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Robust Elastic Structure Preserving Control for
High Impedance Rendering of Series Elastic

Actuator
Hyunwook Lee1, Jinoh Lee2, Manuel Keppler2, and Sehoon Oh3

Abstract—In this paper, a new robust approach is proposed to
address the limitation of impedance rendering for Series Elastic
Actuators (SEA). The concept of Elastic Structure Preserving
(ESP) control allows for the attachment of desired load-side
dynamics to the SEA while maintaining a passivity condition,
regardless of the parameters for the attached dynamics. The
characteristics of ESP control are revisited and translated in the
frequency domain, which grants a new perspective to identify
its advantages compared to conventional impedance control in
terms of passivity. Additionally, we analyze the degradation of
performance due to unwanted disturbance and uncertainties in
spring stiffness and motor inertia, and a new form of the robust
ESP method is proposed by endowing disturbance rejection
capability and robustness against uncertainty.

Index Terms—Compliance and Impedance Control, Flexible
Robotics, Robust Control

I. INTRODUCTION

RECENTLY, there has been a growing demand for collab-
orative robots in various fields of application. To ensure

safe and reliable interactions between robots and humans,
safety and reliability have become crucial considerations. One
solution to these requirements is the use of series elastic
actuators (SEAs). These actuators have been developed to
enable compliant behaviors for safer operation [1]. SEAs
have the capability of measuring force without a force sensor
and reducing shock through their intrinsic elasticity. Due to
these advantageous properties, SEAs have been successfully
employed in high-performance force control where safety and
compliance are of paramount importance [2], [3].

Impedance control is widely employed for SEAs to take
advantage of their high fidelity from the inherent force control
capability. Impedance-controlled SEAs have been deployed in
diverse robot platforms such as humanoids and exoskeletons
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[4]–[8] providing compliant interactions. On the other hand,
for performing practical tasks, high impedance is essential for
rejecting disturbances or interacting with heavy objects [9].
However, SEAs are well suited for interaction with a low
impedance while implementing high impedance functions can
be challenging [10]–[13].

In control of interaction tasks, priority should be given to
stability over performance. In addition to the classical stability
for free movement scenarios, systems that engage in frequent
interactions must take into account the environment. Coupled
stability refers to the stability of a controlled system coupled
to its environment. The violation of the system’s passivity may
fail to guarantee this coupled stability when interacting with a
stiff environment [14]. For this stability, the passivity concept
has been widely studied [14]–[16].

Nevertheless, the passivity-based analysis impedes the per-
formance of impedance-controlled SEA because passivity can
be violated when the impedance is increased beyond the
spring stiffness through conventional cascade impedance con-
trol (CIC) [10]–[13]. In [10], [11], a limitation in stiffness
was revealed when using only a pure stiffness in impedance
control. Furthermore, this limitation was recognized even with
the adoption of the viscoelastic impedance model [12] and the
use of various impedance structure: collocated motor feed-
back, impedance with additional inner velocity feedback, and
admittance control [13]. To address this issue, time-domain
approaches have been developed to observe passivity in real-
time and to relax passivity violations by real-time stiffness
modification [17]. However, this approach does not inherently
allow for high stiffness rendering as it reduces the desired
stiffness when passivity is violated.

To overcome the limit of the achievable stiffness, the
concept of Elastic Structure Preserving (ESP) control has
been developed [18]. It enables the direct interconnection of
desired dynamics to the load-side. Particularly, allowing for
the interconnection of impedance elements. Crucially, with
these impedance elements, the passivity of the closed loop
is guaranteed, regardless of the parameters associated with
the attached dynamics [18]–[20]. This desirable property is
directly inherited from the structure-preserving nature of the
ESP approach, as the generated closed-loop dynamics is solely
constituted by passive elements, namely masses, springs, and
dampers. This characteristic intuitively suggests the parameter-
independent passivity of the closed loop. However, this ap-
proach, dependent on the dynamic model of SEA, is inherently
vulnerable to model uncertainties. Furthermore, the controlled
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system’s performance deteriorates in the face of disturbance1,
as it lacks a separate function for disturbance rejection. This
study investigates the impact of these factors on the perfor-
mance of ESP control and proposes a robust controller to
overcome these limitations.

