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Abstract— Foresighted robot navigation in dynamic indoor
environments with cost-efficient hardware necessitates the use
of a lightweight yet dependable controller. So inferring the
scene dynamics from sensor readings without explicit object
tracking is a pivotal aspect of foresighted navigation among
pedestrians. In this paper, we introduce a spatiotemporal
attention pipeline for enhanced navigation based on 2D lidar
sensor readings. This pipeline is complemented by a novel
lidar-state representation that emphasizes dynamic obstacles
over static ones. Subsequently, the attention mechanism enables
selective scene perception across both space and time, resulting
in improved overall navigation performance within dynamic
scenarios. We thoroughly evaluated the approach in different
scenarios and simulators, finding excellent generalization to
unseen environments. The results demonstrate outstanding
performance compared to state-of-the-art methods, thereby
enabling the seamless deployment of the learned controller on
a real robot.

I. INTRODUCTION
The deployment of mobile service robots around our living

areas to improve humans’ daily life quality, such as by
performing house chores, or carrying out delivery tasks, is an
ongoing evolution. For seamless navigation among humans,
learning-based navigation controllers represent the forefront
of research. A key performance requirement is usually an
information-dense representation of the dynamic scene, e.g.,
with explicitly tracked pedestrians [1]. However, when tran-
sitioning away from test and training simulations to the real
robot, complex fusion from multiple sensors and hardware-
heavy post-processing steps are required to achieve such
information-dense dynamics representations [2]–[4]. Here,
also feature-rich but costly 3D lidar sensors are appealing
[5], [6]. On the other side of the spectrum, many studies
focus on learning-based navigation among dynamic obstacles
of known position to avoid sensor-based pedestrian tracking
[7], [8]. These approaches suffer from a reality gap that
hinders generalization to the real world [9], [10]. Following
the demand for improved reactive local planners, as recently
emphasized by Xiao et al. [11], the need for sensor-based
lightweight but reliable perception and navigation pipelines
emerges that rendundantizes explicit obstacle tracking.

A possible solution is the use of 2D lidar sensors that
provide accurate obstacle information within the moving
plane of mobile robots [12]. They operate independently of
lighting conditions, enabling both day and night operation.
But without data such as colors or contours, explicitly
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Fig. 1: Our pipeline for learning a robot navigation controller based on
lidar. Two attention mechanisms reason about the importance of individual
lidar sectors with respect to known and unknown dynamic obstacles. Our
Temporal Accumulation Group Descriptors (TAGD) reveal moving obstacles
from subsequent lidar scans affected by robot self-motion.

tracking objects instances like pedestrians only by their leg
profiles from 2D lidar readings is a hard task [13], [14].
Furthermore, the robot’s self-movement makes static objects
appear dynamic between lidar scans.

While most current methods leverage convolutional neural
networks (CNNs) to process and extract features from lidar
data [15], [16], a recent appealing idea to tackle these sensor-
implicit obstacle representations is selective attention on a
collision-relevant subsectors of the lidar data [17]. Especially
when a temporal observation sequence provides dynamic
scene information, selective attention on moving obstacles
can be beneficial.

To address this, we introduce a novel feature extraction
technique tailored for 2D point clouds, incorporating both
spatial and temporal attention across the sensor readings.
This approach distills critical navigational information, of-
fering a more robust solution for learning-based navigation
in dynamic indoor environments. We demonstrate better than
state-of-the-art generalization to unseen navigation scenarios
and enable a smooth sim-to-real transfer of the learned
policy, as we will be able to demonstrate in the experiments.

In summary, the main contributions of our work are:
• A deep reinforcement learning-based (DRL) navigation

controller that learns dynamic obstacle avoidance im-
plicitly from 2D lidar readings only.

• A spatiotemporal attention module that infers the rel-
ative importance of different observation sectors with
respect to proximity and obstacle motion trends.

• A novel 2D lidar observation representation highlighting
dynamic obstacles over the robot’s self-motion called
temporal accumulation group descriptor (TAGD).
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II. RELATED WORK

Where mobile robot navigation decomposes into global
path planning and local obstacle avoidance, the latter can
be tackled with traditional and learning-based approaches.
While traditional approaches such as the popular dynamic
window approach (DWA) [18], [19] have been advanced with
motion prediction [20], they come with the difficulties to
avoid C-shaped or dynamic obstacles, or the necessity for
re-tuning in different environments [21].

