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Real-Time Spatiotemporal Assistance

for Micromanipulation Using Imitation Learning
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Abstract—There has been an increasing demand for micro-
scopic work using optical microscopes and micromanipulators for
applications in various fields. However, microinjection requires
skilled operators, and the considerable shortage of experts
has become a recent challenge. We overcome this challenge
by proposing an assistance system based on force and visual
presentation using artificial intelligence technology to simplify
cell rotation manipulation, which is difficult in microinjection.
The proposed system employs imitation learning for an expert
with a Gaussian mixture model (GMM) to obtain the ideal
pipette trajectory and long short-term memory (LSTM) to infer
the pipette operation at the next time step. The assistance
position is calculated from the spatial component with GMM
and the time-series component with LSTM. We conducted a
participant experiment using mature porcine oocytes as targets
for manipulation to evaluate the effectiveness of the proposed
system. The results indicated that, compared to the conventional
system, the proposed system reduced the pipette operation time
for single-oocyte rotation and the cell damage caused by the
pipette-oocyte collision by approximately 27.0 % and 82.0 %,
respectively. Therefore, the proposed system is expected to enable
beginners to reproduce high-level skills and address the shortage
of experts.

Index Terms—AI-Based Methods, Biological Cell Manipula-
tion, Human-Centered Robotics, Imitation Learning

I. INTRODUCTION

M ICROSCOPIC studies using optical microscopes and

micromanipulators have been widely conducted in var-

ious fields [1]. Microinjection, which represents microscopic

work, is a technique used to deliver small molecules such as

deoxyribonucleic acid, ribonucleic acid, proteins, medicines,
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Fig. 1. Scene of ICSI: After rotating the oocyte so that the first polar body
is at the 6 or 12 o’clock position to avoid damaging the spindle, the injection
pipette is punctured from the 3 o’clock position to inject the sperm.

or other substances into the cytoplasm or nucleus of target

cells. Transgenics typify this technique in the molecular bi-

ology field [2]. Microinjection involves the using an optical

microscope and fine glass pipettes to inject molecules with

high precision.

One application of microinjection is intracytoplasmic sperm

injection (ICSI), which is a laboratory technique to inject

sperm into oocytes artificially. ICSI is an assisted reproductive

technology (ART) that has become the preferred technique

for treating male factor infertility, replacing other ARTs such

as in vitro fertilization. It has become routine for many in

vitro procedures in a relatively short period, and the number

of ICSI cases has increased globally [3]. Even in cases of

infertility in older women or in cases wherein the sperm is

not in good condition, the fertilization rate is considered to be

comparatively high when using ICSI [4].

The details of the oocyte and the ICSI scene are illustrated

in Fig. 1. To avoid damaging the invisible cell spindle,

which plays an important role in chromosome sorting after

fertilization, the oocyte is rotated around the x- and z-axis until

the first visible polar body is at the 6 or 12 o’clock position.

Then, puncture the polar body with an injection pipette from

the 3 o’clock position while holding the oocyte with a holding

pipette from the 9 o’clock position.

One challenge in this process is rotating the oocyte in

three dimensions by manipulating the injection pipette while

viewing a microscopic image to observe the out-of-focus

condition [5]. In particular, rotating the oocyte around the

x-axis is difficult because the operator must manipulate the

pipette at a different z-coordinate from that of the oocyte to

touch near the maximum z-coordinate point of the oocyte.

Further, extreme care, such as gently touching the oocyte
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Fig. 2. Configuration of the proposed assistance system

with the belly of the pipette and not its tip for rotation,

must be employed to avoid oocyte damage, which can affect

the blastocyst development rate after fertilization [5]. Gaining

the expertise to perform micromanipulation can be time-

consuming for a novice. Furthermore, there is a shortage of

qualified embryologists due to a limited number of experts

and instructors in the field, as well as their short duration of

continuous engagement. Meeting the increasing demand for

ICSI has become challenging due to the shortage of qualified

embryologists.

