caused by
the SR. For example, “a think” and “a sink” both refer to
the kitchen sink. We also collected expressions for multi-
intents and unknown intents so that the NLU can fulfill a
request containing multiple intents and ignore noise input. For
instance, “Hello robot, can you take me to a sofa?” will both
activate the robot and set an object goal. Once the intent and
entities are extracted, the corresponding downstream module
is activated. The NLU may pass additional input arguments
to modules such as extracted entities or the whole sentence.
Different downsteam models are triggers based on extracted
intents and entities.

During navigation, the landmark recognition is triggered
if the user intent is Object goal or Location goal and the
NLU extracts a goal object from the input sentence. The
extracted information of the goal is kept in memory throughout
the conversation. If the user mentions additional information
about the landmark, we use simple prompt engineering to
make the description more specific. For example, locations
and attributes of objects, such as “a chair in the kitchen,”
can be added to the memorized description. In addition, the
robot uses clarification dialogue to disambiguate the desired
landmark if the input description does not contain any object.
If the user only provided the location or attributes without
mentioning the object name (e.g. “Take me to the kitchen”),
our system provides hints to encourage the user to provide
more specific descriptions (e.g. “What object are you looking
for in the kitchen?”). If there are multiple similar objects
in different landmarks, our system disambiguates the user’s
preferred landmark (e.g. “What kind of chair are you looking
for? A dining chair, an office chair, or a sofa?”). After choosing
a unique landmark, our system confirms the memorized goal
description with the user (e.g. “Do you wish to go to a dining
chair?”). No further action is taken until the user affirms the
goal. The memorized goal information is cleared after the
confirmation to prepare for the next goal.

With the disambiguation and confirmation dialogue, the
NLU is able to precisely capture the user’s desired destination
with minimal constraints on the user’s phrasing, which is
crucial for the whole navigation experience. Using better
language models for the NLU is left for future work.

TABLE II: All user intents and their descriptions.

Intents Descriptions

Greet Wake up the robot and begin an interaction.
Object goal Go to a specific object landmark.

May contain entities including objects and attributes.
Location goal Go to a rough goal location (kitchen, lounge, etc)

without mentioning a specific object.
May contain location entities.

Affirm Confirm the goal.
Deny Deny the goal.
Describe Ask for a description of the surrounding environment.
Ask Ask a question about the surrounding environment.
Pause Pause the current navigation.
Resume Resume the current navigation.
Accelerate Increment velocities, up to a limit.
Decelerate Decrement velocities, down to a limit.
Unknown The text does not belong to any intents above (i.e.

be noise, chitchat, etc) and is ignored by the robot.

B. Landmark mapping and recognition

To guide the user to their object goals, we first record the
images and locations of landmarks during SLAM. Then, we
use a fine-tuned CLIP model to match the user’s description
with goal images, whose corresponding location and orienta-
tion are sent to the navigation stack for navigation guidance.
The CLIP model version is ViT-B/32 [14].

The landmark mapping process is performed simultaneously
with SLAM. During SLAM, when the robot is at a landmark
that might be a point of interest, we simply save the current
robot pose in the map frame and an RGB image of the
landmark to the disk with a single key press. No labels or text
descriptions are needed at this stage. The resulting landmark
map is shown in Fig. 3.

During navigation, this module is activated when the intent
is Object goal or Location goal. After the goal is confirmed
by the NLU, the CLIP model selects the landmark whose
image has the highest similarity score with the descriptions
of landmarks. To obtain the image-text similarity score, a text
encoder and an image encoder first convert the input text and
all images to vector embeddings. Then, the text and image
similarity score is computed by the cosine similarity between
the pairwise text and image embeddings. The image with the
highest similarity score is selected as the goal. Finally, the
corresponding location of the chosen landmark on the map is
sent to an action client, which sets the goal for the robot.

The zero-shot performance of pre-trained CLIP models is
not satisfactory in our environment due to distribution shifts.
As shown in Fig. 3, the objects in the images are frequently
cropped due to the low mounting point of our camera and
the close distance between the camera and the objects. In
addition, the descriptions of landmarks from a PwVI might
be vaguer than those in public datasets (e.g. “a chair” v.s. “a
blue chair in front of a white wall”). To this end, we fine-tune
the CLIP model with a custom dataset containing 544 image
and text description pairs with a 8 × 10−6 learning rate for
35 epochs. The images are taken by the robot camera in our
environment and the text is provided by the authors. By using
an open-vocabulary model to recognize landmarks, DRAGON
can handle free-form language and is not limited to a fixed set
of object classes. Thus, the user expressions are less restricted,
making the grounding module easier for non-experts to use.
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C. Environment understanding modules

To help the user gain awareness of their surroundings, we
use an object detector [39] to describe the objects (activated if
the intent is Describe) and a VQA model [40] to answer the
user’s questions (activated if the intent is Ask). Both models
take the current camera image as input.