The contributions of the paper can be listed as follows.
1) By analyzing ESP control in the frequency domain, we

offer a new perspective and identify several advantages
over CIC control methodologies.

2) Through the addition of a disturbance observer, we
present a robust ESP (R-ESP) control design. It can
render any desired stiffness while ensuring closed-loop
stability and passivity in the presence of uncertain spring
stiffness and motors inertia parameters.

3) An extended stability analysis includes the impact of
filters. Comparing R-ESP and ESP designs, it demon-
strates that R-ESP exhibits a higher phase margin in the
presence of filters, indicating superior robustness.

II. ELASTIC STRUCTURE PRESERVING CONTROL TO
OVERCOME STIFFNESS LIMITATION OF SEA

An intrinsic spring component in SEAs allows for precise
force measurement and control [3]. This enables SEAs to be
well-suited for applications involving interaction with a variety
of environments. However, CIC guarantees limited range of
active spring rendering based on passivity analysis. In this
section, we analyze this limitation and introduce ESP control
as a solution to overcome this limitation.

Initially, the dynamics are derived and subsequently inves-
tigated to identify the drawbacks associated with conventional
impedance control. Our investigations employ frequency do-
main analysis, which is based on the dynamics previously
derived. Furthermore, the frequency domain analysis of the
ESP control effectively confirms its advantages.

A. Conventional understanding of Stiffness Limit of SEAs

Figure 1(a) shows a schematic diagram of the SEA that
consists of a motor, a spring, and a load. The motor is rotated
by the motor torque τm which consists of the motor inertia Jm
and the motor viscous friction Bm, and its angular position is
given as θ. The load is composed of its inertia Ml and damping
Bl, and its position is given as q. The spring K, which has
the torsional spring stiffness of 2.208 Nm/rad, generates the
spring torque τs = K(N−1θ − q) and transmit the torque to
the load and the motor. N is gear ratio. τe indicates external
torque.

The SEA dynamics can be expressed in the time domain as
follows:

Mlq̈ +Blq̇ = τs + τe (1)
Jmθ̈ +Bmθ̇ +N−1τs = τm + d (2)

where d is a disturbance acting on the motor dynamics.
The dynamics of SEA can be represented in the Laplace

domain, enabling an intuitive understanding of controllers’

1The disturbance in this study is defined as an unwanted motor-side
disturbance that needs to be eliminated. This is distinct from an external
force that creates compliant interactions with impedance control.
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Fig. 1. (a) A schematic diagram of the SEA, and (b) its block diagram.

SEA

Fig. 2. Block diagram of SEA system with cascade impedance control. The
impedance controller Zdes and inner force controller Cf are applied. τrs and
τes indicate reference and error of spring force.

effectiveness by analyzing their frequency responses. This is
expressed using a block diagram as illustrated in Fig. 1(b).
The motor dynamics Pm(s) and the load dynamics Pl(s) are
given in the Laplace domain as follows:

Pm(s) =
1

Jms2 +Bms
, Pl(s) =

1

Mls2 +Bls
(3)

The passivity of linear systems can be analyzed in the
frequency domain through the evaluation of the phase char-
acteristics of controlled impedance [10]. It is well known that
a phase deviation outside the range of −90◦ to 90◦ results in a
non-passive system [14]. Therefore, the passivity conditions of
closed-loop systems can be compared by analyzing the phase
characteristics of the transfer functions,

The impedance control of the SEA is formulated using
the obtained SEA dynamics. The control strategy follows
the CIC framework, shown in Fig. 2, which comprises a
force controller in the inner loop and an impedance controller
in the outer loop. The inner force controller, denoted as
Cf = Λp + Λds, consists of a proportional gain Λp and a
differential gain Λd [21]. The desired impedance Zdes is given
as follows:

Zdes = Kq +Dqs, (4)

where Dq and Kq are the desired damping and stiffness
of impedance, respectively. Dq should be designed properly
depending on the application of impedance control, however,
this section focuses on the effect of Kq because it is the most
critical factor causing the passivity violation.
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Fig. 3. (a) A schematic diagram of SEA with the ESP and (b) its equivalent
block diagram.