This study presents a novel spatiotemporal assistance sys-

tem for oocyte rotation manipulations with force and visual

presentation using imitation learning (IL) on an expert. The

proposed system can assist beginners in performing similar

manipulations as an expert regarding manipulation trajectories,

cell rotation time, and cell damage without understanding

the positional relationship between the cell and pipettes from

the microscopic image. The effectiveness of the proposed

system is verified through a participant experiment in terms of

trajectories, rotation time, cell damage, rotation success rate,

and mental workload.

II. RELATED WORKS

A. Automated Methods for Rotating Oocytes

Various nonmechanical contact-based cell-rotation methods

have been studied for cell manipulation. For example, some

studies employed dielectrophoresis and dielectric rotation in

nonuniform electric fields [6]–[8] or microfluidic chips to

create circulating liquid flows and rotate cells [9], [10].

Further, optical tweezers have been employed for precise

pipette manipulation for cell rotation [11]. These methods

have limitations such as high running costs, limited cell sizes,

and inflexible cell shapes. In addition, there is no follow-up

after sperm injection, which is a significant departure from

conventional methods used by experts. Therefore, the effects

on fertilized oocytes or newborns remain completely unknown.

Various mechanical contact-based methods have been de-

veloped to automate cell rotation. The methods utilize either

the frictional force generated between a substrate and an

injection pipette [12] or between a substrate and a cell [13].

These methods can cause more damage to the cells than

the conventional method, which only gently touches the cell

Fig. 3. Overview of the proposed assistance system

with the pipette belly. However, no follow-up observations

have been performed after sperm injection when using these

methods. Therefore, some questions remain regarding their

applicability to ICSI, which requires extreme care in manipu-

lation. One approach involves modeling the pipette and the

cell to determine the optimal contact position between the

pipette tip and cell, after which the pipette is manipulated

automatically to rotate the cell based on detection and tracking

[14]. Although designed to minimize damage to the cell, it can

cause more damage than that performed by experts. Thus, this

method is not suitable for ART.

B. Operation Assistance Methods for Rotating Oocytes

Automation methods mentioned above are preferred in cases

where the birth of human life is not relevant, such as nuclear

transplantation. However, human operators prefer ICSI. For

patients with infertility, there is a significant hurdle in allowing

an automation system to perform operations related to their

child. In the field of ART, using another operational assis-

tance system, instead of an automation system is considered

appropriate. However, such systems have not been developed

yet.

We aim to simplify the cell-rotation operation by assisting

the operator based on expert IL. This approach rotates all cells

(100 % rotation success rate per cell) with human cooperation.

It avoids damage and cost problems as the assistance systems

do not require significant changes to the conventional system

and the operating environment.

III. PROPOSED ASSISTANCE SYSTEM

Fig. 2 presents the configuration of our proposed operation

assistance system and Fig. 3 shows the overview. The proposed

system is based on the systems we developed for visual

assistance [15], [16]; the proposed system comprises a haptic

device connected to an injection pipette for intuitive operation

(Phantom Premium 1.5 High Force, 3D Systems). This system

enables the operator to manipulate the pipette through the

haptic device.

As shown in Fig. 3, the conventional device for ICSI

manipulation is a joystick, which enables two-dimensional

operation (vertical and horizontal) and a one-dimensional op-

eration (by rotating the upper part of the stick axis). However,

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2024.3366011

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



MORI et al.: REAL-TIME SPATIOTEMPORAL ASSISTANCE FOR MICROMANIPULATION 3

Fig. 4. Concept of the proposed spatiotemporal force and visual assistance system for micromanipuation using GMM and LSTM

the conventional device is not intuitive. Therefore, our system

replaces the conventional device with a haptic device that can

manipulate the three-dimensional space intuitively and provide

force, thus simplifying the operation of the injection pipette.

