
Race Against the Machine: a Fully-annotated, Open-design
Dataset of Autonomous and Piloted High-speed Flight

Michael Bosello, Davide Aguiari, Yvo Keuter, Enrico Pallotta, Sara Kiade, Gyordan Caminati,
Flavio Pinzarrone, Junaid Halepota, Jacopo Panerati, and Giovanni Pau

Abstract— Unmanned aerial vehicles, and multi-rotors in par-
ticular, can now perform dexterous tasks in impervious environ-
ments, from infrastructure monitoring to emergency deliveries.
Autonomous drone racing has emerged as an ideal benchmark
to develop and evaluate these capabilities. Its challenges include
accurate and robust visual-inertial odometry during aggressive
maneuvers, complex aerodynamics, and constrained compu-
tational resources. As researchers increasingly channel their
efforts into it, they also need the tools to timely and equitably
compare their results and advances. With this dataset, we want
to (i) support the development of new methods and (ii) establish
quantitative comparisons for approaches originating from the
broader robotics and artificial intelligence communities. We
want to provide a one-stop resource that is comprehensive of (i)
aggressive autonomous and piloted flight, (ii) high-resolution,
high-frequency visual, inertial, and motion capture data, (iii)
commands and control inputs, (iv) multiple light settings, and
(v) corner-level labeling of drone racing gates. We also release
the complete specifications to recreate our flight platform, using
commercial off-the-shelf components and the open-source flight
controller Betaflight, to democratize drone racing research. Our
dataset, open-source scripts, and drone design are available at:
github.com/tii-racing/drone-racing-dataset.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) and multi-rotor drones
have become ubiquitous robotic platforms, supporting a wide
array of industries from video-making to warehouse moni-
toring, to surveillance and inspection of energy and transport
infrastructure. Drone racing, in particular, has emerged as the
go-to benchmark problem to measure the advances made by
researchers in the quest to surpass human-level, autonomous
performance in fast and aggressive flight [1]–[4]. Yet, drone
racing competitions, equipment, and venues can still be
difficult and expensive to access.

The last decade of machine learning progress has shown
how datasets, open standards, and open-source code help sci-
entific progress and transparency, shaping the entire scientific
fields [5]. One of the fundamental advantages of datasets
is to greatly simplify and shorten the development pipeline
of new methods by allowing researchers to re-use the tried
and tested data collection and consolidation work of others.
Datasets allow researchers from different parts of the world
and disciplines to work on common problems.

Today, several conferences and journals, including
NeurIPS, the IEEE Robotics and Automation Letter, and the
International Journal of Robotics Research explicitly solicit
data and benchmark papers as a way to increase the number
and visibility of peer-reviewed datasets [12].

All the authors are with the Autonomous Robotics Research Center of the
Technology Innovation Institute, Abu Dhabi, United Arab Emirates. Michael
Bosello and Giovanni Pau also are with the University of Bologna, Bologna,
Italy. E-mails: {firstname.lastname}@tii.ae

Fig. 1: Long exposure, low-light capture of the open-design
racing drone used to collect the dataset (top), and an aggres-
sive maneuver through one of the labeled gates (bottom).

Robotics datasets and benchmarks are as important and
beneficial to the community as they are challenging to
create—because of the idiosyncrasies of robotic hardware
and real-world systems. Notable robotics datasets have fo-
cused on vision problems, e.g., the KITTI Vision Benchmark
Suite [13], including data from stereo cameras, GPS, and
laser scanners for tasks such as object detection, tracking,
and visual-inertial odometry (VIO) [9], or the use of special,
novel sensors and instruments [14]. Early drone racing
datasets [6] also focused on scene understanding and gate
pose estimation problems, while more recent datasets have
put a greater emphasis on the coupling with on-board inertial
data, ground truth information, and controls [15], [16].

Our dataset builds upon these and aims to be a one-stop
resource for researchers to simultaneously pursue multiple
lines of work, including semantic scene understanding, VIO,
mapping and planning, and data-based system identification
for fast and aggressive multi-rotor flight. As for a benchmark
to be successful, it must be effectively and easily repeatable,
in Section III, we release the complete design specifications
of the drone used to collect the dataset.

The main contributions of our work are as follows.
• The public release of a dataset for drone racing (in-

clusive of open-source code for visualization and post-
processing) that is characterized by:

– fast (>20m/s), aggressive flight, both autonomous
and human-piloted, on multiple trajectories (in-
cluding a complex 3D racing track);

ar
X

iv
:2

31
1.

02
66

7v
2

 [
cs

.R
O

]
 2

4
Fe

b
20

24

https://github.com/tii-racing/drone-racing-dataset

TABLE I: Comparison of multi-rotor and drone racing datasets for visual-inertial odometry, scene understanding, and control

Ref.
Time & Data Conditions Gates Top Vision/Camera Specifications Pose/Inertial Data Control Inputs Battery Data

Distance Coll. Scene Lighting Pose Labels Speed Resolution/Freq. Color FoV Stereo Event IMU MoCap CTBR Motor Voltage Formats

Ours
TII-RATM

∼29’
∼7km

Real Indoor 3 Levels
Labeled

✓ ✓† 9.5m/s⋄

21.8m/s¶
640x480@120Hz RGB D 175◦ ✗ ✗ @500Hz @275Hz @100Hz @100Hz @50Hz rosbag,

CSV, JPEG

[3]
UZH-FPV

∼24’
∼11km

Real Indoor;
Outdoor

Multiple,
Unlabel.

