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Abstract— In the realm of autonomous mobile robots, safe
navigation through unpaved outdoor environments remains
a challenging task. Due to the high-dimensional nature of
sensor data, extracting relevant information becomes a complex
problem, which hinders adequate perception and path planning.
Previous works have shown promising performances in extracting
global features from full-sized images. However, they often face
challenges in capturing essential local information. In this paper,
we propose Crop-LSTM, which iteratively takes cropped image
patches around the current robot’s position and predicts the future
position, orientation, and bumpiness. Our method performs local
feature extraction by paying attention to corresponding image
patches along the predicted robot trajectory in the 2D image
plane. This enables more accurate predictions of the robot’s future
trajectory. With our wheeled mobile robot platform Raicart, we
demonstrated the effectiveness of Crop-LSTM for point-goal
navigation in an unpaved outdoor environment. Our method
enabled safe and robust navigation using RGBD images in
challenging unpaved outdoor terrains. The summary video is
available at https://youtu.be/iIGNZ8ignk0.

Index Terms— Autonomous Vehicle Navigation, Deep Learning
Methods

I. INTRODUCTION

In recent years, autonomous mobile robots have been studied
for tasks such as transportation [1], surveillance [2], and search
and rescue [3]. In such missions, the robots often need to
navigate through challenging and rugged terrains, requiring
them to determine safe pathways. To this end, many researchers
[4], [5] leveraged model-based path planning algorithms to
identify suitable paths to avoid potential dangers. For instance,
Hu et al. [6] utilized dynamics equations to calculate the
future position of the vehicle, finding an optimal path to avoid
collision with obstacles.

However, model-based approaches sometimes suffer in
autonomous navigation on uneven terrain due to the com-
plex nonlinear vehicle dynamics involved. To express the
nonlinear vehicle dynamics, model-based approaches [7], [8]
utilized mathematical models to represent the system behavior.
However, modeling the system proves challenging due to the
terrain’s deformable nature, the compressibility of tires, and the
propensity of the tires to slip. These complexities can hinder
navigation on complex and unpredictable terrains.

In response to these complexities, researchers introduced
learning-based methods, which can acquire vehicle dynamics
data from extensive driving experience and eliminate the
necessity of complex formulas associated with model-based
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Fig. 1. The wheeled robot platform, Raicart, adeptly navigates through
unpaved outdoor terrain. The environment is a straw blanket on a dirt road.
Raicart navigates this challenging course without explicit object segmentation.
The proposed navigation system finds a path that minimizes bumpiness and
oscillation in orientation.

approaches. One of the popular methods in this approach is
learning from experts [9], [10] where the agent imitates the
expert’s driving demonstration. This method enables the robot
to learn from experienced drivers and leverage their ability to
navigate complex environments. The expert’s ability to leverage
the semantic meanings of the complex environment can aid the
robot in making informed decisions. However, it requires an
extensive amount of expert-driving data, which is challenging
and expensive to collect.

The utilization of Supervised Learning (SL) can address
the limitations inherent in Imitation Learning (IL) approaches.
Some works [11], [12] utilized SL and used diverse and ran-
domly generated data sets, eliminating the need to accumulate
extensive expert-driving data required in IL. For instance,
Khan et al. [13] proposed a method utilizing SL to learn
the vehicle dynamics model from randomly controlled driving
data, effectively simplifying the data collection process.

Although SL is widely utilized for navigation tasks, ex-
tracting the necessary information from high-dimensional
exteroceptive sensor data remains a challenge. Sensor abstrac-
tion is crucial for SL in autonomous navigation because it
reduces the complexity of raw sensor data, enabling effective
feature extraction and learning of relevant patterns. To extract
significant details of the surrounding environments, some
researchers [14], [15], [16], [17] employed Convolutional
Neural Networks (CNN) to encode camera images into small
vectors and utilized the encoded data for the navigation task.

However, all methods mentioned above focused on extracting
global information rather than utilizing attention mechanisms.
By incorporating attention mechanisms, researchers have shown
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the capability of extracting significant local information. For
instance, Guan et al. [18] utilized self-attention to generate
masks and identify critical regions within the image. Similar
approaches were conducted on image classification [19],
[20] and object detection tasks [21] and showed outstanding
performances.