By implementing CIC, the controlled impedance from the
load velocity to the spring torque can be derived in the Laplace
domain.

ZCIC(s) =
−τs
qs

=
N−1KZdesCf +KP−1

m

N−1KCf +N−2K + P−1
m

1

s
. (5)

The passivity violation is confirmed by checking the positive
realness of the derived transfer function [14]. The real part of
the above equation is derived, as follows:

ℜ(ZCIC)

=
NBmK(N−1K −KqΛp +KΛp)

(NBmω +KΛdω)2 + (KΛp +N−1K −NJmω2)2

+
NΛdK(JmKω2 − JmKqω

2 +KqN
−2K)

(NBmω +KΛdω)2 + (KΛp +N−1K −NJmω2)2
,

≥ 0, (6)

The passivity condition is not be satisfied when Kq is higher
than K regardless of the force gains (Λp, Λd). This condition
is expressed as the following inequality.

1 ≥ Kq

K
. (7)

B. Interpretation of ESP in frequency domain

The following subsection provides a detailed explanation of
the ESP control and demonstrates, through the Laplace domain
analysis, how it guarantees passivity even when high stiffness
is rendered.

The concept of the ESP control consists of two steps. Firstly,
it involves altering the coordinates to exert a direct influence
on the load side using the motor torque. Secondly, it applies
supplementary dynamics (damping and stiffness) directly to
the load dynamics, as depicted in Fig. 3.

The desired dynamics, denoted as β, can be interpreted as
a virtual input acting on the load, as illustrated in Fig. 3.(b)

Closed-loop 
ESP dynamics

ESP SEA

Fig. 4. Block diagrams of impedance-controlled SEA with ESP control.

and shown in [20], [22]. The motor torque τm for the ESP
control is designed considering the input β as follows:

τm = ū+NK−1(Jmβ̈ +Bmβ̇ +N−2Kβ), (8)

where ū is additional input that is utilized as the most outer
control input. The resulting dynamics is derived as

Mlq̈ +Blq̇ − β = τηs + τe (9)
Jmη̈ +Bmη̇ +N−1τηs = ū+ d, (10)

where η = θ−NK−1β is a new motor angle coordinate. τηs =
K(N−1η−q) is the spring force in the new coordinate. Notice
that the resulting dynamics preserve the elastic structure of
SEA even though it is reformulated using the new input β
and the new angle η.

The new input β is designed to add desired impedance, as
follows:

β = −Kq(q − qd)−Dq q̇, (11)

where Kq is stiffness and Dq is viscous damping on the load
side. Finally, the ESP control renders the desired stiffness and
damping directly to the load dynamics as illustrated in Fig.
3(a).

The ESP-controlled system is also expressed in the Laplace
domain. The closed-loop equation with the ESP control is
derived based on the SEA dynamics and ESP control.

ZESP (s) =
−τs
qs

=
N2(Kq +K)P−1

m +KKq

N2P−1
m +K

1

s
. (12)

The real part of the second term in (12) is determined as
follows:

ℜ(ZESP ) =
BmN−2K2

(Bmω)2 + (N−2K − Jmω2)2
≥ 0 (13)

The above inequality holds at all frequencies. Thus, we
can conclude that the ESP-controlled system is always passive
regardless of the system’s parameters.

C. Comparison of CIC and ESP on stiffness limitation

The derived impedance functions enable a comparison of
frequency responses under various desired stiffness conditions.
Figure 5(a) shows the frequency responses of the natural
impedance of the SEA and of the impedance rendered by
using CIC. Parameters are set for simulation : Jm = 7.08e-
5 kg·m2, Bm =3.12e-4 Nm·s/rad, Ml = 6.96e-5 kg·m2, Bl =
3.12e-4 Nm·s/rad, K = 2.208 Nm/rad, N = 1. Without loss of
generality, we set the motor and load inertia to have similar
values and set the gear ratio to 1. The closed-loop impedance
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Fig. 5. Impedances of (a) CIC and (b) ESP depending on various desired
stiffness (from the load velocity q̇ to the external torque τe).

with CIC is altered by the desired impedance; specifically,
the CIC primarily influences the low-frequency region of the
natural impedance of the SEA, adjusting it to match the desired
stiffness model (Kq/s).