A. Learning-based navigation
Deep learning-based methods [22] appeal with decent

generalization performance and less tedious fine-tuning as
compared to hard-coded controllers.

Especially reinforcement learning-based (RL) methods
have successfully been applied to motion planning [12], [17],
[23]–[25]. These works however do not embed dynamic
scene understanding, thus limiting the agent’s capability
around walking pedestrians. Methods like SARL [7] or MP-
RGL [8] capture interactions between robot and humans with
excellent results, but rely on the known velocity of humans.
Others infer or forecast human behavior by predicting their
long-term goals, or by predicting their future motion and
activities [26], often by employing 3D lidar or RGB(D)
cameras [16], [27], [28]. The challenge arises with our aim
to learn time-series motion trends for scene-dynamics aware
navigation from 2D lidar readings in an end-to-end manner.
B. Point Cloud Feature Extraction

For the feature extraction in a deep RL navigation task,
the spatial nature of lidar point cloud data suggests convolu-
tional neural networks (CNN) as natural fit [15], [16]. Here,
reducing the input dimensionality into a sparse encoding is
a pivotal step. Taking into account the temporal dimension
for scene dynamics understanding, individual lidar scans
may be CNN-processed separately, followed by a multilayer
perceptron (MLP) for joint extraction [16]. With PointNet
[29], a high performing network architecture for 3D point
cloud registration has been proposed that was recently put to
test in a short-horizon RL-based robotic manipulation task
[30]. For obstacle pose and dynamics estimation, using a
point cloud segmentation approach represents a viable av-
enue [6]. Looking at the non-learning-based domain, obstacle
tracking from point cloud data has been presented before
[31], [32]. With the advent of transformer models, the self-
attention operator’s invariance to cardinality and permutation
of input data has proven to be a useful property for point
cloud inference [33]. Building on this foundation, our work
leverages attention-based 2D lidar feature extraction. This
approach enhances deep RL-based local-obstacle avoidance,
while integrating high-level guidance from a conventional
path planner.

III. PROBLEM STATEMENT AND ASSUMPTIONS

In this work, we consider a differential-wheeled robot
pursuing a global goal in a cluttered and dynamic indoor
environment, compare Fig. 3a). A map of the empty envi-
ronment is available for global path planning via A*. Static
or dynamic pedestrians however are unknown obstacles to

the robot. Also, the pedestrians at different speeds move
rigorously without avoiding the robot in their motion, in
contrast to other social navigation studies [15]. Therefore,
smart and foresighted local collision avoidance is entirely
up to the robot. The controlling agent has access to sub-
sequent 2D lidar readings and upcoming path waypoints as
observations, which it maps to linear and angular velocity
commands. We formulate the task as in a learning-based
manner and apply off-policy DRL. In summary, the proposed
controller should be able to achieve two tasks: 1) Pursue the
global goal through guidance of the computed path and 2)
effectively avoid dynamic obstacles on a local scale.

IV. OUR APPROACH

This section explains our novel temporal accumulation
group descriptor for lidar readings and subsequently the
learning framework.

A. Temporal Accumulation Group Descriptor (TAGD)
It is inherently difficult to capture motion trends of moving

obstacles from consecutive 2D lidar readings when the robot
is in motion. To reveal moving obstacles over static ones
without explicit obstacle tracking, we introduce our novel
TAGD. We assume lidar scans to be recorded at a constant
frequency of 1/∆t with a range of dmax. Our approach is
described in Algorithm 1 with a visualization of all major
steps is shown in Fig. 2. We start with the min-pooled
2D lidar points Bt−1,Bt with N points each. To eliminate
the impact of robot rotation and translation, ICP [34] aligns
Bt−1 to Bt in the transformed point set B′

t−1 (Fig. 2.1).
For static obstacles, the points now match up while their
positions misalign for dynamic obstacles (Fig. 2.2). For
spatial clustering and subsequent temporal matching, clus-
tering group centers gi are formed along Nc uniformly
cast rays by determining the robot-closest point within an
angular threshold θthresh (Fig. 2.3). For temporal matching
and dimensionality reduction, the points in B′

t−1 and Bt are
assigned to clustering groups Git−1 and Git . This assignment is
based on the Euclidean distance to their clustering center gi,
within a fixed threshold dthresh = 0.25m (Fig. 2.4). Note that
dthresh is a static parameter and chosen with a safety margin
based on the relation between maximum expected obstacle
speed and the inference time step as dthresh > vmax∆t.
The 2D centroids ci of each group Git−1 and Git counteract
sensor noise and finally represent a single TAGD (cit, c

i
t−1)