Drawing inspiration from these methods, we propose a
cropping technique that pays attention to the regions along the
predicted robot trajectory in the 2D image plane. Through the
application of the cropping method, we trained an accurate
vehicle dynamics model. Subsequently, we developed a naviga-
tion system that reduced the bumpiness experienced during the
drive, enabling the robot to navigate through unpaved outdoor
terrains safely.

Our main contributions are as follows:
• We propose Crop-LSTM, a novel architecture that utilizes

cropping at the feature map. The introduction of cropping
allows the development of a more precise vehicle dynam-
ics model compared to previous approaches that solely
utilize full-sized images.

• We present a navigation system featuring a trained Crop-
LSTM. The sampler generates multiple sequences of
future throttling velocity and steering angle commands.
From this, the robot can select and execute the sequence
that minimizes bumpiness and oscillation in orientation.

• We built a wheeled robot platform Raicart upon a 1/5 scale
off-road RC car chassis. The robot includes an NVIDIA
Jeston AGX Xavier computer with proprioceptive and
exteroceptive sensors. We share the details of the robot
in this paper.

• We conducted autonomous navigation experiments on
unpaved outdoor environments with an in-house wheeled
robot platform, Raicart.

II. RELATED WORK

Autonomous navigation presents challenges due to the
highly nonlinear dynamics of vehicles [7]. The intricate
interactions of the wheel and the terrain can lead to complex
and unpredictable behaviors, making precise control difficult.
Researchers [22], [23] have approached this by assuming
a simplified dynamics model, transforming the navigation
problem into a path planning problem. For instance, Dolgov
et al. [4] employed a cost map to identify the optimal path
through a path planning algorithm. Moreover, Chu et al. [5]
utilized a sampling-based optimization technique, generating
candidate paths and selecting one that minimizes the user-
defined cost. However, these approaches have limitations, as
the robot may struggle to track the planned path consistently
where the complex and unpredictable environment leads to
deviations from the desired trajectory.

To overcome these limitations, deep-learning techniques
were introduced and demonstrated effectiveness in enhanc-
ing the robot’s ability to navigate challenging terrains. For
instance, Cai et al. [24] utilized a Reinforcement-Learning
(RL) based controller to replace complex motion equations
for aggressive drift driving. Likewise, Weerakoon et al. [23]
trained a neural network that generates an attention mask
applied to the elevation map, allowing the identification of

feasible navigation trajectories. Harnessing human-derived data
presents an additional avenue for the implementation of deep-
learning techniques in robot navigation. This approach has
yielded impressive driving results by utilizing CNNs to extract
information from images and incorporating expert driving data
[9], [10].

Semantic segmentation aids driving by precisely classifying
distinct regions within an image [25], [26]. This capability al-
lows mobile robots to identify dangerous regions, enabling them
to determine safe paths for navigation. For instance, Guan et al.
[22] presented an effective method for semantic segmentation in
unpaved outdoor terrains. They utilized semantic segmentation
to classify the navigability levels of the terrain. However,
applying semantic segmentation to mobile robots presents
challenges. Terrains often have varying and unpredictable
features, making it difficult for semantic segmentation models
to classify distinct regions accurately.

To address these concerns, researchers proposed an alterna-
tive end-to-end navigation approach that eliminates the need
for explicit image region segmentation. For instance, Bojarski
et al. [9] proposed a method that directly generates control
action without additional sampling or optimization by imitating
human driving data. Additionally, Kenda et al. [14] proposed
an end-to-end driving method that leverages simulation and RL
instead of human demonstrations. However, these approaches
are limited to navigation on relatively simple and short road
scenarios.

To overcome these problems, an alternative method lever-
aging learned dynamics models to build a navigation system
was proposed. For instance, Khan et al. [13] introduced a
learning-based navigation system that utilizes encoded image
data to learn the dynamics model that predicts the robot’s future
position and evaluates the likelihood of potential collisions and
bumpiness. Building upon this pioneering work, researchers
have delved deeper into point-goal navigation by applying
topological maps [15] and learned latent variable models [16].
Shah et al. [17] showcased the navigational capabilities at
kilometer-scale distances. Moreover, Shah et al. [27] harnessed
pre-trained large language models to enhance their navigation
performance.