The phase at frequencies above the resonance varies sig-
nificantly with changes in the desired stiffness values as in
Fig. 5(a). When Kq is set to a value less than K, the phase
remains within −90◦ and the passivity condition is satisfied.
Conversely, when Kq is set to a value greater than K, the
phase exceeds 90◦ at high frequencies, indicating a violation of
passivity. These results are consistent with the positive realness
analysis for passivity violations in Eq. (7).

Figure 5(b) illustrates the results of impedance using the
ESP control. The magnitude and phase at frequencies be-
low the resonance are comparable to those achieved using
CIC. However, the closed-loop impedance with ESP control
maintains a phase range within ±90◦, thus ensuring passivity.
This means that the desired stiffness through ESP control
is effectively rendered while preserving the structure of the
SEA, as in Fig. 3. This structural preserving characteristic is
a significant advantage of ESP over CIC, as CIC disrupts the
structure of the SEA to render the desired stiffness, leading to
potential passivity violations. Therefore, ESP is a safer option
than CIC in terms of passivity.

Fig. 6. Block diagram of R-ESP control.

III. ROBUST ELASTIC STRUCTURE PRESERVING CONTROL

The performance of impedance rendering can be degraded
by the presence of disturbances and uncertain model parame-
ters, leading to potential passivity violations. To handle these
issues, this section introduces a new robust controller that takes
advantage of the capabilities of Disturbance Observer (DOB)
[3], [23], [24] and ESP.

A. Design of Robust ESP

The robust elastic structure preserving (R-ESP) control, is
designed to provide the function of disturbance rejection on
top of the ESP control. Figure 6 illustrates the configuration
of the R-ESP, where the closed-loop dynamics with the ESP
control is placed in the inner loop and wrapped with the DOB.
Note that the closed-loop dynamics with the ESP control,
colored in orange, correspond to the equivalent structure in
which the ESP is applied to the SEA as shown in Fig. 3. The
motor position η in the new coordinate system is fed back to
the DOB, instead of the original motor position value. The
DOB utilized in this paper is a Motor Disturbance Observer
(MDOB), which is specifically designed for SEAs to reject
disturbances in motor dynamics. The control input of MDOB
is derived as follows:

umdob = − Q(s)

1−Q(s)
[(P−1

mn(s) +
Kn

N2
)η − Kn

N
q], (14)

where Pmn and Kn are nominal models of motor dynamics
and spring, respectively. Finally, the control input for the motor
torque is derived to implement the R-ESP control is derived
as follows:

uR−ESP =
1

1−Q(s)
u∗ + umdob + uesp. (15)

uesp = (
NP−1

mn(s)

Kn
+

1

N
)β, (16)

u∗ = −Dηsq, (17)

where uesp is the control input for the basic ESP control and
u∗ is motor damping control.



B. Disturbance rejection with R-ESP

The closed-loop dynamics with R-ESP is represented in the
Laplace domain by substituting the control input of R-ESP in
(15) into the motor torque.

Mlqs
2 +Blqs = τηs + τe + β (18)

Jmηs2 +Bmηs+N−1τηs − d =
1

1−Q(s)
u∗ + umdob.

(19)

And then substituting umdob in (14), the resulting closed-loop
dynamics is derived as follows:

Jmηs2 +Bmηs+N−1τηs − [1−Q(s)]d = u∗. (20)

The Q filter of R-ESP control only influences the distur-
bance. Closed-loop transfer function from the disturbance to
the load position is derived as follows:

q

d
= (1−Q)

NK

(P−1
l +Kq)(N2P−1

m +K) +N2KP−1
m

. (21)

Assuming Q(s) = 1, only the disturbance is rejected while
preserving the dynamics.

IV. ROBUSTNESS ANALYSIS OF CONTROLLERS IN THE
PRESENCE OF UNCERTAINTY

In this section, the performance degradation of the ESP in
the presence of uncertainty is analyzed, and the achievable
stiffness of the ESP and R-ESP control is quantitatively
evaluated based on the level of uncertainty.