The proposed system acquires the position coordinates of

the cell and injection pipette from the camera image and

motor, respectively. Subsequently, it calculates the appropriate

assistance position based on artificial intelligence (AI) models,

applies an appropriate force via a haptic device, and provides

visual assistance on the image that the operators manipulate

seeing on display. The operator manipulates the haptic device

based on the provided assistance, and this manipulation of

the haptic device is reflected in the actual injection pipette

manipulation.

For assistance in manipulations by interacting with the

operator, we propose a new system that provides spatiotem-

poral assistance to an operator for cell rotation around x-

axis manipulation via the IL of an expert using two AI

models: a Gaussian mixture model (GMM) and a long short-

term memory (LSTM). Fig. 4 shows the concept of our

proposed IL-based assistance system for micromanipulation.

The GMM provides the spatial component of assistance and

the LSTM provides the time-series component; a combination

of the two provides spatiotemporal assistance. Elements such

as a safety net that suppresses operations outside the ideal

trajectory distribution can be included by defining the ideal

trajectory using the GMM. Further, unlike end-to-end models,

such as those learned only with an LSTM model with input

and output position coordinates, the spatial and time-series

components are assigned to the GMM and LSTM, respectively.

This setup enables using the LSTM input and output as the

operation quantity, allowing us to construct an LSTM model

without any unlearned (out-of-distribution, OOD) regions in

the position. The assistance can be stopped when the operation

is interrupted because the output is close to zero, which means

no manipulation is possible when the input pipette operation

quantity is zero.

IV. METHODOLOGY

A. Data Collection for Expert Cell Rotation Manipulation

We collected data on the manipulation for porcine oocyte

rotation about x-axis by an experienced operator. Fig. 5 shows

the model of the cell and pipettes. The specific data collected

include the time series of the cell top coordinates at time t:
P
top
c (t), where the cell’s z-coordinate in the camera coordinate

system is at a maximum, assuming that the cell was a sphere,

and the coordinates of the injection pipette tip at time t: Pi(t).
When training each AI model, we use the relative coordinates

from the cell top coordinates of the maximum z coordinates of

the cell at time t = 0 at each time t: P
top
c (t)−P

top
c (0), and the

relative injection pipette’s position at time t: Pi(t) − P
top
c (0)

to avoid depending on the absolute position of the oocyte

in the captured image and the oocyte radius. Each value is

obtained every 40 ms. For GMM, training was performed

on data with a data length of 2000 (80.0 sec) based on the

Expectation-Maximization algorithm. For LSTM, the training

was performed on the data with a length of 1470 (58.8 sec),

and the validation was performed on separate data with a

length of 630 (25.2 sec).

B. Definition of Ideal Trajectory Positions by GMM

GMM is used to obtain the expert’s ideal trajectory by

approximating the probability density function of the input

data with a sum of 10 Gaussian distributions. The number

of Gaussian distributions was determined experimentally to

distribute their means over the input data evenly. We construct

the GMM model using the scikit-learn framework. The input

data includes the coordinate time-series data of the injection

pipette: Pi(t)−P
top
c (0). The ideal trajectory corresponding to

an arbitrary cell position and various radii of the cells can

be obtained using the relative coordinates as input data to be

trained by GMM. The maximum points (mean coordinates of

each Gaussian distribution) in the learned probability density

function were identified as points through which the pipette
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Fig. 5. Model of the cell and pipettes

Fig. 6. Input data for GMM and the mean positions of each Gaussian
distribution

operated by the expert frequently passed. Therefore, these

points can be defined as the three-dimensional ideal trajectory

for the x-axis cell rotation operation, including the slight cell

movement because of the contact between the cell and pipette,

and the vicinity of these points within a certain distance (d2)

are defined as ideal trajectory point distributions. Fig. 6 shows

the input data to train the GMM and the mean positions of each

Gaussian distribution, with each axis of the graph being the

respective standardized value of the pipette position coordinate

Pi(t)−P
top
c (0). The points distributed along the input data are

successfully obtained, indicating they are appropriate for the

ideal trajectory. During assistance, the set of ideal trajectory

points of the injection pipette at time t: S
ideal
i (t) is calculated

by (1), where P
mean
k is the coordinates of the mean positions

of each Gaussian distribution (k = 1, 2, ..., 10), P
top
c (0) is the

coordinates of top of the cell at the start of assistance, and

∆Ph(t)(= Ph(t)− Ph(0)) is the displacement of the holding

pipette from the initial position of the assistance.