III. METHOD

In the following sections, we provide detailed information
about the four major parts of our work. A. The wheeled
robot platform, Raicart, specifically designed for autonomous
navigation in unpaved outdoor terrain. B. Data collection and
auto-labeling process, achieved without human supervision. C.
Crop-LSTM, our novel architecture for efficient learning of the
vehicle dynamics model. D. Our navigation system for safe
robot navigation on unpaved outdoor terrain.

A. Raicart: The Wheeled Mobile Robot Platform

Raicart is our in-house wheeled robot platform designed for
outdoor navigation tasks, shown in Fig. 3. The dimensions of
the robot are 770mm x 500mm x 480mm, and the weight is
14kg. The chassis of the robot is constructed over a Losi 1/5
scale RC car, drawing similarities to prior work [28], [29]. The
system adeptly changes its heading direction through Ackerman
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Fig. 2. Overview of the proposed cropping method. We find the current position on the image and crop the region near the position, shown with a red dotted
box. We pass the cropped image patch with a control command to the dynamics model, predicting the next position. We find the new cropping region, and the
whole process is repeated.

steering, effectively preventing the tires from slipping sideways
while maneuvering through curves. The robot is equipped
with NVIDIA Jetson AGX Xavier, a small but powerful
embedded PC. We employed the Microstrain 3DM-CV5-IMU
for measuring linear acceleration and angular velocity. The
Zed2 stereo camera was utilized for streaming RGB and
depth images with a resolution of 336×188. Additionally,
we employed the Intel realsense T265 tracking camera for
Visual-Inertial Odometry (VIO).

Fig. 3. The wheeled mobile robot platform Raicart

B. Data Collection and Automated Labeling

For vehicle dynamics model learning, we collected data
by driving Raicart on unpaved outdoor terrain. During the
operation, a human intentionally provided random control
commands of throttling velocity and steering angle to the
robot at a frequency of 10Hz. All sensor data was collected
at the same frequency, totaling 128 episodes of 100,000 data
points.

We divided the collected data into event sequences spanning
a time horizon of 3 seconds with a timestep of 0.3 seconds.
Using these sequences, we created labels for the prediction
of three future events: position, orientation, and bumpiness.
We calculated the one-step position and orientation transition
for the position and orientation labels relative to the previous
state.

For the bumpiness label, we differ from the previous work
[13], which defined bumpiness as true when the angular velocity
or linear acceleration surpasses a specified threshold. This
approach was acceptable as they focused on urban or flat off-
road terrains, with minimal likelihood of surpassing specified
limits. However, our study targets unpaved outdoor terrain that

experiences various levels of bumpiness when driving on a
straw blanket or getting off the road. Therefore, we introduce
a continuous value for the bumpiness label by redefining it as
the variance of z-directional linear acceleration in the recent 1-
second period. This modification transforms the discrete labels
into continuous ones, enabling the system to capture and utilize
finer-grained information about the terrain’s bumpiness level.

C. Crop-LSTM: Learning the Vehicle Dynamics Model

Substantial disparities between predicted and actual vehicle
dynamics could result in unexpected maneuvers, underscoring
the importance of accurate vehicle dynamics models for mobile
robot navigation. We train an accurate vehicle dynamics model
by utilizing the attention mechanism through the novel concept
of cropping, as depicted in Fig. 2. By providing explicit
attention to the relevant regions through cropping, we enhance
the prediction accuracy of the vehicle dynamics model. Based
on this concept, we propose a neural network architecture
called Crop-LSTM, illustrated in Fig. 4. For inference of the
Crop-LSTM, the initial position is determined as the bottom
center of the image. We then crop the surrounding region
from the image and use the dynamics model to predict the
subsequent position conditioned on the cropped image patch
and control command. This process is repeated to predict future
events for each step on the horizon.