A. Passivity condition of controllers for impedance rendering

The spring plays a crucial role in the SEA, and its un-
certainty is a commonly encountered issue. Hence, our initial
focus is on examining the uncertainty associated with stiffness.

Using the ESP control, the closed-loop impedance is derived
in the Laplace domain as follows:

ZESP
unct (s) =

1

Pls
+

N2(KKqK
−1
n +K)P−1

m +KKq

N2P−1
m +K

1

s
.

(22)
The real part of the equation is derived as follows:

ℜ(ZESP
unct ) =

BmKN−2(KKqK
−1
n +K −Kq)

(Bmω)2 + (N−2K − Jmω2)2
. (23)

The closed-loop system is passive when the spring stiffness
is greater than the nominal stiffness (K ≥ Kn). Conversely,
when the spring stiffness is less than the nominal stiffness
(Kn ≥ K), the passive condition of the closed-loop system is
derived as follows:

Kn/K

Kn/K − 1
≥ Kq

K
. (24)

Figure 7 illustrates the achievable stiffness of the ESP and
CIC in relation to the uncertainty level. The x-axis repre-
sents the uncertainty ratio (Kn/K) in (24), while the y-axis
represents the stiffness ratio. The stiffness ratio indicates the
proportion of passively achievable stiffness to spring stiffness.
That is, the area beneath the plotted line represents all the

Passive
Non-passive

Fig. 7. Comparison between CIC and ESP control depending on uncertainty.

feasible stiffness values. The results suggest that the ESP con-
trol achieve higher stiffness values for lower uncertainty ratios,
but the achievable stiffness diminishes as the uncertainty ratio
increases.

The passivity condition of the R-ESP control can be evalu-
ated by calculating the closed-loop function in the presence of
uncertainty. The closed-loop impedance in the Laplace domain
is represented as:

ZR−ESP
unct (s) =

1

Pls
+

N2(KKqK
−1
n +K)P−1

m +KKq

N2P−1
m +K +Q(Kn −K)

1

s
.

(25)
The Q filter can be approximated as 1 when its cut-off

frequency is set to a high value. Under this assumption, the
real part of the impedance in (25) is derived as follows:

ℜ(ZR−ESP
unct ) =

BmKN−2(KnKqK
−1
n +Kn −Kq)

(Bmω)2 + (N−2K − Jmω2)2
. (26)

A comparison between the closed-loop impedance between
the R-ESP and that of the ESP in (23) reveals that the K
term within the parentheses of the numerator in (23) has been
replaced by Kn in (26). Consequently, in the case of the R-
ESP, the above equation consistently yields a positive value.
In conclusion, the maximum achievable stiffness with the ESP
controller is limited due to stiffness uncertainty, while the R-
ESP theoretically guarantees an infinite achievable stiffness,
irrespective of this uncertainty.

B. Stability analysis considering filter

Due to the non-collocated nature of the load position in
the SEA, it is challenging to achieve a significant increase
in the feedback gain without risking system instability. This
challenge becomes evident when examining the phase of the
frequency response. To evaluate the phase characteristics, a
transfer function from the motor input to the load position is
derived as follows:

Tm2q(s) =
q

τm
=

N−1K

P−1
m P−1

l +KP−1
m +KN−2P−1

l

. (27)

The denominator of the function is organized in a 4-th order,
causing a phase drop of −360◦. The gain margin is constrained
by this phase drop. The ESP control improves the phase
characteristics of the load position feedback. The utilization
of the ESP control in the transfer function (TESPTm2q)
results in a shift of the minimum phase from −360◦ to
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Fig. 8. Frequency response of ESP and R-ESP considering filter.

−180◦, effectively enhancing system stability. Nonetheless,
the introduction of a second-order differentiating filter can
potentially compromise stability. Hence, it is crucial to conduct
a thorough stability analysis of both the ESP and the R-ESP
control. The subsequent analysis emphasizes the benefits of
the R-ESP in alleviating the stability concern caused by the
filter.

The ESP and DOB filters applied to the R-ESP control are
defined as follows:

QESP =
ω2

s2 + 2ζESPωs+ ω2
, Q =

ω2

s2 + 2ζDOBωs+ ω2
.