(Fig. 2.5).
A TAGD represents the center of data points across two

consecutive lidar scans close to the nearest obstacle within
an angular zone, such that even small obstacles hit by only a
single ray are successfully represented by a TAGD. Note that
it is possible for a single dynamic obstacle to be represented
in more than one TAGD, depending on the positions of
clustering centroids, e.g., see TAGDs 26 and 27 in Fig. 2.4).
However, such double representations did not hinder the
performance in context of the learned controller. With regards
to real-world pedestrians and their leg motion pattern, the
influence of faster-than-body moving single legs on the
TAGD displacement and therefore body speed estimation



Fig. 2: Schematic of the TAGD generation process. The ICP alignment of two subsequent lidar scans (1) in 2D Cartesian coordinates reduces the effect
of robot self-movement (2). This allows better differentiation between dynamic obstacles and static obstacles. The aligned scan is grouped and clustered
around ray-cast centers (3). From the clustered points (4), the position difference of the centroid from both time steps reveals a moving obstacle (5).

cannot be entirely ruled out. However, the group centroid
calculation within dthresh supports averaging out the effects
of sensor noise or displacement and speed of individual
legs, even though leg walking patterns are not explicitly
considered or simulated in this work. It is worth noticing
that a consistent inference timing between the lidar scans
is key to correctly represent a given obstacle velocity with
TAGDs, also with regards to a sim-to-real transfer. Here, this
is directly based on the reinforcement learning control time
step ∆t = 0.2s. We have not used odometry or IMU data
for enhanced ICP alignment, but solely rely on the observed
static obstacles in the scene. While posing a limitation, this is
a defensible assumption for indoor environments. However,
we will evaluate the reliance and performance dependency
of the navigating RL agent on correct ICP alignment in
two ways, 1) without static obstacles in open space among
dynamic obstacles, and 2) with ICP alignment artificially
turned off. In summary, TAGDs reveal obstacle motion and
will therefore be used as input to the temporal attention
module of our pipeline.

Algorithm 1 Temporal Accumulation Group Descriptors

Require: Lidar readings Bt−1,Bt, dthresh, dmax, Nc

θthresh ← π/Nc

B′

t−1 ← ICP(Bt−1,Bt)
Initialize TAGD list Ct = {}
for i = 0 to Nc do

θref ← 2πi/Nc

T ← {b = (r, θ) ∈ Bt| |θ − θref| ≤ θthresh}
rmin ← min(r,θ)∈T (r, dmax)
gi ← (rmin, θref)
Git ← {b ∈ Bt | dist(b,gi) ≤ dthresh}
Git−1 ← {b

′ ∈ B′

t−1 | dist(b
′
,gi) ≤ dthresh}

TAGD (cit, c
i
t−1)← (centroid(Git), centroid(Git−1))

Ct ← Ct ∪ {(cit, cit−1)}

B. Deep Reinforcement Learning for Navigation
We choose a deep deterministic policy gradient (DDPG)

architecture consisting of an actor and a critic, modeled by
neural networks [35]. DDPG features a continuous action
space, allowing for smooth robot control. The actor network
outputs linear and angular velocities for the robot. The RL
framework is based on the Markov Decision Process: An
agent in state st at time step t decides upon an action at
based on a policy π(st) = at. Upon reaching the next state
st+1, it receives a reward rt. The optimization objective

is the maximization of the γ-discounted cumulative return
R =

∑T
i=t γ

i−trt, where γ = 0.98. As DDPG is an off-
policy RL algorithm, the state-action pairs are stored in a
experience replay buffer of length NRP = 2, 000, 000 and
sampled in batches for policy updates.
C. State and Action Space