S
ideal
i (t) = {P

mean
k + P

top
c (0) + ∆Ph(t) | k = 1, 2, ..., 10}.

(1)

C. Inference of an Expert’s Manipulations by LSTM

LSTM, which is a recurrent neural network, was used to

learn and imitate the pipette manipulations of an expert in

a time series using the PyTorch framework, which includes

the positional coordinate data of the cell and injection pipette

when the expert performed the x-axis rotation manipulations.

The LSTM model uses a six-dimensional input consisting of

three-dimensional cell position P
top
c (t)−P

top
c (0) and the three-

dimensional pipette operating quantities ∆Pi(t−1)(= Pi(t)−
Pi(t− 1)), as illustrated in Fig. 5. The output dimensions of

the model are set to three: ∆Pi(t). The information related to

the injection pipette in the LSTM input/output is not position

coordinates but operational quantities, which allows inference

Fig. 7. Time flow of expert manipulations in x-axis cell rotation, which is
used for the training data of LSTM

Fig. 8. Pipette manipulation according to the real-time inference by LSTM

without depending on the absolute position coordinates of the

pipette and cell and the interruption of manipulations with

assistance. Therefore, the inference by LSTM is robust against

the absolute position coordinates of the pipettes, cell, and

radius in the camera-acquired image.

During LSTM training, the mean absolute error was used

as the loss function, and the hyperparameters were determined

by Bayesian optimization using the Optuna framework with

the number of layers being 2 and the number of hidden units

being 32. Fig. 7 shows a real-world demonstration of operating

the injection pipette according to the inference obtained using

the LSTM model. Fig. 8 shows a demonstration of pipette

manipulation after placing the pipette at the appropriate three-

dimensional absolute coordinates for rotating the cell. The

pipette is then manipulated to follow the inferred position by

the LSTM. A comparison of the trajectories shown in Figs.

7 and 8 indicate that the trained LSTM model sufficiently

imitated the pipette operation of the expert.

D. Assistance Position Calculation

This section presents a method to achieve spatiotemporal

operation assistance by seamlessly combining guidance with

the ideal trajectory defined by GMM and operation inference

by LSTM. Fig. 4 shows the detail of the assistance position

PA(t) calculation. The vector (guidance vector G(t)) is used

for the spatial component and calculated by (2), where d(t) is

the vector from the injection pipette tip to the closest ideal

trajectory position and ∆Pi(t − 1) is the previous pipette

operation vector. d(t) guides the injection pipette towards the

ideal trajectory, whereas ∆Pi(t− 1) ensures smooth guidance

during operation.

G(t) = d(t) + ∆Pi(t− 1). (2)
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Fig. 9. Time flow of cell rotation with the proposed force and visual spatiotemporal assistance system

The three-dimensional operation quantity obtained by LSTM

(inference vector I(t)) is directly used for the time-series

component.

As indicated in (3), the assistance vector A(t) is calculated

by synthesizing the guidance vector G(t) and the inference

vector I(t) multiplied by the weight coefficients α and 1−α,

respectively, where β represents a scale factor. The weight

coefficient α varies according to the Euclidean distance ‖d(t)‖
(µm) between the pipette and nearest ideal trajectory point,

as shown in (4), where d1 and d2(< d1) are constants. The

assistance position PA(t) is calculated using (5).

A(t) = αβG(t) + (1− α)I(t). (3)

α =















1.0 if d1 ≤ ‖d(t)‖
0.8‖d(t)‖

d1 − d2
+

0.2d1 − d2
d1 − d2

if d2 < ‖d(t)‖ < d1

0.2 if d2 ≥ ‖d(t)‖.