✗ ✗ 26.8m/s¶

23.4m/s⋄
848x800@30Hz
346x260@50Hz

640x480@30Hz∗

Grayscale
Grayscale
Grayscale

D 163◦

120◦

186◦

✓ ✓ @200Hz
@500Hz
@1000Hz

@20Hz§
✗ ✗ ✗ rosbag,

TXT, PNG

[6]
AlphaPilot

n/a‡ Real Indoor,
1 Gate

Multiple,
Unlabel.

✗ ✓|| n/a 1296x864 RGB n/a ✗ ✗ ✗ ✗ ✗ ✗ ✗ JSON, JPEG

[7]
Blackbird

∼10h
∼100km

Real +
Synth.

Indoor,
5 Scenes

Multiple,
Unlabel.

✗ ✗ 7m/s 1024x768@120Hz††

1024x768@360Hz††
Grayscale

RGB
V 60◦ ✓ ✗ @100Hz @360Hz ✗ @190Hz ✗ rosbag,

CSV, MP4,
PNG Depth

[8]
EuRoC

∼22’
∼1km

Real Indoor,
2 Scenes

Multiple,
Unlabel.

✗ ✗ 2.3m/s 752x480@20Hz Grayscale H 115◦ ✓ ✗ @200Hz @20Hz§

@100Hz
✗ ✗ ✗ CSV, PLY,

PNG

[9]
GRASP

∼10’
∼3km

Real Outdoor;
1 Scene

Multiple,
Unlabel.

✗ ✗ 17.5m/s 960x800@40Hz Grayscale n/a ✓ ✗ @200Hz ✗ ✗ ✗ ✗ rosbag

[10]
EyeGaze

∼300’
∼100km

Synth. Indoor,
2 Scenes

Multiple,
Unlabel.

✓ ✓¶¶ 13.8m/s 800x600@60Hz RGB 120◦ ✗ ✗ ✗ @500Hz∗∗ @500Hz ✗ ✗ CSV, MP4

[11]
NeuroBEM

∼75’ Real n/a ✗ ✗ ✗ 18m/s ✗ ✗ ✗ ✗ ✗ @1000Hz @400Hz ✗ @1000Hz @400Hz CSV

†Bounding boxes, top-bottom left-rigth corners. ⋄Piloted. ¶Autonomous. ∗Stereo. §Leica laser tracker. ‡9300 frames.
||Internal corners. ††Synthetic camera images. ¶¶Area of interest of the gaze. ∗∗Simulated.

– high-resolution, high-frequency (∼102Hz) collec-
tion of visual, inertial, and motion capture data;

– versatility—our dataset includes drone racing gates
fully labeled to the level of individual corners [17]
(for VIO, self-localization, scene understanding,
etc.), information about commands, control inputs,
and battery voltages (for estimation problems, etc.),
as well as lighting and sensor settings metadata.

• The open design (with commercial off-the-shelf (COTS)
components) of the racing drone used to collect the data.
For direct comparisons, the same design allows, without
modifications, both autonomous and piloted flight.

II. RELATED WORK

In Table I, we summarize the—all very recent—datasets
for vision-based flight, drone racing, and aggressive quadro-
tor control related to our own. Earlier datasets for multi-rotor
VIO and simultaneous localization and mapping (SLAM) in-
cluded the 2016 EuRoC [8] and the 2017 Zurich Urban [18]
micro aerial vehicle (MAV) datasets. However, these were
characterized by comparatively lower speeds and frequencies
of images and collected data than those needed for drone
racing.

The last five years have seen a renewed interest in ag-
gressive flight [15]. In [9], a new dataset was introduced
to validate stereo VIO methods for fast autonomous flight,
although without the inclusion of racing gates. The Blackbird
dataset [7] was proposed as an aggressive indoor flight
dataset for agile perception. While inertial data were col-
lected in the real world, its high-resolution images were gen-
erated in simulation. In 2019, Lockheed Martin released an
image dataset for Test#2 of its AlphaPilot challenge’s virtual
qualifiers [6], that did not include drone state information
(while Test#3 consisted of control in simulation).

The work closest to ours is the dataset presented in [3].
It also observes that previous benchmarks for drone VIO
had focused on too slow trajectories. Our dataset differs
from [3] in that it provides higher-frequency RGB mono-
camera images (the information used by human pilots), it

includes piloted and autonomous flights on identical tracks,
and it is fully annotated with high-frequency motion capture
data as well as the gates’ corner labels.

Other recent, specialized datasets for drone racing and ag-
gressive multi-rotor flight include [10], [11]. Another open-
source, open-hardware racing drone was proposed in [19].
In comparison, our design has a more powerful companion
computer and it can be seamlessly used by human pilots.

Compared to the existing literature (Table I) [15], our
dataset (i) includes high-resolution, high-frequency images
captured in different light settings and (ii) it is fully anno-
tated, down to the gates’ individual corners. It can support
research in all aspects of autonomous drone racing from VIO,
to gate pose estimation [20], [21] and data-driven control.

III. AN OPEN-DESIGN QUADROTOR FOR AUTONOMOUS
DRONE RACING AND DATA COLLECTION

To collect this dataset, we designed a new custom quadro-
tor (Figure 2). Our design is based on a 5” carbon-fiber frame
with a propeller-to-propeller diagonal of 215mm. The fully-
assembled drone, including the battery, weighs ∼870g, has
a thrust-to-weight ratio of 7.5 (load cell), and can reach a
maximum speed (measured outdoors) of 179km/h—allowing
for the aggressive maneuvers required in drone racing. The
top linear acceleration and angular velocity in the dataset are
69.85m/s2 (>7g’s) and 20.01rad/s. Importantly, our design
can be used, without modifications, as both an autonomous
and a human-piloted FPV racing drone. We do this to create a
true test bench to benchmark drone racing autonomy against
human performance. Our dataset includes both autonomous
and piloted flights. Its components are listed in Table II.

