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A Spatial Calibration Method for Robust
Cooperative Perception

Zhiying Song, Tenghui Xie, Hailiang Zhang, Jiaxin Liu, Fuxi Wen, Senior Member, IEEE, Jun Li

Abstract—Cooperative perception is a promising technique for
intelligent and connected vehicles through vehicle-to-everything
(V2X) cooperation, provided that accurate pose information and
relative pose transforms are available. Nevertheless, obtaining
precise positioning information often entails high costs associated
with navigation systems. Hence, it is required to calibrate relative
pose information for multi-agent cooperative perception. This
paper proposes a simple but effective object association approach
named context-based matching (CBM), which identifies inter-agent
object correspondences using intra-agent geometrical context. In
detail, this method constructs contexts using the relative position
of the detected bounding boxes, followed by local context match-
ing and global consensus maximization. The optimal relative pose
transform is estimated based on the matched correspondences,
followed by cooperative perception fusion. Extensive experiments
are conducted on both the simulated and real-world datasets.
Even with larger inter-agent localization errors, high object
association precision and decimeter-level relative pose calibration
accuracy are achieved among the cooperating agents. Demo
video, code, and more up-to-date information are available at
https://github.com/zhyingS/CBM.

Index Terms—Distributed Robot Systems, Object Detection,
Pose Errors, Robustness.

I. INTRODUCTION

COOPERATIVE perception has emerged as a prominent
research topic for intelligent and connected vehicles in

recent years [1]. This technique enhances the perception capa-
bility of the individual vehicles by leveraging complementary
information from neighboring agents, e.g. , vehicles [2], drones
[3] or infrastructure nodes [4].

However, aligning perception results among these agents
hinges on the availability of precise localization measurements,
which can be challenging to obtain in complex traffic envi-
ronments. Therefore, a spatial calibration module is needed
to refine the spatial offset caused by localization errors [5].
As an illustration, Fig. 1 shows a cooperative perception sce-
nario of three vehicles. The detection results are transformed
into the Ego frame using transformation matrices acquired
from localization systems. Errors in this transform result in
significant misalignment of the detection results. In such a
case, cooperative perception not only fails to improve Ego
perception but also disrupt it.

Manuscript received: November, 9, 2023; Revised January, 26, 2024;
Accepted February, 20, 2024.

This paper was recommended for publication by Editor M. Ani Hsieh upon
evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the National Key R&D Program of China under Grant
2021YFB1600402 and 2020YFB1600303.

The authors are with the School of Vehicle and Mobility, Ts-
inghua University, Beijing, China. Corresponding author: Fuxi Wen,
wenfuxi@tsinghua.edu.cn.

Digital Object Identifier (DOI): see top of this page.

Fig. 1. Effect of spatial calibration on cooperative perception.

Previous research has suggested calibrating spatial errors
through the alignment of raw data [6], [7], or the use of spe-
cific features [8], [9]. Nevertheless, in cooperative perception
systems, the preference leans toward a lightweight method that
requires minimal information transmission and involves the
fewest additional feature extractors. In this paper, we propose
to use only the object-level features, i.e. , the detection results
in the form of bounding boxes, to achieve a robust calibration
of spatial errors.

Current object-level calibration methods have faced dif-
ficulties owing to the following three challenges [10]–[12].
The first challenge is the scarcity of information. Object-level
features are extracted by the object detection module, encom-
passing solely the position, orientation, and dimensions of the
surrounding objects. In contrast to using raw data or deep
features, this approach results in the loss of a considerable
amount of semantic information. The second challenge is the
presence of perception errors. The object-level features can be
noisy due to the inherent limitations of the detection modules.
For example, an object may be detected at an incorrect position
with a significantly deviated heading angle. The perception
noise further erodes the usability of object-level features. The
third challenge lies in the non-co-visible objects. To achieve
alignment of inter-agent features, it is crucial to identify the
same object from different perspectives. However, a substantial
portion of the objects are non-co-visible, meaning they are
only visible to one of the cooperating agents. This results in a
high proportion of outliers when performing inter-agent object
association.

In this paper, we propose a novel inter-agent pose alignment
module for object-level distributed cooperative perception
systems. The core idea is to identify inter-agent objects by
intra-agent geometrical context. The method consists of three
steps. First, an intra-agent context matrix for each object
is constructed by encoding their geometrical features. Then,
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the unique correspondences between inter-agent objects are
identified by seeking global consensus among the per-object
context matrices. Finally, with these global correspondences,
the relative transformation matrix is estimated and multi-view
perception results are fused into an unified frame, resulting in
a spatial error-calibrated cooperative perception output.

The proposed approach maximizes the utilization of features
by embedding information from all objects into each object’s
local context matrix. Each context matrix, constructed from a
local perspective, exhibits substantial distinctiveness, enhanc-
ing the method’s resilience against outliers (non-co-visible
objects). In addition, the perception errors are efficiently
managed by seeking global consensus with redundancy among
the context matrices of all the objects.

Our contributions are summarized as follows:
• We proposed a novel spatial calibration approach for

distributed cooperative perception systems. Instead of
assuming perfect spatial synchronization and ideal per-
ception, we take localization and perception errors into
account and design a system robust to them in complex
traffic scenarios.

• We propose an effective inter-agent object association
approach that is resilient to perception errors and outliers,
achieved by taking into account the distinctive character-
istics of objects within transportation scenarios.

• We achieve decimeter-level spatial calibration using only
bounding boxes, rather than raw data or complex features.
The proposed method can be naturally extended to V2X-
based scenarios, with minimal communication overhead
and cost-effective implementation.