(4)

PA(t) = Pi(t) + A(t). (5)

When the pipette is outside the ideal trajectory distribution and

far away (d1 ≤ ‖d(t)‖), A(t) is calculated, setting α to 1.0 to

guide the pipette to the ideal trajectory distribution. In closer

regions (d2 < ‖d(t)‖ < d1), the pipette is guided smoothly

into the ideal trajectory distribution by varying α linearly

with ‖d(t)‖. Then, within the ideal trajectory distribution

(d2 ≥ ‖d(t)‖), α is kept constant (0.2) for eliminating the

unnecessary changes in α during transitions of the closest

ideal trajectory point from the pipette, and for preventing

the chattering of PA(t). Further, setting α to 0.2 instead of

0.0 within the ideal trajectory distribution retains the guiding

component from the edge of the ideal trajectory distribution

to the ideal trajectory point for ensuring spatial assistance.

Note that the OOD inputs to the LSTM may include abrupt

or irrelevant manipulations. However, if the LSTM is guided

by such manipulations or the unstable output they produce,

the pipette may deviate from the ideal trajectory distribution

and switch to GMM assistance, thereby ensuring safety.

E. Force and Visual Presentation Assistance

1) Force Presentation: The proposed system provides oper-

ational assistance through force and visual presentation based

on A(t). For force presentation, the magnitude and direction

of the assistance force F(t) are determined by ||A(t)|| (µm),

as shown in (6), where fmax represents the maximum force

magnitude and d3 (µm) is a constant.

F(t) =







fmax

d3
A(t) if ‖A(t)‖ < d3

fmaxsgnA(t) if ‖A(t)‖ ≥ d3.
(6)

Simple force assistance with a constant force is employed to

avoid operator discomfort caused by frequent changes in the

assistance force size. When ||A(t)|| is small (less than d3),

force proportional to ||A(t)|| is applied to the vector A(t) to

prevent chattering of the force presentation when the assistance

position moves slightly near the pipette.
2) Visual Presentation: The visual presentation includes

displaying A(t) and PA(t), and coloring it based on the

Euclidean distance ‖d(t)‖ to the nearest ideal trajectory point

from the pipette tip. A(t) is red when d1 ≤ ‖d(t)‖, orange

when (d1 − d2)/2 < ‖d(t)‖ < d1, sage green when d2 <
‖d(t)‖ ≤ (d1 − d2)/2, and green when ‖d(t)‖ ≤ d2, allowing

the operator to easily see and understand intuitively how far the

pipette is from the closest ideal trajectory point. The force F(t)
is not calculated directly using GMM and LSTM to visually

assist with A(t) and PA(t).
The ideal trajectory points and their distributions are also

displayed, and the nearest ideal trajectory points and their

distributions are colored to provide additional information

about where the pipette is guided by d(t). Based on the

ideal trajectory points and their distributions, A(t) and PA(t),
and their coloring, the operator can obtain a comprehensive

image of the assistance, which cannot be fully recognized only

using force presentation. This results in the operator reducing

their anxiety when receiving assistance and increasing the

likelihood of following the assistance position even if they

are unfamiliar with the haptic device. Fig. 9 shows the scene

of beginner’s operation with the proposed assistance system.

V. EVALUATION

A. Experiment

We conducted a participant experiment using mature porcine

oocytes, whose size is generally 134.59 ± 11.87 µm [17],
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Fig. 10. (i): Cell rotation direction and the injection pipette initial position in the experiment, (ii): Pipette trajectory of an expert in condition (a), (iii): Pipette
trajectory of a beginner in condition (a), (iv): Pipette trajectory of a beginner in condition (b), (v): Pipette trajectory of a beginner in condition (c).

as the target for manipulations to evaluate the effectiveness

of the proposed micromanipulation spatiotemporal assistance

system. The experiment was conducted under the following

three conditions.