A. Design Overview
The quadrotor has three main sub-systems: (i) the quadro-

tor electronics, (ii) the autonomous module, and (iii) the
First-Person-View (FPV) system. These sub-systems are
combined by means of the frame and fasteners. The assem-
bled system comprises two cameras. One digital, connected
to the autonomous module, and one analog, used by the
human pilot in the FPV system. The two cameras share the

https://github.com/tii-racing/drone-racing-dataset/releases/tag/v2.0.0
https://github.com/tii-racing/drone-racing-dataset/releases/tag/v2.0.0
https://fpv.ifi.uzh.ch/datasets/
https://fpv.ifi.uzh.ch/datasets/
https://www.herox.com/alphapilot/85-2019-virtual-qualifier-tests
https://github.com/mit-aera/Blackbird-Dataset
https://github.com/mit-aera/Blackbird-Dataset
https://github.com/mit-aera/Blackbird-Dataset
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
https://github.com/KumarRobotics/msckf_vio/wiki/Dataset
https://osf.io/gvdse/
https://download.ifi.uzh.ch/rpg/NeuroBEM/

TABLE II: Off-the-shelf components needed to re-create the
open-design racing drone used to collect the dataset

Component Producer Model

ESC T-MOTOR F55A PROII 6S 4IN1

FCU Holybro Kakute H7 v1.3

RC Receiver
Team

BlackSheep
CROSSFIRE NANO RX (SE)

LONG RANGE

Battery Tattu
R-Line v5.0 1400mAh 22.2V 150C

6S1P LiPo

Computer NVIDIA Orin NX 16GB Module

Carrier board Seeed Studio A203 (Version 2)

BEC Matek BEC12S-PRO

Camera Arducam B0179 8MP IMX219

FPV Camera Foxeer T-Rex Mini 1500TVL

Frame Pyrodrone Hyperlite Floss 3.0 Race Frame 5”

Motors T-MOTOR F60 PRO V 2020KV

Propellers T-MOTOR T5147

same mount, and the FPV camera is placed above the digital
one (Figure 2).

1) Quadrotor electronics: These are (i) the electronic
speed controller (ESC), (ii) the Kakute H7 v1 flight controller
unit (FCU), (iii) the radio controller (RC) receiver, and
(iv) the battery. They are mounted underneath the frame.
These components are protected by the aluminum standoffs
connecting the frame and a 3D-printed custom battery cage.
The FCU hosts an STM32H7 microcontroller and it is
capable of running multiple firmware, including Betaflight,
Ardupilot, and PX4.

2) Autonomous module: It comprises (i) an NVIDIA
Orin NX (hosted on the A203v2 carrier board with SSD
and wireless card), (ii) the battery eliminator circuit (BEC)
powering it, and (iii) an Arducam RGB camera. These
components are placed above the frame and are secured
by two 3D-printed plates, connected by aluminum standoffs.
The top plate provides the mount for the cameras. A MIPI
CSI-2 ribbon cable connects the companion board with the
Arducam. The FC is connected via a serial port, using a
shielded cable. This connection is used to both control the
drone and read FC’s sensors.

3) FPV system: Independent from the autonomous mod-
ule and used for human piloting instead, it comprises an
FPV analog camera, a video transmitter, and its antennas,
all placed above the frame.

The CAD models of all the 3D printed parts and the bill
of materials of all other COTS components are available
online1, with a video tutorial on how to re-create our drone.

B. Sensors
Our quadrotor is equipped with multiple sensors for au-

tonomous and piloted aggressive flight:

1github.com/tii-racing/drone-racing-dataset/tree/
main/quadrotor

Bx

By

Bz

Wx

Wy

Wz

Cx

Cy

Cz

Fig. 2: The drone platform used to record the dataset, the
body frame B has its origin at the FCU’s IMU location, the
camera frame C is located where the bottom lens is (the top
lens being the one of the FPV system).

1) InvenSense MPU6000 IMU: Part of the quadrotor
electronics (III-A.1), it is embedded into the FC. This
module has two functions: delivering precise, real-time tri-
axis angular rate sensor (gyroscope) data, as well as accurate
tri-axis accelerometer data. The raw IMU data are read by
the companion computer in a demand/response exchange
fashion, using the Multiwii Serial Protocol (MSP) [22].

2) Arducam B0179 IMX219 8MP RGB Bayer cam-
era: Part of the autonomous module (III-A.2), it captures
640×480 pixel frames at 120Hz with a diagonal field-of-
view (FOV) of 175° and a horizontal field-of-view (HFOV)
of 155°. Its readout speed is 3.22×10−5s, computed as
the line length divided by the pixel rate before re-scaling,
i.e., 3560px/(1280×720×120Hz). It is one of the most used
lightweight embedded cameras on the market and it is fully
supported by NVIDIA with dedicated MIPI CSI-2 drivers.
The image YUV frames are captured in NV12 format. In the
NV12 format, each pixel in the luminance (Y) component
is represented by a single byte. The chrominance (UV)
components are interleaved and share memory locations.
The image is then converted to BGR, a common color
format suitable for processing and analysis. Eventually, the
image is saved as JPEG. This pipeline is accomplished by
the NVIDIA GStreamer plugin on the NVIDIA companion
computer.

3) Foxeer T-Rex Mini 1500TVL: It is the low latency
(6ms) camera in the FPV system (III-A.3). For the sake of
the data collection in this letter, this was used by a human
pilot in conjunction with a pair of 1280x960 OLED Fat Shark
HDO2 googles.