(28)
where ω represents a cutoff frequency of ESP and DOB filters,
and ζ are a damping ratio of the filters.

A transfer function for the load position (Tβ2q) in relation
to the new input by the ESP (β) is derived as follows:

Tβ2q(s) =
q

β
=

QESP (P
−1
m +N−2K)

P−1
m P−1

l +KP−1
m +KN−2P−1

l

. (29)

The Q filter of the ESP (QESP ) is included to the numerator
and directly disrupts the phase. A transfer function for the R-
ESP is also derived as follows:

Tβ2q(s) =
q

β
=

[Q+ (1−Q)QESP ](P
−1
m +N−2K)

P−1
m P−1

l +KP−1
m +KN−2P−1

l

. (30)

In Equation (30), the numerator is made up of two com-
ponents: the dynamics term and a composite of filters Q
and QESP . The composition of the filter in the numerator
distinguishes the frequency response of the R-ESP from that
of the ESP, as shown in Fig. 8. This result shows that the R-
ESP control provide a greater phase margin than ESP control.
It should be noted that the gain margin is the maximum achiev-
able stiffness that is stably rendered, as the controllers feeds
back the equation (Tβ2q) by multiplying the desired stiffness.
Accordingly, we can conclude that the R-ESP reliably render
greater impedance stiffness when considering the filter.

Analytically deriving optimal filter parameters is difficult
due to the complexity of a transfer function; however, nu-
merically determining the maximum achievable stiffness can
effectively investigate the impact of these filter parameters.
Figure 9 illustrates the maximum achievable stiffness de-
pending on filter parameters (ζ, ω) when using the R-ESP
controller. The pole of the impedance transfer function is

Fig. 9. Maximum achievable stiffness depending on filters of R-ESP.

Fig. 10. Maximum achievable stiffness depending on stiffness and motor
inertia uncertainty.

utilized for numerical calculations to determine the maximum
achievable stiffness. A red area represents the condition where
the frequency (ω) is set to 700 rad/s, while a blue area indicates
a frequency of 1000 rad/s, which are 3.91 times and 5.59
times the resonance frequency (ωr) respectively. These colored
surfaces indicate the maximum achievable stiffness, with all
areas below these surfaces representing achievable stiffness.
The results show that as the filter frequency (ω) rises, there is
a corresponding increase in the maximum achievable stiffness
across all values. Optimal damping ratio values (ζESP , ζDOB)
can be obtained based on the determined frequency. It is
noteworthy that the maximum stiffness is achieved when both
damping ratios for the DOB and ESP filters are set to less
than 1, not at the critical damping condition. Consequently,
the damping ratio can be optimized: the optimal values for
damping ratio are 0.38 for both frequencies of 700 rad/s and
1000 rad/s.

Figure 10 displays the maximum achievable stiffness de-
pending on uncertainties in stiffness and motor inertia. The
filter frequency is set at 1000 rad/s and damping ratios are set
to the optimal values. The results demonstrate that increasing
stiffness uncertainty leads to higher maximum achievable
stiffness for both ESP and R-ESP control. Figures 7 and 10
show contrasting results of stiffness uncertainty on maximum
stiffness due to different analysis methods: passivity in Fig. 7
and stability with filters in Fig. 10. It is necessary to consider
and meet the conditions in both analyses. For the motor, the
maximum achievable stiffness decreases as the motor inertia
uncertainty decreases. Thus, it is recommended to set the
nominal values equal to or greater than the system value for
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safe implementation. Importantly, the R-ESP control exhibits
a superior maximum achievable stiffness in a large area than
the ESP control.

V. EXPERIMENT RESULTS

This section presents four experiments. The first compares
the stiffness rendering of CIC and ESP control, while the
subsequent two demonstrate the effectiveness of R-ESP control
in mitigating motor-side disturbances and model uncertainty.
The final experiment verifies the repeatability of controllers
under various stiffness settings. A two-mass system serves as
experimental setup, as shown in Fig. 11, which represents
the fundamental structure of a SEA; a motor and a load
interconnected by a spring. To determine the spring deflection,
the deflection between the motor and load is measured by
encoder readings. The damping coefficients of the motor (Dη)
and load (Dq) are established as 4.68e-03 Nm·s/rad and 3.12e-
03 Nm·s/rad, respectively. The other parameters are set to the
same values as in the simulation.