The output of the object detector consists of a list of
detected instances, their object classes, confidence scores, and
bounding boxes. To avoid narrating a long list and to keep
the description concise, we post-process the output as follows.
We first apply non-maximum suppression and filter out the
detected instances with low confidence scores. Then, for the
remaining instances, we keep the top three classes with the
largest average bounding boxes, and list the object class names
together with the numbers of objects (e.g. “2 chairs, 1 person,
and 1 table”).

The VQA model takes the current camera image and the
user’s question from the SR and outputs a short answer
to the question. Since healthy people and PwVI would ask
different questions to the same images [41], we collect a
dataset of 10252 (image, question, answer) triplets to fine-tune
the VQA model for 20 epochs. Again, images are taken by
the robot camera in our environment and the text is provided
by the authors. To handle free-form user expressions, the
dataset contains cases where multiple questions have the same
meaning but different phrasing (e.g. “Is any person in front of
me?” and “Anyone here?”).

Finally, the outputs of the object detector and VQA are
narrated to the user in real time. Since both models can only
take an RGB image, our system cannot provide depth-based
information or detect anything out of the camera view.

D. Navigation preference customization

To accommodate the different walking paces of users and to
avoid tiring the user during navigation, the robot can change its
speed (activated if the intent is Accelerate or Decelerate), take
a pause (Pause), and resume (Resume). To pause the robot,
our system stores and cancels the current goal from the action
client in the navigation stack. To resume, the stored goal is sent
to the action client again. To update the speed, we change the
maximum translational and rotational velocities of the DWA
local planner in real-time.

V. EXPERIMENTS

A. Baseline

We compare the CLIP-based landmark recognizer with a
closed-vocabulary object detector as the baseline [39] 1. The
vocabulary size, or the number of classes, of the detector is
more than 1200 and it is fine-tuned with the same amount
of data as CLIP. In the baseline, the landmark images are
passed into the object detector, which outputs the class names
of detected objects. During navigation, the baseline chooses
the landmark with the highest number of objects mentioned
by the user. Since the vocabulary of object detectors is fixed,

1Open-vocabulary object detectors exist [39]. We choose a closed-
vocabulary detector to represent a closed-vocabulary grounding model.

Fig. 3: The map of our environment with semantic landmarks. The images
are landmarks with locations marked by red dots. The orange lines are the
three routes in the user study. The red squares are the starting locations of
routes.

TABLE III: Example expressions and their corresponding landmarks from
CLIP v.s. the detector. The landmark labels are from Fig. 3. Underlined
expressions are collected from the user study.

Landmark CLIP Detector

A
sofa, couch, coach, sofa,
fabric chair, relaxing chair thermostat
thermostat, climate control

B

sink, think,sync, faucet faucet
soap, hand wash, water pipe bottle
paper towel dispenser, bowls dispenser
kitchen countertop, drying rack bowl

C door, exit, entrance, gate poster
glass door, automatic door

the baseline is unable to incorporate an object’s attributes or
locations obtained from disambiguation. All other modules are
the same for our system and the baseline.

B. User Study

Environment: All experiments were conducted in an ev-
eryday indoor environment in a university building. Three
routes were created with furniture obstacles. Fig. 3 provides
a layout of the environment, all landmarks, and three routes
highlighted with orange curves. The routes were designed to
have varying levels of difficulties for the system to correctly
interpret the destination. Specifically, landmark A of Route 1
contains simple objects, landmark B of Route 2 contains more
complicated objects, and landmark C of Route 3 contains a
transparent door that is hard for object recognition.

Participants: The user study was conducted with N=5
participants (mean age=26; 3 males; 2 females; all participants
were university students). All participants have full (corrected)
vision and are asked to wear a blindfold to simulate a visual
impairment. While our true target population are PwVI, the
purpose of this pilot study is to validate the capabilities of
DRAGON. A user study with PwVI is left for future work.

Procedure: Participants were first familiarized with the
goals of the study and requested to fill a demographic and
robot technology survey. Then, participants were provided
with a test run to get familiar with the system and its intricate
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navigation feedback mechanism. To begin the trial, the users
were asked to command the robot to take them to a prede-
termined goal destination. Participants were not constrained
in either the vocabulary or the sentence structure of their
speech commands. The users were also informed that they
could interact with the robot (e.g. ask for a description of their
surroundings) at any point of the navigation. After each route,
we used a short questionnaire to measure the participant’s
perception of the system. A strictly structured post-survey
interview was conducted after participants finished all three
routes to collect their feedback with the system. The same
procedure was performed for CLIP and the detector, resulting
in a total of 15 trials per method (3 routes and 5 users). The or-
der of which method was tested first was randomized for each
participant to minimize the bias introduced due to the order
of testing. All materials included in the user study, including
a full walkthrough of the whole study for a participant and
all questionnaires can be found here: https://drive.google.com/
file/d/15KNR6C82mUrKSPMFRCnAJZ1C2NGX7dXJ/view.