C. Software

1) Quadrotor electronics (III-A.1) software: The FC
firmware we used is Betaflight 4.3.1 [23], whose
proportional-integral-derivative controller (PID) was tuned
by a human pilot. The companion computer uses MSP to
both send commands to the FC and read its sensors. Accord-
ingly, we activate Betaflight’s MSP OVERRIDE feature to

https://github.com/tii-racing/drone-racing-dataset/tree/main/quadrotor
https://github.com/tii-racing/drone-racing-dataset/tree/main/quadrotor

Wy

Wz

Wx

Gate

MoCap

Fig. 3: The 25×9.7×7 meters indoor arena, instrumented
with 32 Qualisys MoCap cameras and equipped with four
5×5 feet racing gates used to record the dataset.

bypass the RC controller’s commands. An MSP OVERRIDE
channels mask limits to override the motor commands: for
safety reasons, a human can always disarm the drone with
an RC controller.

2) Autonomous module (III-A.2) software: On the Orin
NX module, we installed NVIDIA JetPack 5.1.1. The JetPack
includes Jetson Linux 35.3.1 Board Support Package (BSP)
with Linux Real-Time Kernel 5.10, an Ubuntu 20.04-based
root file system with CUDA 11.4 support. We use the
Humble (current LTS) distribution of the Robot Operating
System 2 (ROS2) as the middleware for communication
between the perception, planning, and control modules.

IV. DATA COLLECTION PROTOCOL

A. Flight Arena, Racing Gates, and Motion Capture System

Our dataset was recorded in a 25 (L) by 9.7 (W) by 7
(H) meters indoor flying arena. The arena is equipped with
a 32-camera Arqus A12 Qualisys Motion Capture (MoCap)
system, tracking 6DoF poses of defined rigid bodies with
millimeter accuracy at 275Hz. The drone design from Sec-
tion III is equipped with six 25mm markers defining a single
rigid body. The markers are mounted on the top plate, battery
cage, and 48.2mm arm extensions, preventing the markers
from being occluded by the propellers (Figure 2). The origin
of the drone’s rigid body was placed at the location of
the FCU’s IMU, as shown in Figure 2. The IMU was also
calibrated using the RC before each take-off [23].

We use a minimum of 4 and up to 7 gates to create 2D
and 3D racing tracks. The 7-gate track is inspired by the
one in [1] but shrunken to meet our arena size constraints
(Figure 3). This track features challenging maneuvers like the
Split-S and sharp turns, and it evolves over the z-axis for 5
meters. The gates are made of PVC pipes covered by printed
fabric banners. They measure 7 by 7 feet (213.36 cm) and
have an internal opening of 5 by 5 feet (152.4 cm), similar to
those used in major drone racing leagues [24]. Each racing
gate’s rigid body is defined by four markers placed in its
inner corners.

B. Flight Program

Our dataset contains a total of 30 flights (Table III):
12 human-piloted and 18 autonomous ones. In either case,
two shapes—ellipse and lemniscate (Figure 4)—have been

TABLE III: Summary of the flights recorded in the dataset

Control Shape Top Speed Time Distance

Autonomous

Ellipse† 21.83 m/s 149.08 s 455.27 m

Lemniscate† 10.22 m/s 155.08 s 359.63 m

Race Track‡ 21.39 m/s 278.05 s 1161.51 m

Piloted
Ellipse§ 9.50 m/s 575.38 s 2586.3 m

Lemniscate§ 8.93 m/s 593.63 s 2593.47 m
†Flown twice in 6 flights (3 brightness × 2 camera settings). ‡Flown
three times in 6 flights (3 brightness × 2 camera settings). §Flown as

many times as possible in 6 flights (3 brightness × 2 camera settings).

executed 6 times. The 6 additional autonomous flights are
collected on a 3D race track. The 6 repetitions correspond
to the combination of 3 different illumination conditions and
2 camera settings.

1) Brightness levels: We created three levels of brightness
for data collection. The high brightness level is achieved with
both natural and artificial light (max./avg./min. measured
illuminance in the arena of 2480 lx, 1500 lx, and 254 lx);
the medium level has controlled light, and it is obtained by
turning on all the artificial lights in the arena but keeping
natural light out using the blinds (955 lx/672.3 lx/254 lx).
The low brightness condition is obtained by turning off most
of the lights in the arena and keeping the blinds down, (216
lx/72 lx/34.2 lx).

2) Camera settings: We used two different nvarguscam-
erasrc settings, auto exposure time and gains, and fixed
exposure time (2.5ms), analog gain (2), and digital gain (1).
In the auto setting, the image is brighter but suffers from
higher motion blur. In fixed, the image is darker, with limited
motion blur.

C. Human-piloted and Autonomous Control
In autonomous mode, each flight contains exactly two (el-

lipse, lemniscate) or three (race track) laps, lasting ∼25 and
∼45s, respectively. The human-piloted flights last between
84 and 108s, during which the pilot tries to achieve the
maximum number of laps possible on a single battery charge.
We did not clip the human-piloted flights as they exhibit
higher variability and cover a larger state space.

In the autonomous flights, we use a Proportional Deriva-
tive (PD) controller based on [25] for the 2D tracks and a
Model Predictive Controller (MPC) based on [26] for the 3D
track. The motion capture system feeds the current quadrotor
pose into the controller at 275Hz through WiFi. Control
commands are sent to the FCU at the same update frequency
of 275Hz by the PD controller, and 160Hz by the MPC. A
Python implementation of the PD controller and its tuned
gains are available on GitHub2.

The human pilot used a camera angle (for both their FPV
camera and the recorded Arducam) of 30°. The autonomous
runs were recorded with a camera angle of 40° for the
lemniscate and 50° for the ellipse and race track, empirically
chosen to maximize the gates’ visibility. FPV pilots choose
the camera angles according to the speed they plan to reach3.