In our first experiment, we employed a load impactor to
generate reproducible impacts of specific magnitudes. This
setup allows for a comparative analysis of the impulse re-
sponse between CIC and ESP controls. Figure 12 presents the
experimental results in terms of the measured load position
in response to an impact. Both CIC and ESP controls are
parameterized so that the desired stiffness (Kq) exceeds the
spring stiffness (K). Our experimental results, as summarized
in Fig. 12, clearly demonstrate that, when exposed to identical
disturbances, the CIC control system exhibits instability, while
the ESP controller consistently demonstrates stable perfor-
mance.
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Fig. 13. Disturbance rejection performance in the ESP and Robust ESP when
(a) a chirp and (b) a step disturbance exist (Kq = K).

The second experiment compares the performance of ESP
and R-ESP control to reject motor-side disturbances in two
different scenarios. In the first scenario, we applied impedance
and intentionally applied a chirp wave disturbance ranging
from 0 to 100Hz into the motor input, as depicted in Fig.
13(a). In the second scenario, we again applied impedance, but
applied a step-wise disturbance after two seconds, lasting for
a duration of 6 seconds, as indicated in Fig. 13(b). The results
unmistakably demonstrate that the R-ESP control exhibits
superior disturbance rejection capabilities for both disturbance
cases. These outcomes underscore that we succeeded with our
objective of improving the motor-side disturbance rejection
behavior of ESP control.

The third experiment compares the impulse responses of R-
ESP and ESP control systems in the presence of uncertainties
related to motor inertia and joint stiffness parameters. Both
ESP and R-ESP control are set to render an impedance
during the experiment, and an impulse-like external force was
applied to the load-side using the impactor at 0.2 seconds.
Under significant stiffness uncertainty (Kn = 2K), the ESP
performance deteriorated notably, as evident in Figure 14(a),
whereas the R-ESP exhibits stable behavior. Under motor in-
ertia uncertainty (Jmn = 1.3Jm), only the R-ESP controller
remained stable, as shown in Fig. 14(b). These results align
with the analysis in Sec. IV and confirm that we have achieved
our second objective, which was to increase the robustness of
ESP designs with respect to model parameter uncertainty.

To ensure repeatability, experiments under four different
stiffness settings were repeated 10 times for each controller.
The vibration magnitude was captured at 0.3 seconds after
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Fig. 14. Impulse responses of ESP and R-ESP control (a) with stiffness
uncertainty (Kn = 2K,Kq = 2K) and (b) with motor inertia uncertainty
(Jmn = 1.3Jm,Kq = 1.5K).

TABLE I
MEAN AND STANDARD DEVIATION VALUES FROM TEN TRIALS UNDER

DIFFERENT NOMINAL STIFFNESS CONDITIONS.

Kn=0.8K 1K 1.5K 2K

ESP Mean 0.2 (limit) 0.2 (limit) 0.0828 0.0145
STD 0 0 0.0018 0.0023

R-ESP Mean 3.691e-04 2.513e-04 2.356e-04 2.505e-03
STD 4.287e-04 9.397e-04 1.385e-04 3.130e-04

observing the impulses. The mean and standard deviation
values of these measurements were then calculated as in table
I. To protect the test bed, a load position limit of 0.2 rad
was implemented. In the ESP control, all conditions exhibit
instability. The R-ESP demonstrates consistent stable behavior
across multiple trials, as indicated by the small mean and
standard deviation values.

VI. CONCLUSIONS
This paper has proposed the robust control approach for

series elastic actuators. The characteristics of the existing
Elastic Structure Preserving algorithm were analyzed in the
frequency domain and its impedance rendering was compared
with the cascade impedance control. Furthermore, the robust
ESP control was developed to provide the function of distur-
bance rejection in the basic ESP control. The robustness of
the proposed controller was confirmed through experiments,
demonstrating its superior ability to handle uncertainty and
achieve higher impedance rendering.
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