We train the Crop-LSTM fθ using the collected data set D
to predict the sequence of events et:t+H = (et, et+1, ..., et+H).
The event at time t consists of the position e0t , orientation
e1t , and bumpiness e2t . The network takes in robot states st
and action sequence at:t+H as input. During inference, the
predicted future position in the global frame is projected onto
the camera frame. Subsequently, we crop the corresponding
region on the feature map generated by the MobileNetV3
encoder [30] to obtain the cropped feature ct.

We formulate the training objective as minimizing the loss
function defined as

L(θ,D) =
∑
D

2∑
k=0

αk · LMSE(f
k
θ (st, at:t+H), ekt:t+H). (1)

Using the collected data set, we trained a neural network fθ
using the Algorithm 1. The training took about 15 hours on
an AMD Ryzen9 5950X processor with an NVIDIA GeForce
RTX 4080 Graphics Processing Unit (GPU).
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Fig. 4. (a) The overview of our navigation system. We first collect the robot sensor data. A sampler generates a batch of candidate control commands.
Subsequently, our proposed vehicle dynamics model, Crop-LSTM, predicts the future position and bumpiness of each sequence of control inputs. We find a
path that minimizes bumpiness and oscillation in orientation. (b) The network architecture of Crop-LSTM. In the first step, a full RGB-D image from the
Zed2 sensor and robot states are each encoded and concatenated to make an initial hidden state of the LSTM. We encode the image to a feature map with a
fine-tuned MobileNetV3 encoder (i.e., without the classifier). We integrate the previous position and orientation output into the next position. The corresponding
position in the world frame is projected to the image plane. After projection, we crop the features on the feature map near the projected point and pass it to
the LSTM encoder. (c) Visualization for position integration and camera projection. During every step of the inference of the Crop-LSTM, we integrate the
predicted state transition into the next position.

Algorithm 1 Training Crop-LSTM
1: function CROP (P )
2: project Px,y,z to px,y in the camera frame
3: find the corresponding position on the feature map
4: select the features c
5: end function
6: sample (st, at:t+H , et:t+H ) ∈ D
7: initialize Pt, Rt = (0, 0, 0)
8: for h ∈ {1, . . . ,H} do
9: ct+h = Crop (Pt+h−1) ▷ Cropping

10: ∆Pt+h = f0
θ (st, at+h, ct+h) ▷ Inference

11: ∆Rt+h = f1
θ (st, at+h, ct+h)

12: Bt+h = f2
θ (st, at+h, ct+h)

13: Pt+h = Pt+h−1 +RT
t+h−1 ·∆Pt+h ▷ Integration

14: Rt+h = Rt+h−1 ·∆Rt+h

15: end for
16: calculate loss function using Eqn. (1) and update θ

D. Navigation System

Our proposed navigation system is composed of two key
components: the learned vehicle dynamics model fθ and a
cost function J . In the navigation scenario illustrated in Fig. 4,
the sampler generates a batch of control command sequences.
Next, we propagate these sampled control commands through
the learned vehicle dynamics model fθ to obtain candidate
trajectories, which encompass predicted position, orientation,

and bumpiness at each point along the path. We select the
trajectory that minimizes the cost function J , solving the
planning problem represented as

a∗t:t+H = argmin
at:t+H

∑
point∈Traj

J (point)

Traj = (êkt:t+H) ⊆ fk
θ (st, at:t+H).

(2)

Our cost function is designed to ensure safe navigation on
unpaved outdoor terrains. The cost function J is a summation
of four sub-costs, Jgoal, Jbumpy , Jori, and Jz . Each sub-costs
serve a specific purpose: guiding the robot toward the goal
while simultaneously avoiding excessive bumpiness, sudden
changes in orientation, and drastic drops in the z-direction. We
formulate each sub-costs as

Jgoal = ∥Pgoal − êpos∥ / ∥Pgoal∥
Jbumpy = êbumpy

Jori = |êroll|+ |êpitch|+ |êyaw|
Jz = |êposz | .