2github.com/tii-racing/drone-racing-dataset/blob/
main/scripts/reference controller.py

3www.getfpv.com/learn/fpv-essentials/fpv-camera-
angle-full-throttle-flight/

https://github.com/tii-racing/drone-racing-dataset/blob/main/scripts/reference_controller.py
https://github.com/tii-racing/drone-racing-dataset/blob/main/scripts/reference_controller.py
https://www.getfpv.com/learn/fpv-essentials/fpv-camera-angle-full-throttle-flight/
https://www.getfpv.com/learn/fpv-essentials/fpv-camera-angle-full-throttle-flight/

We used the same principle to choose the camera angle
for the autonomous mode, making the gates visible at high
speed.

D. Image Labeling
Often being the only well-known object in a racing en-

vironment, gates are key to relative localization and next-
waypoint detection. In this dataset, we provide image labels
in the form of bounding boxes and keypoints associated
with the inner corners of all visible gates. Coupled with
the drone’s inertial data and the ground truth from the
motion capture system, our dataset allows to reproduce and
benchmark the state-of-the-art in gate pose estimation [27]
as well as to develop new methods.

Labeling was first performed automatically, using a top-
down keypoints detector [28], [29] trained on a synthetic
dataset and fine-tuned on 5’000 manually labeled images.
All the images were then labeled through an iterative process
of manual review and re-training. Finally, all labels were
eventually manually reviewed. Bounding boxes and corner
positions are provided, based on the auto-labeling results
and a human estimate, even for partially occluded gates.
However, no distinction between occluded and fully visible
keypoints is made. Thus, the only visibility values we provide
are 0 (outside the image boundaries) and 2 (inside the
image boundaries) as per COCO format definition [30]. As
a convention, gates are not labeled when there are no visible
corners.

E. Time Synchronization
We record three separate data streams during each flight:

(i) a rosbag containing the FCU readings and the au-
tonomous control setpoints, (ii) the on-board camera images,
and (iii) the Qualisys motion capture measurements.

For the FCU data, we use custom ROS2 messages and the
Real-Time Kernel to limit the jitter in the sensors’ readings.
Furthermore, the GStreamer pipeline allows us to save the
images and timestamp them using the frame acquisition time.

In the end, two different clocks are involved: the real-
time clock of the drone’s companion computer, and the
clock of the Qualisys workstation. Both were synced with
a Network Time Protocol (NTP) server placed inside the
facility, before each flight. The clock offsets w.r.t. the NTP
server of the two machines were recorded before and after
each flight to compute the jitter that occurred during the
flight. The drone achieved a microsecond clock accuracy
with Chrony, while the Qualisys workstation recorded a
millisecond accuracy. The total jitter from start to end of
a trajectory never exceeded 3ms.

F. Data Post-processing
The motion capture data were converted to CSV, and

the clock offset with the onboard computer was removed.
The ROS2 bags were also dumped into CSVs. All the data
were then trimmed to remove pre-take-off and post-landing
records. We used an open-source script for data alignment
(Snipped VI) to produce user-friendly comprehensive CSVs.
The alignment is achieved through linear interpolation for
all the fields with the exception of the rotation matrices, for
which spherical linear interpolation [31] is used instead.

V. DATA FORMAT

For each flight, we recorded data from four different
sources: (i) the motion capture system’s ground truth (drone
and gates poses), (ii) the Arducam IMX219 Bayer camera
(images), (iii) the flight controller (IMU, battery, motors,
RC), and (iv) companion computer (autonomous control
reference and control inputs).

All data collected is timestamped (Unix epoch time) with
a microsecond resolution. In every flight folder, a YAML
metadata file summarizes the camera and light setting, along
with the type of track. The total time of flight and meters
traveled are also included. The folder and file structure of
the dataset are shown in Figure 5

A. Camera-aligned and Uniform-sampling CSVs

For each flight, we pre-compiled two easy-to-use, com-
prehensive CSV files that include all the data detailed in
the subsequent sections, aligned via interpolation. In each
[FLIGHT] cam ts sync.csv file, we use the timestamps
from the camera frames, and all other data points are linearly
interpolated to align with these timestamps. Conversely, in
each [FLIGHT] 500hz freq sync.csv file, timestamps are
sampled at a uniform 500Hz frequency between the first
and last camera timestamps. All numerical data are again
interpolated and aligned with timestamps, and each row
references the file name of the camera frame with the closest
timestamp. All the columns in each of these CSVs are
presented in Table IV.

B. Drone and Gates’ Poses from Motion Capture

For each flight, files gate corners [FLIGHT].csv con-
tain the timestamped x, y, and z coordinates of all the gates’
markers, in meters. Files mocap [FLIGHT].csv contain the
poses of all the rigid bodies, i.e., the drone and the gates.
Each pose comprises x, y, z, roll, pitch, yaw, measurement
residual, and the orientation described by a 3×3 column-
major order matrix. Poses are in meters and radiants.

C. Camera Frames

The images from the Arducam IMX219 Bayer camera
are recorded at 120 FPS with a resolution of 640×480px
and saved as JPEG files. They are provided as a ZIP file
along with a camera [FLIGHT].csv which contains the
timestamps of the acquisition of the frame and the name
of the corresponding JPEG file.