(a) : Using the existing manipulation system with a joystick

(b) : Using the force and visual assistance system with a

haptic device with only LSTM

(c) : Using the force and visual assistance system with a

haptic device with GMM and LSTM

Assistance using ideal trajectory points obtained from the

GMM ignores the time series and shows a wobbly trajec-

tory because of the lack of attractor-like guidance. The use

of GMM alone cannot imitate the pipette manipulation of

an expert, and it is impossible to make stable and smooth

manipulation. Therefore, the GMM-only assistance system

was excluded from the experimental conditions in this study.

Condition (b) shows an assistance system that provides force

and visual assistance based on the inferred position of the

LSTM model, which infers the absolute position Pi(t+ 1)−
P
top
c (0) of the pipette at the next time step by inputting the

current P
top
c (t) − P

top
c (0) and Pi(t) − P

top
c (0). When the

operational quantities are input/output of the LSTM, it is

crucial for the operator to first have a clear understanding

of the 3D positional relationship between the pipette and

the oocyte. The pipette must be positioned properly by the

operator, as in condition (a), because the LSTM infers the

next operational quantities independently of the current pipette

position. Therefore, condition (b) cannot guide the pipette

to the proper absolute position if the operational quantities

are input/output of the LSTM. This system was designed to

verify the validity of the combination of the ideal trajectory

using GMM and the input/output of the LSTM model in

(c). Condition (b) includes the characteristics of most of the

position-dependent trajectory imitation methods proposed so

far [18], [19]. The LSTM model in (b) was trained using the

training data with the pipette position coordinates, which were

the same manipulations as in (c); the hyperparameters were

obtained by Bayesian optimization, similar to that in (c). For

(c), d1 = 60 µm, d2 = 30 µm, β = 0.5, fmax = 0.8 N, and

d3 = 10 µm are determined experimentally.

The task was to rotate the cell about the x-axis by manip-

ulating the injection pipette, as shown in Fig. 10 (i), using

the respective device in each condition. The initial position

of the injection pipette was determined randomly from five

initial coordinates that the x- and y-coordinates are the same

position as the center of the cell, as shown in Fig. 10 (i), and

differ only in z-coordinates such that the initial position is

not covered and known to the novice operator. The five initial

coordinates are set as follows:

1© : From the z-coordinate of the cell

2© : From 150 µm added to the z-coordinate of the cell

3© : From 150 µm minus from the z-coordinate of the cell

4© : From 300 µm added to the z-coordinate of the cell

5© : From 300 µm minus from the z-coordinate of the cell

Six participants with no prior experience in micromanipulation

(aged 20-25 years) performed the task five times for each

condition. The order of conditions for each participant was

non-overlapping to reduce order bias.

The evaluation criteria consisted of task completion time,

pipette-cell collision rate Pc, the success rate of the cell rota-

tion operation Ps, as calculated in (7) respectively, and mental

workload assessed using the weighted workload (WWL) in

NASA Task Load Index (NASA-TLX). Success is defined as

a case where the pipette contacts the cell at the belly of the

pipette, and the cell rotates only around the x-axis. A collision

is defined as a case that does not apply to success, and there

is contact between the cell and the pipette. Since the required

rotation angle differs from time to time, a large rotation is not

always better, nor is a smaller rotation better. For the sake of

a consistent benchmark, the evaluation was purely based on

whether the rotation operation was successful or not.

Pc =
Nc

Nt

, Ps =
Ns

Nt

. (7)

Nc : The number of pipette-cell collisions without cell rotation

about x-axis in a task

Nt : The number of attempts for rotating the cell in a task

Ns : The number of successful cell rotations about the x-axis

in a task

In microinjection, the operator must inject many cells in

a day, and when the cells are not in the body, it damages

them. Thus, the manipulation time is very significant. Further,

cell damage is crucial for blastocyst development. A short

task completion time and a low pipette-cell collision rate are

essential to develop assistance systems for ICSI.