The state space defines the observations we provide to
the agent. As can be seen in Fig. 3b, the agent has access to
2D lidar sensor data, the lidar-derived TAGDs, and upcoming
waypoints for global guidance: The N = 180 ray min-pooled
lidar scan Bt is represented as a set of robot-centric Cartesian
2D points. Focusing on local obstacles, the lidar scanning
range is limited to dmax = 3.5m. To sense dynamic obstacles,
we provide the TAGDs Ct = {(cit, cit−1)|0 ≤ i < Nc} as
described earlier, where the number of TAGD’s Nc = 30
is equal to the number of spatial sectors Nb = 30. The value
Nc = 30 was heuristically chosen so that the clustering
groups would jointly provide a cohesive circular coverage
mid-range of the lidar distance around d = 2.5m, and the
TAGD clustering circles defined by the radius dthresh start
to overlap (Nc ≈ 2πd/(2dthresh)). From the robot nearest
waypoint pc on path P , we sample Nf = 5 waypoints
spaced at ∆pi = 0.3m towards the goal. These are converted
to robot-centric Cartesian coordinates and input to the agent
as Pf

t = {pi|c ≤ i < c+Nf}.
The continuous action space of the agent consists of

linear and angular velocities (v, w), with a range of
v ∈ [0, 1.0]m s−1 and w ∈ [−π, π]rad s−1. The robot is not
allowed to drive backwards to foster foresighted navigation.
D. Reward

The navigating agent’s overall objective is to navigate
collision-free along a given path among unknown dynamic
obstacles. The reward rt is therefore a weighted sum:

rt = α1r
collision
t + α2r

guide
t + α3r

prox
t (1)

α1 = 10, α2 = 0.2 and α3 = 3 are the experimentally
determined weighting factors.

To encourage collision-free navigation, we penalize with
rcollision = −1 upon collision of the robot with any obstacles.

A natural guidance along the global path is beneficial as
it encourages the agent to drive towards the goal. From
the current closest waypoint pc on the path to the robot,
we interpolate 0.6m forward along the path to obtain the
guidance point pg . The distance between pg and the robot’s
position pr are penalized with rguide = −||pg − pr||. By



Fig. 3: Illustration of our architecture. a) The indoor environment provides lidar readings to the deep reinforcement learning agent that drives a differential-
wheeled robot via linear and angular velocity commands. b) From subsequent lidar readings, the TAGDs are computed. Merged with the five upcoming
waypoints of the global path and the raw lidar readings as observations, they are c) processed by the agent in a separate spatial and temporal stream. Both
streams feature an attention block to weigh the importance of d) individual lidar sectors (spatial) or e) the TAGDs (temporal), with respect to the upcoming
waypoints. After feature extraction, both streams are concatenated for further processing in the final output network of the actor-critic agent.

design and due to the update at every time step, pg cannot be
reached, thus providing a continuous penalty that increases
when the robot deviates from the path and encourages the
robot to drive back to the path in a forward-leading manner.

The concept of rprox aligns with the sparse collision
reward, but does not terminate the episode for easier learning.
Instead it alerts the agent in vicinity to obstacles about higher
risk of collisions, or in other words encourages the agent
to keep clear of obstacles. When the minimum distance d
between robot and any lidar-scanned obstacle falls below
dprox = 0.5m, a linearly growing penalty is computed as
rprox = −1× |dprox −min(d, dprox)|, else rprox = 0.
E. Network Architecture

As shown in Fig. 3c, our agent’s architecture is constructed
around two data streams. The individual streams extract
spatial and temporal features via an attention mechanism,
respectively. Note that both the down-sampled lidar input
of the spatial, and the TAGD input of the temporal steam
contain partially redundant information due to their origin in
the raw distance readings.

1) Temporal and Spatial Data Stream: With the indi-
vidual TAGDs and the possibly attention-relevant, therefore
redundantly-represented upcoming waypoints, we construct
Nc individual vectors Utemp = {[cit−1, c

i
t,P

f
t ]|0 ≤ i <

Nc}, to be passed on to the temporal attention module as
ytemp = Atttemp(Utemp), see Fig. 3e. In the spatial data
stream, the lidar scan Bt of N rays at time step t is split into
Nb angular sectors Sit = {bj

t ∈ Bt|iNb ≤ j < (i + 1)Nb}
with N/Nb rays each. Again, each sector-vector is concate-
nated with next path segment forming Nb individual vectors
Uspat = {[Sit ,P

f
t ]|0 ≤ i < Nb}, jointly passed on to the

spatial attention module as yspat = Attspat(Uspat). After
both data streams have been processed by their attention
modules, respectively, they are concatenated and jointly pro-
cessed by an output module O(·) for joint feature extraction
o = O(ytemp,yspat). Two separate modules of this pipeline
form the actor and critic.