D. Image Labels

For each image, the gates’ bounding boxes and internal
corner labels are given as a TXT file with the same name
as the JPEG file. Each line in a TXT file represents a single
gate in the form:

0 cx cy w h tlx tly tlv trx try trv brx bry brv blx bly blv

where 0 is the class label for a gate (the only class in
our dataset); cx, cy , w, h ∈ [0, 1] are its bounding box
center’s coordinates, width, and height, respectively; and tlx,
tly ∈ [0, 1], tlv ∈ [0; 2] are the coordinates and visibility (0
outside the image boundaries; 2 inside the image bound-
aries) of the top-left internal corner. Similarly for tr, bl,

−10
0

10 −2

0

2
0

0.5
1

1.5

x (m)
y (m)

z
(m

)

−10
0

10 −2

0

2
0

0.5
1

1.5

x (m)
y (m)

z
(m

)
−10

0
10 −2

0

2
0

0.5
1

1.5

x (m)
y (m)

z
(m

)

−10
0

10 −2

0

2
0

0.5
1

1.5

x (m)
y (m)

z
(m

)
−10

0
10 −2

0

2
0

0.5
1

1.5

x (m)
y (m)

z
(m

)

Fig. 4: Examples of recorded trajectories: piloted ellipse flight-01p-ellipse (top-left), piloted lemniscate
flight-07p-lemniscate (top-center), autonomous ellipse flight-01a-ellipse (bottom-left), autonomous lemniscate
flight-07a-lemniscate (bottom-center), and autonomous race track flight-13a-trackRATM (bottom-right).

br, the top-right, bottom-left, and bottom-right corners. All
values are in pixel coordinates normalized with respect to
image size. The keypoints label format follows the COCO
definition [30]. The labels are provided as a ZIP file in
label [FLIGHT].zip.

E. On-board Data from the Quadrotor Electronics
From the FCU in Subsubsection III-A.1, we record

the following measurements: battery’s voltage (Volts), at
50Hz (battery [FLIGHT].csv); IMU, i.e., accelerom-
eter (m/s2) and gyroscope (rad/s) x, y, and z axes
in the East-North-Up (ENU) board frame, at 500Hz
(imu [FLIGHT].csv); single motor thrust feedback, nor-
malized between 0 and 1, for all four motors, at 100Hz
(motors thrust [FLIGHT].csv); RC’s channels, i.e. roll,
pitch, thrust, yaw, aux1, aux2, aux3, and aux4 val-
ues of the sticks between 1000 and 2000, at 100Hz
(channels [FLIGHT].csv, only for human-piloted flights).

F. On-board Data from the Autonomous Module
From the NVIDIA Orin in Subsubsection III-A.2, we

record the following measurements: the drone state, i.e.,
position (m), orientation (quaternion), velocity (m/s), and
angular velocity (rad/s), at 275Hz, sent as ground truth from
the MoCap system to the drone, with the time delay of the
communication channel (drone state [FLIGHT].csv).

Furthermore, only for the autonomous flights, we also
record: the controller’s reference, i.e., position (m), ori-
entation (quaternion), linear (m/s) and angular velocity
(rad/s), acceleration (m/s2), jerk (m/s3), heading (rad),
and heading rate (rad/s), computed at 100Hz for the
ellipse and lemniscate, and 500Hz for the race track
(reference [FLIGHT].csv); the collective thrust and body
rates (CTBR) computed by the autonomous controller, i.e.,
the normalized thrust (N/kg i.e. m/s2), roll, pitch, and yaw
rates (rad/s), at 275Hz for the PD controller, and 160Hz
for the MPC, (ctbr [FLIGHT].csv); and the RC’s channels
sent to the FCU calculated from the CTBR commands, i.e.,

roll, pitch, thrust, yaw, aux1, aux2, aux3, and aux4 values of
the sticks, at 275Hz and 160Hz for PD and MPC respectively,
(channels [FLIGHT].csv).

TABLE IV: Data available in the precompiled
cam ts sync.csv and 500Hz freq sync.csv (Sec. V-A)

Column Number and Quantity Name Unit Data Type

0. elapsed time s float

1. timestamp µs int

2. img filename n/a string

3. accel [x|y|z] m/s2 float

6. gyro [x|y|z] rad/s float

9. thrust[0-3] 1 float ∈ [0, 1]

13. channels [roll|pitch|thrust|yaw] 1 int ∈ [1000, 2000]

17. aux[1-4] 1 int ∈ [1000, 2000]

21. vbat V float

22. drone [x|y|z] m float

25. drone [roll|pitch|yaw] rad float

28. drone velocity linear [x|y|z] m/s float

31. drone velocity angular [x|y|z] rad/s float

34. drone residual m float

35. drone rot[[0-8]] 1 float

44. gate[1-7] int [x|y|z] m float

56. gate[1-7] int [roll|pitch|yaw] rad float

68. gate[1-7] int residual m float

72. gate[1-7] int rot[[0-8]] 1 float

108. gate[1-7] marker[1-4] [x|y|z] m float

VI. VISUALIZATION AND POST-PROCESSING SCRIPTS

Along with the dataset, we provide an installable4 open-
source Python repository comprising of a set of processing
scripts to visualize and manipulate the data.

4github.com/tii-racing/drone-racing-dataset/blob/
main/README.md

https://github.com/tii-racing/drone-racing-dataset/blob/main/README.md
https://github.com/tii-racing/drone-racing-dataset/blob/main/README.md

https://github.com/tii-racing/drone-racing-dataset/data/

[autonomous|piloted]

flight-[01-12][a|p]-[ellipse|lemniscate|trackRATM]/

csv raw/

ros2bag dump/

battery flight-01a-ellipse.csv

channels flight-01a-ellipse.csv

∗ctbr flight-01a-ellipse.csv

drone state flight-01a-ellipse.csv

imu flight-01a-ellipse.csv

motors thrust flight-01a-ellipse.csv

∗reference flight-01a-ellipse.csv

camera flight-01a-ellipse.csv

gate corners flight-01a-ellipse.csv

mocap flight-01a-ellipse.csv

ros2bag flight-01a-ellipse/

metadata.yaml

ros2bag flight-01a-ellipse.db3

camera flight-01a-ellipse.zip

label flight-01a-ellipse.zip

flight-01a-ellipse 500hz freq sync.csv

flight-01a-ellipse cam ts sync.csv

metadata flight-01a-ellipse.yaml

∗ Only in the autonomous flight folders.