(3)

Utilizing the learned vehicle dynamics model and the cost
function, the navigation system operates using the Algorithm
2. The onboard NVIDIA Jetson computer performs all com-
putations, and the control command sequence is selected at
a frequency of 2Hz, including 0.3 seconds for the inference
of the Crop-LSTM. To follow the selected throttling velocity
and steering angle commands, low-level control for the BLDC



TABLE I
TRAINING LOSS RESULTS, MEAN SQUARED ERROR

Training Set Validation Set Test Set

Model Position Orientation Bumpy Position Orientation Bumpy Position Orientation Bumpy

BADGR-Original 8.36E-4 1.93E-4 7.32E-3 8.76E-4 2.05E-4 1.26E-2 7.11E-4 1.79E-4 1.10E-2
BADGR-Modified 8.36E-4 1.95E-4 4.09E-3 8.69E-4 2.06E-4 1.25E-2 7.33E-4 1.75E-4 1.14E-2

Cropping on the image domain 5.27E-4 7.10E-5 3.82E-3 6.07E-4 9.79E-5 7.66E-3 7.31E-4 1.40E-4 1.33E-2
Cropping on the feature map (Ours) 4.81E-4 6.33E-5 2.73E-3 5.61E-4 8.79E-5 6.14E-3 7.05E-4 1.49E-4 1.07E-2

motor and the steering servo motor is conducted at a frequency
of 10Hz.

Algorithm 2 Deploying Crop-LSTM
1: Input: Crop-LSTM fθ, Cost J , Goal position
2: while not arrived at goal do
3: update goal position in the current robot frame
4: sample at:t+H

5: get ∆Pt:t+H ,∆Rt:t+H , Bt:t+H = fθ (st, at:t+H)
6: solve Eqn. 2 using Eqn. 3
7: execute a∗t:t+H

8: end while

IV. RESULTS

A. Training results

To quantitatively evaluate the prediction accuracy of the
proposed method, Crop-LSTM, we conducted a comparative
analysis with the baseline BADGR [13], which also trained
the vehicle dynamics model. The specific settings for the
experiments are as follows:

• BADGR-Original: As a baseline, the model descriptions
on the paper [13] were implemented. A single LSTM
encoder and a multi-head MLP were employed for each
event prediction.

• BADGR-Modified: We modified the original BADGR
model by incorporating two LSTM encoders. This sepa-
rates the prediction of bumpiness from the prediction of
position and orientation.

• Cropping on the image domain: As an ablation study,
we perform cropping on the image domain rather than
the feature map. At each step of the LSTM encoder,
we encoded the cropped image using the MobilenetV3
encoder.

• Cropping on the feature map: This is the model we
propose. We employed two LSTM encoders and provided
cropped features at each step of the LSTM encoder.

To evaluate the performance of these models, we divided
the entire data set into three subsets: training, validation, and
test sets. Among the data set, one trajectory was reserved
exclusively for the test set, and the rest of the data set was
split in an 8:2 ratio to create the training and validation set.
The models were trained using the training data set, and their
prediction performance was compared based on the mean
squared error loss across the three subsets. Each training was
conducted three times in a consistent training environment, and
the average loss is reported in Table I.
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Fig. 5. Visualized results for the trained Crop-LSTM and BADGR-Modified.
The ground-truth data is blue, the prediction of Crop-LSTM is red, prediction
of BADGR-Modified is green. The figures are randomly selected results from
the data set. Projected positions are on the left, followed by bumpiness on
the right. We can find that Crop-LSTM shows accurate predictions on both
position and bumpiness.

Our proposed method, involving cropping on the feature map,
exhibits the best prediction performance for the mean squared
error (MSE) in terms of position, orientation, and bumpiness
across the training set and the validation set. In the test set, our
method achieves the second-best results for orientation error,
with the top-performing method also employing cropping. This
result shows that cropping is an effective method for increasing
the prediction accuracy of the vehicle dynamics model.