2) Attention module: Both temporal and spatial attention
modules Att(·) share a similar network architecture, but
no parameters. A visualization of our lightweight attention
module can be found in Fig. 3d-e. It is constructed with
an embedding, a score and a feature network, inspired by

random

c) Officeb) Intersectiona) Corridor

fixed

Fig. 4: The Pybullet-based environments of [17] are used for training. a)
In the corridor and b) intersection environment, the wall distances are
randomized (blue). c) In the office environment, the outer walls are fixed
with randomized inner wall placement for diverse room setups.

Chen et al. [7] and [17]. The embedding module E(·)
encodes the input vectors individually along the attention
dimension to ei = E(ui). The embedding ei is fed into
the score module S(·) that outputs the attention scores si =
S(ei). All attention scores are Softmax-normalized to obtain
the final importance weight. In parallel the embedding is also
fed into the feature module F (·) that generates the feature
representations as fi = F (ei). Finally, the feature vectors are
scaled by their importance in a weighted sum.

y = Att(U) =
∑

i Softmax(si) · fi (2)
=

∑
i Softmax(S(ei)) · F (ei) (3)

Note that the due to the lightweight implementation of
our attention scheme, the dimensionality along the attention
axis reduces from Nb or Nc vectors to one in the output.
In other words, the individually embedded lidar sectors or
TAGDs do not attend to each other, but the attention scales
their impact in the weighted sum, respectively. This form of
attention is also referred to as location-based attention [36],
[37]. All networks describe above are constructed with as
ReLU-activated multi-layer perceptrons (MLP)1.
F. Indoor Training Environments

To train our navigation agent, we use the Pybullet
[38] physics engine. We use the minimalistic but well-
randomizing indoor environments of de Heuvel et al. [17]
featuring dynamic cuboid obstacles that represent pedes-
trians, with three different types of scenarios, see Fig. 4:
Corridors, intersections, and offices. The randomization of

1Layer sizes (hidden nodes): embedding: 256 × 128 × 64, score: 60 ×
50×1, feature: 80×50×30, output: 128×64×64×{1, 2} (critic/actor)



wall density and placement provides varying levels of scene
complexity. The corridor environment is long and narrow
with a length between [6m, 8m] and a width between
[2.0m, 2.5m]. The robot encounters pedestrians moving in
opposite directions. The intersection environment is cross-
shaped featuring hallway widths between 2.0m and 2.5m,
and includes corners that create blind spots for sudden
pedestrian appearances. The office environment features a
fixed outer size with randomized interconnected rooms and
introduces doorway encounters where the robot waits for
pedestrian clearance before proceeding. Our room types
cover typical encounters suggested for social navigation tasks
[39], as found also in other related studies [15], [16]. While
our rectangular environments generate variety through archi-
tectural randomization, other works achieve variety through
larger but static, non-rectilinear scenes [28]. The robot’s start
and goal location are sampled in the corners or dead ends of
the scenes, respectively.

1) Obstacle simulation: Dynamic and static pedestri-
ans represented by cuboids move back and forth through
the environments along A* paths with randomized quan-
tity (Ndyn ∈ [1, Nmax

dyn ], Nstat ∈ [1, 2]), speed (vped ∈
[0.5, 1.0]m s−1), start, and goal position. Note that the
pedestrian speed can exceed the robot’s maximum velocity.
The maximum dynamic obstacle number Nmax

dyn ∈ {2, 4, 8}
follows a curriculum scheme (three levels) and is increased
over the course of training, whenever the evaluation success
rate exceeds 70%. For the purpose of increasing the obstacle
encounter likelihood with the robot, start and goal locations
of the first pedestrians are sampled around the robot path. All
other pedestrians will cross the robot path eventually. Note
that the A*-following pedestrians do not take into account
each other or the robot position, but rigorously move forward.
Collision avoidance is therefore entirely up to the robot,
similar to [16], [28] This can lead to highly challenging nav-
igation encounters, especially for larger obstacle numbers.
This is in contrast to other studies [15] that simulate the
pedestrians motion based on Optimal Reciprocal Collision
Avoidance (ORCA), where the pedestrians avoid each other.
Notably, also the robot is actively avoided by the pedestrians,
easing the collision-free navigation task for the RL agent.
Other works have employed the social force model for crowd
navigation [40]. Though our more basal dynamic obstacle
simulation leads to occasional pedestrian mesh overlaps and
occasionally non-passable situations, our selection of an only
path-based model is justified by our study’s primary focus on
feature extraction for RL-driven dynamic obstacle avoidance,
rather than on crowd navigation.