C. Metrics

Objective Metrics: We measure the accuracy of all inter-
actions during the user study, including 312 NLU, 30 land-
mark recognition (LR) and navigation trials, 15 environment
description (EnvDes), 74 VQA, and 15 navigation preference
adjustment (NavAdj). The NLU is correct when the extracted
intent and entities (if any) are both correct. We also measure
the accuracy of the NLU by taking the correctness of SR into
account to analyze the effect of wrong SR. The effect of wrong
NLU outputs is ignored when evaluating its downstream
modules. An LR is considered correct if the robot chooses the
correct landmark. A navigation trial is successful if the robot
guides the user to the correct landmark without any delays
or collisions along the route. An EnvDes is considered fully
correct if all named objects exist in the camera image and
the number of all objects is correct. It is considered partially
correct if all named objects exist but the number of some
objects is wrong. The correctness of answers from VQA is
based on the camera images, not on the information out of
the camera view. A NavAdj is successful if the change in
robot speed is consistent with the user commands.

Subjective metrics: For both methods, we compare the
scores for categories from the short questionnaire in Table VI.
The difference in scores for each participant was aggregated
and analyzed to discount individual biases. We evaluate user
preferences for the other modules through a simple Likert scale
analysis on the responses from the post-survey interview. Ad-
ditionally, participants’ feedback is summarized for qualitative
analysis.

VI. RESULTS

In this section, we discuss the results of our user study.
Example navigation trials, as well as demonstrations of each
module during the user study, are in this video and Fig. 4.

A. Quantitative Evaluation

Landmark recognition and navigation: CLIP and the
baseline only differ in LR and its resulting navigation. As
seen in Table IV, the success rate of navigation is 100% if
LR succeeds, because ROS navigation stack can navigate the
robot to any desired goal pose robustly in our environment.
This dependency indicates that the performance of LR is the
key factor for navigation in the DRAGON system.

For LR, as shown in Table IV, our CLIP model with
disambiguation outperforms the detector baseline by achieving
100% success rate in LR and navigation with fewer rounds of
dialogue on average. We attribute this result to the fact that
CLIP is an open vocabulary model that can take free-form
query text, which is essential for our task because the user
may use different expressions to refer to the same landmark.
On the contrary, a closed vocabulary object detector can only
handle a fixed set of object classes with limited expressions.
For example, in Table III, although both models can handle
different objects that belong to the same landmark, CLIP
can associate synonyms, such as “sofa” and “couch”, and
wrong transcriptions, such as “coach”, to the correct landmark.
In contrast, the closed-vocabulary detector can only handle
strictly fixed expressions. The detector misidentifies some
objects such as the transparent door in Landmark C after
fine-tuning. Since our target users are usually non-experts, the
baseline sometimes needs the user to rephrase multiple times
to recognize the goal, which causes the user to run out of
patience, and results in failure or more rounds of dialogue.

Besides CLIP, the disambiguation dialogue also contributes
to the performance. With disambiguation, additional informa-
tion such as the material and functionality of objects can
be merged into the query text, such as “fabric chair” and
“relaxing chair” as shown in Table III. These rich descriptions
are helpful in distinguishing landmarks that have the same
objects with different attributes, such as the different types of
chairs in Landmark A, D, and E in Fig. 3 with fewer rounds
of user rephrasing.

NLU: In Table V, the overall accuracy of NLU is over
15% higher than SR, as the NLU is trained with incorrectly
transcribed text and thus can work even when SR is incorrect.
However, we do notice that NLU performs better with correct
SR. The common failure cases of NLU occur when (1) The SR
mistakenly breaks a sentence into two halves (e.g. “Is there
anything?” and “To my right.” are treated as two sentences);

TABLE IV: Success rates (%) of LR and navigation (including
overall success rate, and success rate if LR is correct), and the
average number of dialogue rounds for a successful LR.

Method LR Navigation

Overall # rounds Overall Correct LR

Ours 100 2.4 100 100
Baseline 46.67 3.71 46.67 100

TABLE V: Accuracies (%) of the SR, NLU (including overall accuracy, accuracy if SR is
correct and if SR is wrong), EnvDes with fully correct and partially correct number of objects,
VQA, and navigation adjustment modules.