Fig. 5: Folder and file structure of the dataset.

data interpolation.py can be used to re-sample and
align the data at an arbitrary frequency using linear interpo-
lation. Its output is a CSV file containing the aligned, re-
sampled data from all the sources in Section V. First, one
selects a flight by passing its id, e.g., flight-01a-ellipse
as an argument. Then, one can choose which synchronization
option to use. In option 1, one must choose a new frequency
for which timestamps are generated, using the first and
last camera timestamp as a window. All the data are then
interpolated to the generated timestamps. For the camera
frames, the one with the closest timestamp is referred to by
file name. In option 2, the timestamps of the camera CSV
are used as a reference instead.
$ python3 data_interpolation.py \
> --flight flight-01a-ellipse \
> --sync-option 1 --freq 200
Loading and pre-processing CSVs...
Using frequency 200 to interpolate all data
Syncing dataframes...
Sync complete.
Saving final CSV...

Final CSV saved.

data plotting.py is a script to simultaneously visualize
multiple sensor data using customizable subplots. One can
select which subplots to include by means of command-
line arguments. The script facilitates quick insights into the
drone’s flight behavior and performance, such as its 3D
trajectory and the gate positions, as well as pose, velocities,
accelerations, battery voltage, RC channels, etc.; an example
of the script output is shown in Figure 6.
$ python3 data_plotting.py \
> --csv-file flight-01a-ellipse_cam_ts_sync.csv \
> --subplots 3d

label visualization.py is the script to visualize the
label annotations on the images. It allows one to skim the
images of a flight, read the associated YOLO-style label
file, and plot the gates’ bounding boxes and internal corner
keypoints. An individual frame example is shown in Figure 7.
$ python3 label_visualization.py \
> --flight flight-01a-ellipse

create std bag.py is a utility script that reads all the
data from a user-specified flight and creates a new ROS2
bag with the same data (including images) but only using
standard messages from the ROS2 msgs library. All the
messages are timestamped in nanoseconds. It may take
several GBs.
python3 create_std_bag.py \
> --flight flight-01a-ellipse

VII. CONCLUSIONS

The development of autonomous racing drones requires
simultaneously tackling challenging perception, state estima-
tion, and control tasks—in real time—under limited compu-
tational resources. With this dataset, we created a one-stop
resource to develop and evaluate new algorithms for au-
tonomous drone racing. Our work is comprehensive of both
aggressive autonomous and piloted flight; high-resolution,
high-frequency visual, inertial, and motion capture data;
commands and control inputs; multiple light settings; and
corner-level labeling of drone racing gates. Along with the
data, we open-sourced the scripts used to parse and visual-
ize them. To further democratize autonomous drone racing
research, we also released the parts list and instructions
to recreate our flight platform, using commercial off-the-
shelf components, hoping to see it re-created and used by
researchers around the world.

REFERENCES

[1] E. Kaufmann, et al., “Champion-level drone racing using deep rein-
forcement learning,” Nature, vol. 620, no. 7976, pp. 982–987, Aug
2023.

[2] A. Romero, et al., “Model predictive contouring control for time-
optimal quadrotor flight,” IEEE Transactions on Robotics, vol. 38,
no. 6, pp. 3340–3356, 2022.

[3] J. Delmerico, et al., “Are we ready for autonomous drone racing? the
uzh-fpv drone racing dataset,” in 2019 International Conference on
Robotics and Automation (ICRA), 2019, pp. 6713–6719.

[4] Y. Song, et al., “Reaching the limit in autonomous racing: Optimal
control versus reinforcement learning,” Science Robotics, vol. 8,
no. 82, 2023.

[5] J. Deng, et al., “Imagenet: A large-scale hierarchical image database,”
in 2009 IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2009, pp. 248–255.

https://github.com/tii-racing/drone-racing-dataset
https://github.com/tii-racing/drone-racing-dataset/blob/main/scripts/data_interpolation.py
https://github.com/tii-racing/drone-racing-dataset/blob/main/scripts/data_plotting.py
https://github.com/tii-racing/drone-racing-dataset/blob/main/scripts/label_visualization.py
https://github.com/tii-racing/drone-racing-dataset/blob/main/scripts/create_std_bag.py

−10 −5 0 5 10 −2
0

20

1

2

x (m)
y (m)

z
(m

)

−10

−5

0

5

10

Po
s.

(m
)

x
y
z

0

0.2

0.4

N
or

m
.T

hr
.(

1) T1

T2

T3

T4 −0.5

0

0.5

R
ot

.(
ra

d)

Roll
Pitch
Yaw

1,000

1,200

1,400

1,600

1,800

B
F

C
h.

(1
) Roll

Pitch
Yaw
Thr. 0

10

20

30

A
cc

.(
m

/s
2

) x
y
z

0 20 40 60 80 100

23

24

Time (s)

Vo
lt.

(V
) Battery

0 20 40 60 80 100

−2

0

2

4

Time (s)

G
yr

o.
(r

ad
/s

) x
y
z

Fig. 6: Sample output of the utility script data plotting.py (Section VI), plotting 21 different data points for
flight-07p-lemniscate, a piloted, 13-lap flight on the lemniscate trajectory.

Fig. 7: Sample output of script label visualization.py
from Section VI, overlaying the bounding boxes and key-
points (top-left, top-right, bottom-right, and bottom-left cor-
ners) for all obstructed and unobstructed gates in one of the
frames from flight-02a-ellipse.