G. Robot Model

We employ a differential-wheeled robot, more precisely,
the Kobuki Turtlebot 2. The Turtlebot performs angular turns
with a speed difference between both wheels. A Slamtec RPl-
idar A3 2D lidar sensor is mounted on top of the Turtlebot,
emitting 1,440 beams. In simulation, we add sensor noise to
the distance readings with an amplitude of 2.5cm.

Fig. 5: Performance overview for all approaches averaged over
1,000 episodes with identical scene setups in all three Pybullet environ-
ments for a) increasing obstacle speeds, with two dynamic and one static
pedestrians, and b) increasing number of obstacles, with a fixed pedestrian
speed 0.6m s−1.

V. EXPERIMENTS

In the following we present the training and evaluation
details, followed by an ablation and baseline study. After
evaluating the domain shift to the iGibson simulator, the
section is rounded up by the real-robot deployment.
A. Training Setup

An episode denotes one navigation run of the robot from
start until one of the termination criteria is reached: Collision
with other obstacles, timeout after Ttimeout = 150 ≡ 30s
steps, or goal-reaching upon vicinity of 0.2m to the global
goal. To foster generalization abilities, for each episode a
randomly generated environment is setup, as described in
Sec.IV-F. The inference and control time step of the agent is
set to ∆t = 0.2s, which also represents the time difference
between subsequent lidar scans for the temporal processing.
The learning rates for both actor and critic is 1 × 10−4.
All agents presented are trained for 300,000 episodes and
evaluated regularly. The best performing model checkpoint
of the highest curriculum level is selected for all approaches.
B. Quantitative Performance

We evaluated our trained models with respect to suc-
cess rate, collision rate, timeout rate, and navigation time
over 1,000 episodes. For comparability, the 1,000 episodes
were setup identically among all approaches. The flagship
approach presented in this study is denoted with OUR.
Generally, with challenging environment complexity due to
increased obstacle velocities (Fig. 5a), or increased number
of dynamic obstacles (Fig. 5b), the success rate stagnates.

1) Ablation Study: We did an ablation study with respect
to OUR approach described above to evaluate the contribu-
tion of each module to the results, see Tab. Ia) and Fig. 5.

A1 NO-SPATIAL: As OUR, but removing the spatial at-
tention stream, leaving only TAGD and waypoint processing.

A2 NO-TEMPORAL: As OUR, but with no temporal
stream or TAGD input, leaving only the spatial single time
step attention stream and waypoint processing.



Fig. 6: Exemplary visualization of the a) spatial (blue) and b) temporal
attention (red) for a given navigation scene. The attention scores were color-
mapped onto the lidar beam sectors for the spatial and on the beams pointing
towards the TAGDs for the temporal attention, respectively. Increased spatial
attention towards the forward-facing lidar sectors, as well as increased
temporal attention towards the oncoming dynamic obstacle can be observed.

A3 NO-TAGD: As OUR, but without TAGD preprocess-
ing. The network structure implements the spatial attention
stream twice with separate network parameters, each pro-
cessing one of the consecutive lidar scans, respectively.

As can be seen from Tab. Ia) and Fig. 5, with all ablations
the performance deteriorates. The joint contribution of spatial
and temporal attention emerges with A2 NO-TEMPORAL
having a lower success rate compared to OUR, as it relies
only on single-time step spatial information.

C. Baselines
To identify the contribution of our feature extraction ap-

proach, we compared against two baseline architectures. All
baselines leverage 2D lidar (360◦) for learning-based mobile
robot navigation and were trained in the same environment
and training parameters as our approach. The baseline-related
modifications lie in the state space content and processing
network architectures.