Cropping on the image domain also outperforms the baseline,
but it requires inference of the Mobilenet encoder for the
cropped image patches at every step of the LSTM, whereas
cropping on the feature map encodes the image only once at
the first step of the LSTM. This results in an increase in the
inference time, making it 1.745 times slower than cropping on
the feature map. The increase in the inference time can hinder
navigation performance as it requires more time to adapt to



changes in the surrounding environment.
In Fig. 5, we visualize prediction results about the future

positions and bumpinesses obtained from the trained Crop-
LSTM and BADGR models. The output of Crop-LSTM is
depicted in red, BADGR’s output in green, and the ground truth
data in blue. While Crop-LSTM demonstrates greater accuracy
overall, both Crop-LSTM and BADGR correctly predict the
trajectory’s tendency. The most significant difference lies in
the bumpiness prediction. Crop-LSTM consistently exhibits
lower prediction error, whereas BADGR shows limitations in
capturing the fine details.

B. Navigation

Utilizing our trained Crop-LSTM and cost function, we
conducted navigation experiments using Algorithm 2 explained
in section III-D. The experiment took place two months after the
data collection, resulting in varying visual features such as grass
amount on the road edge, sunlight levels, and shadow directions.
These shifts in the testing environments caused the image to
differ from the training set, requiring generalization of the
Crop-LSTM on unseen environments. Despite these challenges,
our robot successfully navigated through challenging unpaved
outdoor terrain.

1) Prediction performance: In the testing environment, we
assessed the prediction performance of our Crop-LSTM. We
sampled a batch of control command trajectories, propagated
them through the Crop-LSTM, and evaluated each trajectory
with the cost function. This evaluation enabled us to determine
the trajectories that effectively accomplish four key objectives:
reaching the goal position, avoiding bumpiness, preventing
sudden changes in orientation, and avoiding sudden drops in
the z-direction.

The visual features of the straw blanket and the dirt road
are difficult to distinguish, to the extent that even state-of-
the-art semantic segmentation models [31] struggle to detect
them accurately. Despite these difficulties, we observed that the
Crop-LSTM predicts the road’s edge at a high cost. Although
we did not provide explicit information about the road’s edge
during training, the Crop-LSTM learned this from the data
experiencing drastic drops at the edge of the road. We show
the visualized trajectories, each accompanied by its associated
costs, in Fig. 6.
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Fig. 6. Visualized results of deploying Crop-LSTM on the test environment
demonstrate its ability to learn without explicit information about the road’s
edge during training. By learning from high-bumpy driving data with similar
visual features, Crop-LSTM accurately predicts the edge’s location, resulting
in higher costs for that region. Visualized with blue dots, the trajectory with
the minimum cost aligns well with human intuition.

2) Success rate: Next, we demonstrate the effectiveness of
our navigation system by testing the success rate for point-goal
navigation on unpaved outdoor terrains. We fixed all elements
of the navigation system except the vehicle dynamics model
to compare the prediction performance of our Crop-LSTM
against BADGR. By comparing the success rate of the two
models, we show the effect of cropping for the navigation task.

For the point-goal navigation task, the goal position is
specified in the robot frame of the starting position. We
determine the success rate of the point-goal navigation by
assessing whether the robot reaches the goal position within
a 1m boundary. In our experiments, we considered two goal
distances, 15 meters and 25 meters, while keeping the starting
position fixed. BADGR failed to drive beyond 25m, preventing
a direct comparison with our Crop-LSTM, which successfully
navigated the entire 45m course. The navigation result for full
course driving is shown in Fig. 8. The success rate was tested
at varying distances to the goal position, and the results are
presented in Table II.

TABLE II
SUCCESS RATE

Goal distance

Model 15m 25m

BADGR-Modified 4/10 0/5
Crop-LSTM (Ours) 9/10 4/5

As shown in Table II, our method demonstrates superior
performance to the baseline, achieving a higher success rate.
Although BADGR has shown impressive results in urban and
flat off-road environments, it struggled to adapt to unpaved
outdoor environments with narrow straw blankets of width
1.5m. During the experiments, BADGR often failed to detect
hidden dangers at the road’s edge, generating incorrect control
commands that get off the straw blanket. This results in failure
since the wheel gets stuck in the fallen leaves.

(a) (b)

Fig. 7. (a) While Crop-LSTM avoids getting off to the dirt road, (b) BADGR
sometimes fails to correctly predict the hidden dangers.