SR NLU EnvDes VQA NavAdj
Overall Correct SR Wrong SR Full Partial

70.19 85.26 93.61 65.59 45.45 75.76 82.43 100

https://drive.google.com/file/d/15KNR6C82mUrKSPMFRCnAJZ1C2NGX7dXJ/view
https://drive.google.com/file/d/15KNR6C82mUrKSPMFRCnAJZ1C2NGX7dXJ/view
https://www.youtube.com/watch?v=1fojc44GTtI
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Fig. 4: An example navigation trial with human-robot dialogue in the user study. In the dialogue boxes, “H” denotes the human and “R” denotes the
robot. The camera view is shown in the lower right corner.

and (2) The NLU does not correctly extract intents from noisy
transcriptions and chitchat, which can happen during the user
study. Thus, we believe that a better SR engine would vastly
benefit the performance of the whole system. However, since
DRAGON will not begin navigation until the user confirms
the goal in the dialogue, the wrong SR and NLU have little
effect on navigation.

Other Modules: The system’s environment descriptions are
sometimes inaccurate due to errors in the object detector such
as: (1) detecting incorrect number of objects (e.g. 3 wall sock-
ets, when there was only 1 present); and (2) incorrect object
classifications of rare or uncommon objects (e.g. a building
information tablet was classified as a poster). Although we use
non-maximum suppression and confidence score threshold to
reduce the errors, they are hard to entirely eliminate due to
the data distribution shift and the blurry images caused by the
robot motion. Nevertheless, in Table V, the model is able to
output a list of objects with correct class names in 75.76% of
the cases, which might be more important to the user than a
correct number of objects.

The VQA module accurately answers the user’s questions in
82.43% of the cases. The model fails in cases where the user
asks questions that the robot cannot answer based on a single
RGB image. For example, without precise depth information
the VQA model only answers “far” or “close” if the question
is “How far is the person from me?”. Without a wider field
of view, the model outputs objects on the front side if the
question is “What is on my right?”.

B. Qualitative Evaluation

In Table VI, participants showed an increasing preference
for DRAGON with CLIP over the detector in all user expe-
rience categories across all routes. Specifically, participants
reported a 32% improvement with a mean score difference
of 1.60 ± 0.89 in the overall experience and a mean score
difference of 1.40 ± 0.89 in the communication experience.
The difference increases as the goal landmark contains more
complicated objects in Route 2, and objects that are difficult
to detect in Route 3, where the failures in LR significantly
lower the user score for the detector based system. Particularly,
participants noted that DRAGON with CLIP understood their
intent, asked good follow-up questions, and correctly guided
them to their destination. In contrast, the closed-vocabulary
detector failed at these aspects and occasionally was unable to
recognize destinations even though they existed. Participants
also noted that the failures in intent understanding led to a
frustrating communication experience with the detector.

TABLE VI: Mean user experience scores on a scale of 1 to 10.

Use experience category Route 1 Route 2 Route 3

CLIP Detector CLIP Detector CLIP Detector

Ease of following 8.8 8.6 8.8 5.6 9.2 1.0
Navigational Experience 8.4 7.4 7.6 4.8 8.8 1.0
Intent Understanding 7.6 8 7.6 4.6 8.4 3.4

One user in particular mentioned that the CLIP based model
“... was able to actually understand me, so it accurately took
me to the location and correctly answer [sic] my questions.”
while the detector based model “... would confirm the location
I wanted to go to but could not find [sic; participant meant
understand] the right location.” However, users also mentioned
potential improvements for DRAGON including more detailed
environment descriptions, a quicker response time, and warn-
ings of potential dangers such as “We’re going through a door.”

For the user experience categories that are the same for
both LR methods, such as the ‘intuitiveness of communication
interface’ and the ability of the system to aid in ‘gaining
awareness of the environment,’ participants reported average
scores of 7.07 ± 2.17 and 6.07 ± 3.21, respectively. As evi-
denced by these scores, the users’ opinions regarding these two
categories were positive, due to the inclusion of the dialogue
and grounding modules. However, participants highlighted
minor inaccuracies in the environment descriptions and the
slow pace of communication due to processing times and
network delays as potential issues.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we present DRAGON, a first-of-its-kind
guide robot that fulfills user intents and familiarizes the user
with their surroundings through interactive dialogue. We use
CLIP to retrieve landmark destinations from commands and
provide visual information through language. The user study
shows promising communication, grounding, and navigation
performance of DRAGON. Our work suggests that visual-
language grounding and dialogue can greatly improve human-
robot interaction.

To extend DRAGON and address its limitations, we point
out the following directions for future work. First, the current
dialogue system is rule-based with fixed behaviors for each in-
tent. Replacing hard-coded rules with adaptive learning-based
policies, such as large language models, should generalize
to more complex user behaviors and more subtasks. Sec-
ond, the environment understanding modules provide limited
information. Future informative descriptions should include
object relationships in images, incorporate information from
the map and other sensors, and inform users about the planned
path and potential dangers. Finally, the physical interface of
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the platform should be redesigned to improve ergonomics.
DRAGON demonstrates the feasibility of vision and language
models in assistive navigation that future research in dialogue
management, computer vision, and robotics can explore fur-
ther.
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