B. Results and Discussions

The proposed system improved the consistency of the

pipette operation trajectories, as shown in Fig. 10. Fig. 10

(ii) shows the pipette trajectory of an expert in x-axis cell

rotation manipulations, whereas Figs. 10 (iii), 10 (iv), and 10

(v) show the pipette trajectories of a beginner under condition
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TABLE I
TASK COMPLETION TIME

Condition (a) Condition (b) Condition (c)

Participant A 71.5 s 82.8 s 42.4 s
Participant B 41.5 s 45.3 s 29.2 s
Participant C 33.4 s 37.1 s 19.2 s
Participant D 35.0 s 38.7 s 36.0 s
Participant E 27.0 s 47.7 s 24.4 s
Participant F 34.6 s 48.6 s 26.5 s

Average 40.5 s 50.0 s 29.6 s

TABLE II
PIPETTE-CELL COLLISION RATE

Condition (a) Condition (b) Condition (c)

Participant A 29.8 % 10.3 % 2.28 %
Participant B 15.7 % 9.91 % 3.33 %
Participant C 15.3 % 17.5 % 5.82 %
Participant D 20.4 % 20.0 % 0 %
Participant E 11.1 % 11.3 % 7.33 %
Participant F 11.3 % 29.0 % 0 %

Average 17.3 % 16.3 % 3.13 %

Fig. 11. Box plot of task comple-
tion time

Fig. 12. Box plot of pipette-cell
collision rate

(a), (b), and (c), respectively. The figures suggest that (c)

reduces the trajectory variability of beginners compared to

other systems and unnecessary collision to the cell. This

improvement allows beginners to perform manipulations that

closely resemble those of an expert in terms of trajectory

stability, geometry, and safety.

Tables I, II, III, and IV and Figs. 11, 12, 13, and 14 present

the results of the experiment. The box plots of task completion

time, rotational success rate, pipette-cell collision rate, and

mental workload for each condition are shown in the figures.

We utilized the Steel-Dwass test for statistical evaluation, a

multiple comparison test.

1) Task Completion Time: The test results indicate that (c)

significantly reduced the task completion time compared to

both condition (a) and (b), as shown in Fig. 11. This reduction

in the completion time can be attributed to the proposed system

being able to guide the pipette immediately from the arbitrary

initial position to the appropriate three-dimensional positions

for the x-axis rotation operation.

For condition (a), it is necessary to understand the three-

dimensional positional relationship between the injection

pipette and the cell by observing the relationship between

the out-of-focus areas in the microscopic image. It requires

time to determine whether the pipette is above or below the

cell. For condition (b), unlearned (OOD) inputs in the camera

TABLE III
SUCCESS RATE OF CELL ROTATION

Condition (a) Condition (b) Condition (c)

Participant A 42.6 % 40.0 % 52.3 %
Participant B 52.7 % 63.7 % 70.2 %
Participant C 55.1 % 51.8 % 69.5 %
Participant D 50.5 % 43.9 % 67.6 %
Participant E 64.9 % 46.6 % 58.7 %
Participant F 60.4 % 53.1 % 77.0 %

Average 54.4 % 49.8 % 65.9 %

TABLE IV
WWL IN NASA-TLX

Condition (a) Condition (b) Condition (c)

Participant A 55.0 86.3 50.3
Participant B 60.0 40.3 60.3
Participant C 23.3 41.3 26.0
Participant D 57.7 46.7 50.7
Participant E 48.0 58.3 46.7
Participant F 41.0 64.7 38.0

Average 47.5 56.3 45.3

Fig. 13. Box plot of the success
rate of cell rotation

Fig. 14. Box plot of WWL in
NASA-TLX

coordinate system in the acquired image can be input to the

LSTM because the inputs for LSTM are position coordinates,

particularly in the initial positions 4© and 5©; this makes

the inference unstable. The system may take time to draw

inferences near the cell, the learned (in-distribution, ID) area.