1) Liang et al. - B1: A highly-related state-of-the-art
approach has been presented in [16]. Similarly to ours,
it is an end-to-end obstacle avoidance algorithm originally
trained with Proximal Policy Optimization. The authors use
2D lidar and a depth camera to perceive the environment,
while the controller outputs velocity commands. From both
perception modalities, we solely implement the lidar-related

a) Ablation SR↑ CR↓ TR↓ Nav. time↓
OUR 86.2 13.8 0.0 17.7 s
A1: NO-SPATIAL 74.7 25.3 0.0 18.1 s
A2: NO-TEMPORAL 80.5 19.5 0.0 17.9 s
A3: NO-TAGD 85.0 15.0 0.0 17.8 s

b) Baseline

B1: Liang et al. [16] 78.4 21.6 0.0 18.9 s
B2: Pérez-D. et al. [15] 77.4 22.6 0.0 18.6 s
B3: Pérez-D. et al. [15] 79.9 20.1 0.0 18.4 s

c) Generalization

iGibson [41] 79.2 18.6 2.2 19.0 s

TABLE I: Performance rates in [%] with respect to success (SR), collision
(CR), and timeout (TR) and average navigation times for successful episodes
of a) ablation and b) baseline study averaged over 1,000 episodes, with 2
dynamic pedestrians (0.6m s−1) and 1 static pedestrian. The c) generaliza-
tion evaluation reveals slightly decreased performance for the post-training
domain shift to the iGibson simulator on similar navigation tasks in more
complex environments.

preprocessing and network architecture to replace our atten-
tion blocks, which is a 1D CNN taking in three consecutive
scans. Precisely, this module is composed of two 1D CNN
layers followed by a fully-connected MLP. In contrast to
our approach with 2D Cartesian point lidar representation,
single-value lidar distance readings are used. The state space
still contains five upcoming waypoints, which in contrast to
OUR are processed by a separate MLP. Without convergence
and therefore not included, we have also tested a closer-to-
the-original implementation (512 lidar rays, no waypoints,
only goal position).

2) Pérez-D’Arpino et al. - B2/3: In the end-to-end li-
dar navigation approach of [15], no temporal information
but only the current lidar reading is processed. Similar to
Liang et al. [16], the authors employ a lidar-processing 1D
CNN but with three layers followed by a fully-connected
layer. Furthermore, N = 128 single-value lidar distance
readings are used. Additionally, the global goal position and
next upcoming waypoints of the A* path (∆pi = 1.0m) are
part of state space. In B2, we employ their state space and
replace our attention block with their lidar-processing CNN
and waypoint-processing MLP modules. A sub-version (B3)
uses only their CNN architecture but our original state space
with regards to waypoints and lidar resolution.

3) de Heuvel et al. : In initial tests, we compared against
[17], outputting collision-free subgoals instead of velocity
commands from single-time step lidar data with similar
spatial attention. Direct comparisons with our current method
are not viable due to later changes in the training settings.
Despite this, the comparison showed a 5.3% performance
boost by incorporating TAGDs and temporal attention, mo-
tivating our current work.

As can be seen in Tab. Ib) and Fig. 5, for our setup, the
CNN-related baselines B1-B3 struggle more with increased
number of obstacles. In almost all cases, our approach
outperforms all baselines in terms of success rate.
D. Qualitative Attention Analysis

Fig. 6 visualizes the learned spatial (a) and temporal (b)
attention for a given navigation scenario. Here, two dynamic
obstacles approach the robot from opposite directions, the
robot has just entered the room. The spatial attention high-
lights the forward lidar sectors in the desired direction of
navigation. The robot navigates along a wall that locates on
its left hand side and we can observe an increased attention
on the corresponding lidar sectors. Intuitive to the human eye,
the temporal attention focuses the TAGDs of the oncoming
dynamic obstacles. Similar to the spatial attention, a slightly
increased temporal attention can be observed in forward
direction of the robot. In direct comparison to the temporal
stream, the spatial stream exhibits a less sharp attention
distribution in this scenario. Further attention visualizations
can be found in the accompanying video2.
E. Robustness

Verifying the robustness of our approach with respect
to ICP accuracy against its dependence on static obstacles

2https://youtu.be/cYNUFD rGNE

https://youtu.be/cYNUFD_rGNE


Fig. 7: Results of the generalization study using the iGibson simulator over eight scenes witch 125 episodes each. a) OUR controller demonstrates the best
generalization capabilities in the sim-to-sim transfer of all approaches. b) Breakdown into the different scenes shows a scene-dependency of the controller
performance for OUR controller. c) Collision object category analysis within iGibson: The most collided-with objects are the walls.