[6] “AlphaPilot – Lockheed Martin AI Drone Racing Innovation Chal-
lenge,” https://www.herox.com/alphapilot/teams, 2019, [Online].

[7] A. Antonini, et al., “The blackbird dataset: A large-scale dataset
for uav perception in aggressive flight,” in Proceedings of the 2018
International Symposium on Experimental Robotics, J. Xiao, et al.,
Eds. Cham: Springer International Publishing, 2020, pp. 130–139.

[8] M. Burri, et al., “The EuRoC micro aerial vehicle datasets,” The
International Journal of Robotics Research, vol. 35, no. 10, pp. 1157–
1163, 2016.

[9] K. Sun, et al., “Robust stereo visual inertial odometry for fast
autonomous flight,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 965–972, 2018.

[10] C. Pfeiffer et al., “Human-piloted drone racing: Visual processing and
control,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
3467–3474, 2021.

[11] L. Bauersfeld, et al., “NeuroBEM: Hybrid aerodynamic quadrotor
model,” in Robotics: Science and Systems XVII. Robotics: Science
and Systems Foundation, jul 2021.

[12] P. Newman et al., “Data papers—peer reviewed publication of high
quality data sets,” pp. 587–587, 2009.

[13] A. Geiger, et al., “Vision meets robotics: The kitti dataset,” Interna-

tional Journal of Robotics Research (IJRR), 2013.
[14] W. Zhao, et al., “UTIL: An ultra-wideband time-difference-of-arrival

indoor localization dataset,” 2022.
[15] D. Hanover, et al., “Autonomous drone racing: A survey,” 2023.
[16] A. Loquercio, et al., “Learning high-speed flight in the wild,” Science

Robotics, vol. 6, no. 59, 2021.
[17] P. Foehn, et al., “Alphapilot: autonomous drone racing,” Autonomous

Robots, vol. 46, no. 1, pp. 307–320, Jan 2022.
[18] A. L. Majdik, et al., “The Zurich urban micro aerial vehicle dataset,”

The International Journal of Robotics Research, vol. 36, no. 3, pp.
269–273, 2017.

[19] P. Foehn, et al., “Agilicious: Open-source and open-hardware agile
quadrotor for vision-based flight,” Science Robotics, vol. 7, no. 67, p.
eabl6259, 2022.

[20] C. de Wagter, et al., “The artificial intelligence behind the win-
ning entry to the 2019 ai robotic racing competition,” ArXiv, vol.
abs/2109.14985, 2021.

[21] E. Kaufmann, et al., “Beauty and the beast: Optimal methods meet
learning for drone racing,” 2019 International Conference on Robotics
and Automation (ICRA), pp. 690–696, 2018.

[22] MultiWii, “Multiwii serial protocol,” http://www.multiwii.com/wiki/
index.php?title=Multiwii Serial Protocol.

[23] Betaflight, “The betaflight open source flight controller firmware
project,” https://github.com/betaflight/betaflight.

[24] MultiGP, “Multigp drone racing gate,” https://www.multigp.com/
product/drone-racing-gate-bundle/.

[25] M. Faessler, et al., “Differential flatness of quadrotor dynamics subject
to rotor drag for accurate tracking of high-speed trajectories,” IEEE
Robotics and Automation Letters, vol. 3, no. 2, pp. 620–626, 2018.

[26] D. Falanga, et al., “Pampc: Perception-aware model predictive con-
trol for quadrotors,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018, pp. 1–8.

[27] H. X. Pham, et al., “Deep learning for vision-based navigation in
autonomous drone racing,” Deep Learning for Robot Perception and
Cognition, 2022.

[28] K. Chen, et al., “Mmdetection: Open mmlab detection toolbox and
benchmark,” 2019.

[29] M. Contributors, “Openmmlab pose estimation toolbox and bench-
mark,” https://github.com/open-mmlab/mmpose, 2020.

[30] “COCO - Common Objects in Context - Data format,” [Accessed 30.
Aug. 2023]. [Online]. Available: https://cocodataset.org/#format-data

[31] K. Shoemake, “Animating rotation with quaternion curves,” in Pro-
ceedings of the 12th Annual Conference on Computer Graphics and
Interactive Techniques, ser. SIGGRAPH ’85. New York, NY, USA:
Association for Computing Machinery, 1985, p. 245–254.

https://www.herox.com/alphapilot/teams
http://www.multiwii.com/wiki/index.php?title=Multiwii_Serial_Protocol
http://www.multiwii.com/wiki/index.php?title=Multiwii_Serial_Protocol
https://github.com/betaflight/betaflight
https://www.multigp.com/product/drone-racing-gate-bundle/
https://www.multigp.com/product/drone-racing-gate-bundle/
https://github.com/open-mmlab/mmpose
https://cocodataset.org/#format-data

	Introduction
	Related Work
	An Open-design Quadrotor for Autonomous Drone Racing and Data Collection
	Design Overview
	Quadrotor electronics
	Autonomous module
	FPV system

	Sensors
	InvenSense MPU6000 IMU
	Arducam B0179 IMX219 8MP RGB Bayer camera
	Foxeer T-Rex Mini 1500TVL

	Software
	Quadrotor electronics (III-A.1) software
	Autonomous module (III-A.2) software

	Data Collection Protocol
	Flight Arena, Racing Gates, and Motion Capture System
	Flight Program
	Brightness levels
	Camera settings

	Human-piloted and Autonomous Control
	Image Labeling
	Time Synchronization
	Data Post-processing

	Data Format
	Camera-aligned and Uniform-sampling CSVs
	Drone and Gates' Poses from Motion Capture
	Camera Frames
	Image Labels
	On-board Data from the Quadrotor Electronics
	On-board Data from the Autonomous Module

	Visualization and Post-processing Scripts
	Conclusions
	References