2) Cell-Pipette Collision Rate: The cell-pipette collision

rate is significantly reduced in condition (c) compared to both

(a) and (b), as shown in Fig. 12. Operating under condition (a)

is very difficult for beginners because they must understand the

three-dimensional positional relationship from a microscopic

image. This complexity is believed to increase the frequency of

pipette collisions with the cells caused by mispositioning. For

condition (b), OOD inputs were given to the LSTM model and

the inference was unstable, causing the pipette to collide with

the cell. Therefore, Pc in condition (c) significantly reduced

the probability of the pipette colliding with the cell relative to

(b).

3) Cell Rotation Manipulation Success Rate: The test re-

sults indicate that condition (c) helped significantly increase

the cell rotation success rate Ps compared to (b), as shown in

Fig. 13. The success rate in (c) did not increase significantly

compared to that in (a) because the AI models did not fit

all participants well. Only participant E did not increase the

success rate Ps under (c) compared with that in (a). Moreover,

participant E showed a smaller decrease than the others in task
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completion time and pipette-cell collision rate. This finding

suggests that the AI models may not fit this person well

because the training data for AI models were created by only

one expert. Thus, future work must increase the number of

experts for IL and develop an assistance system that considers

individual differences in operations.

4) Mental Workload: The mental workload under (c) was

not significantly reduced compared to the other conditions.

However, there was an overall trend toward a decrease in men-

tal workload, especially for (c) compared to (b). In addition,

the mean, maximum, and minimum workloads decreased for

(c) compared to (a). This slight decrease in the mean and the

smaller maximum and minimum values for those in (c) suggest

that the mental and intellectual workload may be the same or

less than those in (a). Thus, one can operate in (c) with the

same mental workload as that in (a).

5) Overview: The evaluation experiment showed that the

proposed system led to an ideal trajectory from an arbitrary

pipette position, simplifying and improving the efficiency

of the operation. Further, the system showed high stability

concerning the pipette position compared to the LSTM-based

assistance system. The spatial guidance to the ideal trajectory

by GMM and stability of LSTM inference can help reduce

cell damage, contributing greatly to blastocyst development

rates attributed to a lower cell collision rate. These results

confirm that, compared to LSTM, which infers absolute po-

sition coordinates, as in (b), by using operation quantities as

LSTM inputs and outputs, OOD inputs are not inputs unless

an abrupt or irrelevant operation is performed. Further, high

robustness can be added to the absolute pipette coordinates by

obtaining an ideal trajectory with the GMM and performing

guidance. Although the mental workload was not reduced

significantly under the other conditions, it was confirmed that

the proposed system could operate with the same mental

workload as the conventional system. These results confirm

that the proposed system effectively simplifies cell-rotation

operations, increases efficiency, and reduces cell damage at

the same mental workload as the conventional system.

VI. CONCLUSIONS

We developed a novel spatiotemporal assistance system

for pipette operation to rotate oocytes around the x-axis by

combining GMM and LSTM. Our system guides the pipette

from an arbitrary position to an ideal trajectory distribution

defined by the GMM. Then, it assists the manipulation by

LSTM inference while incorporating guidance to the ideal

trajectory. This approach ensures that the assistance is robust

to changes in the pipette position. The evaluation results

indicated that the proposed system achieved a reduction of

approximately 27.0 % in the time to rotate the oocyte once

and a reduction of approximately 82.0 % in the number of

triggers that may cause cell damage caused by pipette-cell

collisions compared to other systems. Thus, our proposed

system simplifies and improves the efficiency of cell rotation

while reducing cell damage compared to the conventional and

LSTM-based assistance systems. The pipette trajectory during

the experiment showed that even a beginner could operate the

pipette with a trajectory more similar to that of experts than

with the conventional system. This system can be applied

to other micromanipulations which need cell rotation. Our

future work is to realize assistance for individual differences in

operations and apply this system to other micromanipulations.
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