for correct alignment, an open space evaluation of the
same evaluation environments but without walls reveals an
absolute performance decrease of 3.6%. When disabling ICP
alignment entirely and feeding non-aligned lidar scans into
the TAGD pipeline, the absolute performance drops by 4.8%.
In both cases, the performance is still superior the NO-
TEMPORAL ablation, demonstrating decent robustness of
the TAGD-based approach against ICP failure in these edge
cases. Note that the obstacle parameters of Tab. I were used.F. Generalization Performance

To investigate the generalization ability of our approach,
we evaluated the Pybullet-trained agents in the iGibson
simulator [41] in a sim-to-sim transfer, see Fig. 1. The sensor
settings and overall navigation objective remain similar, but
two major differences strike: 1) The indoor scenarios are of
high fidelity with diverse furniture objects and a more com-
plex room architecture. 2) The pedestrians are represented
with real 3D meshes instead of cuboids and have a more
refined motion simulation. Precisely, we adapt the navigation
task from the 2021 iGibson Social Navigation Challenge [42]
that features eight scenes and Optimal Reciprocal Collision
Avoidance (ORCA) among pedestrians. The key settings to
mention as taken over from the original challenge are the
maximum pedestrian speed of 0.5m s−1, an inverse scene
area-related population of 8 m2 per pedestrian, and a goal
sample distance between 1.0 and 10.0m.

As seen in Fig. 7a), OUR controller exhibits the best gen-
eralization performance among all approaches. The slightly
lower success rates in Fig. 7a) and Tab. Ic) point towards
a simulator gap and increased difficulty within the scenes.
Also, the individual scenes seem to be of varying difficulty
to the robot, compare Fig. 7b). To further differentiate the
challenges the robot faces in the iGibson scenes, the top
ten collided-with object categories have been recorded, see
Fig. 7c). As the majority of collisions events involve walls,
the possibly higher degree of confined spaces within the
iGibson scene could play a role. Furthermore, tables and
chairs are among the most frequent collision causes. These
object are usually thin-legged, providing a challenge for
lidar detection at low angular resolutions. In summary, the
attention-based architecture surpasses the tested CNN feature
extractors in unseen environments.
G. Real-World Experiment

Using the Robot Operating System (ROS) [43], we trans-
ferred the trained controller to a real Kobuki Turtlebot 2, as
described in Sec. IV-G. In our experiment, the Gmapping

package [44], a Simultaneous Localization and Mapping
algorithm, was used to build an occupancy grid map of
real scenarios upfront for path planning. During navigation,
Adaptive Monte Carlo Localization [45] estimated the robot’s
pose in the pre-mapped environment based on the lidar
reading and robot odometry.

We tested our learning-based spatiotemporal approach
qualitatively in various real-world scenarios, including cor-
ridors, intersections, and offices. Please refer to our supple-
mental video2 of the real-world experiment. In a corridor, the
two participants overtake the robot from behind or approach
it rigorously from the front, see Fig. 1. The robot smoothly
gives room to the pedestrians and avoids collision. At an
intersection, pedestrians appear from the blind spots behind
a corner. In another test the pedestrian blocks the doorway to
see whether the robot would stop upon facing the impassable
situation. All navigation situations are successfully handled
by our spatiotemporal controller.

VI. CONCLUSIONS
We proposed a novel and lightweight approach for robot

navigation in dynamic indoor environments. Our learning-
based approach featuring spatiotemporal attention demon-
strates the capacity to highlight collision-relevant features
from the sensor data, making the most out of the sparse
2D lidar readings. Meanwhile, the introduced temporal ac-
cumulation group descriptors (TAGD) help to counteract
the robot self-movement over subsequent lidar readings
and therefore support the differentiation between static and
dynamic obstacles without explicit object tracking. Our pol-
icy directly outputs linear and angular velocity, leading to
smooth robot navigation, and outperforms several state-of-
the-art approaches in terms of collision rate for different
pedestrian speed and number of obstacles. We validate
the sim-to-sim generalization capabilities in the iGibson
simulator, finding excellent and better than state-of-the-art
performance to unseen, more complex indoor environments
with different pedestrian dynamics. Lastly, we achieve an
effortless sim-to-real transfer into dynamic real-world indoor
environments.
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