3) Bumpiness and Distance driven: We compare the aver-
age bumpiness experienced during driving with the distance
driven until termination. Termination is when Raicart either
successfully arrives at the goal position, fails by getting off the
straw blanket, or collides with a tree. The results are presented
in Table III.

We observe a reduction of 17.26% in bumpiness and a
135.18% increase in the distance driven compared to BADGR.
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Fig. 8. We show the navigation results of our proposed navigation system. While driving 45 meters in an unpaved outdoor environment, our navigation system
performed path planning and execution. The blue lines show the planned trajectories. We arrived at the goal position without failure.

TABLE III
BUMPINESS AND DISTANCE DRIVEN

Model Bumpiness (↓) Distance driven(m) (↑)

BADGR-Modified 0.278 8.537
Crop-LSTM (Ours) 0.230 20.078

The robot experienced less vibration in the z direction and
drove further without failure, resulting in steadier and safer
navigation.

We discuss the reason why BADGR failed to identify paths
that may lead to failure. In an environment with a traversable
straw blanket and a tree on the right edge, shown in Fig.
9, BADGR did not detect the potential collision risk. Crop-
LSTM could accurately predict upcoming collisions by paying
attention to the cropped image patches that have information
about the tree. BADGR focuses more on global information,
where the straw blanket comprises a significant portion of
the image, leading to a prediction of the low bumpiness of
the terrain. This result shows how our cropping technique
improves vehicle dynamics prediction, enabling safe navigation
in challenging environments.

C. Obstacle avoidance

We conducted an obstacle avoidance experiment to test our
navigation system’s performance under unseen disturbances.
We tested obstacle avoidance for four scenarios where a human
is in the environment. The training data set did not include
instances of human presence, so the vehicle dynamics model did
not learn about the interactions between the robot and humans.
However, the model predicted potential collisions with nearby
objects utilizing the depth camera data. We achieved successful
obstacle avoidance without modifying any element of the point-
goal navigation system, making our approach well-generalized
for unseen objects. Interestingly, the vehicle dynamics model
found a narrow traversable path through the legs for a person
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Fig. 9. Comparison of Crop-LSTM and BADGR in the same test environment.
It shows similar future trajectories conditioned on the same image and control
commands. However, predicted bumpiness differs significantly. As the trajectory
encounters a tree at step 7, the robot will collide and experience high bumpiness.
BADGR, utilizing the whole image without attention methods (green dotted),
fails to detect the obstacle and predicts lower bumpiness. Crop-LSTM’s use
of cropped features (red dotted) enables accurate vehicle dynamics prediction.

blocking both edges. The results of this experiment are shown
in Figure 10.

1-1 1-2 1-3 2-1 2-2 2-3

3-1 3-2 3-3 4-1 4-2 4-3

Fig. 10. Results of obstacle avoidance. When a human is on the side of the
straw blanket, the robot navigates to the other side, preventing bumpy events.
The robot did not get out of the straw blanket in this evasive maneuver. When
both sides are blocked, the robot chooses a path to pass through the legs.

V. CONCLUSION

In summary, we presented a cropping method for learning
an accurate vehicle dynamics model and showed superior
performance compared to the previous approach. We utilized



the cropping method and trained a vehicle dynamics model,
Crop-LSTM, which pays attention to the region where the
robot will be in the future. Our navigation system, demon-
strated on Raicart, successfully navigated challenging outdoor
terrain while minimizing bumpiness and preventing failures.
Furthermore, we showcased the system’s capability for obstacle
avoidance without requiring any modifications.

Our work is still limited in some aspects. The T265 tracking
camera’s odometry data limited Raicart’s high-speed travel
in the testing environment. When the robot drives at high
speed, the visual features and the light conditions undergo
frequent changes due to the challenging nature of the testing
environment, resulting in the instability of the VIO.

We are planning to further extend this work by exploring
self-attention-based neural networks. Instead of cropping the
encoded features on the region where the robot will be in the
future, we can utilize self-attention mechanisms to extract the
most appropriate features. This could improve the prediction
accuracy of the vehicle dynamics model, enabling navigation
in even more challenging environments.
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