II. RELATED WORK

Cooperative perception. Recent research on multi-agent
cooperative perception is mainly focused on improving ef-
ficiency, performance, robustness, and safety of the process
[1], [13]. Significant progress in improving the detection
performance of cooperative perception under ideal cases has
been achieved in [2], [14]–[19]. For robustness, cooperative
perception has been investigated for various issues, such as
communication issues [20]–[22]. In terms of localization er-
rors, V2VNet [2] was the first to demonstrate the sensitivity of
cooperative perception to imperfect localization. Subsequently,
many state-of-the-art cooperative perception models, such as
those in [16], [19], [23], [24], have either demonstrated or
emphasized this vulnerability. However, efficient solutions in
this regard remain elusive.

Spatial calibration. Researchers tried to calibrate the local-
ization errors using various features. Vadivelu et al. proposed
a learning-based method to encode the sensor data to spatial
feature maps and performed pose regression on them [8]. Yuan
et al. selected bounding boxes, points of poles and points of
big planar structures as features and developed a RANSAC-
based inter-vehicle pose correction method [9]. Yang et al.
proposed a feature descriptor for point cloud based on gridded
Gaussian distribution with Wasserstein distance for global pose
initialization [25]. TrajMatch calibrates inter-LiDAR pose at
the roadside using trajectory and semantic features generated
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Fig. 2. Illustration of the object sets.

in the object detection/tracking phase [26]. However, these
methods require the extraction of specific features for cali-
bration, which represents an additional burden for cooperative
perception systems. Several studies, such as [10], [27], have
attempted to use only the results of perception systems and
tackle inter-vehicle object association using lightweight point
cloud registration algorithms. However, these methods often
rely on a well-guessed initial pose and are unable to handle
larger localization errors, thus limiting their effectiveness in
complex scenarios.

Object association. Iterative closest point (ICP) and its
variants [28] are commonly used to associate dense object
clusters, for example, in [29]. Nevertheless, the objects in co-
operative perception are always distributed sparsely. Recently
graph matching-related methods have gained popularity, they
rely less on absolute positioning and instead use relative infor-
mation between nodes for association. Gao et al. formulated
the association problem in cooperative perception as a non-
convex constrained graph optimization problem and devel-
oped a sampling-based algorithm to solve it [30]. However,
the complexity and time-consuming nature of this approach
hinders its applicability. Tedeschini et al. proposed to use a
neural network to encode graph node and edge features for
association [31]. A computationally efficient method named
VIPS is proposed in [12] to solve the similar graph opti-
mization problem that makes it available to infrastructure-
assisted cooperative perception. However, they face challenges
in relying on the design of similarity functions and constraint
relaxation, handling perception errors and outliers, as well as
tuning numerous hyperparameters.

The rest of the paper is organized as follows: In Section III,
the spatial calibration approach is proposed. Section IV and V
present the experimental evaluation of the real-world dataset
SIND and simulated cooperative perception dataset OPV2V,
respectively. Finally, Section VI summarizes the conclusions.
The framework of the proposed method is shown in Fig. 3.

III. METHOD

A. Problem formulation

As illustrated in Fig. 2, consider a vehicular network
consisting of two cooperative nodes A = {e, c} (one Ego
agent and one cooperative agent, e.g. , connected vehicles
or RSU) and some passive nodes denoted as objects I with
cardinality N , which can be further segmented into two
overlapped groups: objects IX with cardinality Ne that can
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Fig. 3. Framework of the proposed method CBM. Object sets IX and IY are detected by the onboard perception system of the Ego
vehicle and CAV, respectively. Subsequently, the Ego establishes context based on IX and IY . Preliminary correspondences
between objects in IX and IY are identified via the local matching module, and subsequently refined through the global
consensus module. Finally, the relative pose between the Ego and CAV is estimated.

be sensed by Ego agent and objects IY with cardinality Nc

that are accessible for sensing by the cooperative agent. In the
presence of co-visible objects, the overlap between IX and
IY represents the co-visible object set M.

The state of a node (either agent node or object node)
defined in the world coordinate system is denoted by vector
s = [pT ,dT , θ]T ∈ R6, which includes Bird’s-eye-view
position p ∈ R2, orientation θ ∈ (0, 2π) and 3D dimension
size (height, width and length) d ∈ R3. We denote the
measurement vector as

zkh =
[
(zp

kh)
T
,
(
zd
kh

)T
, zθ

kh

]T
∈ R6,∀ k ∈ A, h ∈ A ∪ I

The notations zkh for k ̸= h represent inter-node (relative)
measurements, while zkk represents the intra-node (absolute)
measurements of agent k ∈ A, as shown in Fig. 2.

Intra-node Measurements. The position and orientation
states of agents are measured by their onboard localization
and navigation systems, by

zk ≜zkk = g(k)(sk) + ωk, ∀ k ∈ A (1)

where g(k)(·) denotes a function of agent absolute localization
states, and ωk represents the localization noise.

Inter-node Measurements. The states of the objects are
measured by the perception systems of the agents, by

zkh = h(k) (sk, sh) + ωkh, ∀ k ∈ A, h ∈ I (2)

where h(k)(·) denotes the perception system, and ωkh repre-
sents the perception noise.

Given the above measurements, i.e. , the state measurement
of both agents zk and the detection measurement of objects
zkh, the problem is to estimate the transformation matrix T e

c

between the coordinate of the Ego agent and the cooperative
agent. We frame this problem as a measurement alignment
issue, which is then subdivided into two components: inter-

agent object association and transform estimation. The former
is to find the matching set of co-visible objects. From a ground
truth perspective, the object set I can be categorized into
two groups: co-visible objects M = IX ∩ IY that can be
jointly detected by both agents and non-co-visible objects
M = I −M that can only be sensed by one of the agents.
However, these two sets are not directly observable from
agents’ local measurements. The inter-agent object association
task is to estimate the co-visible object set M̂ from the local
measurement sets, followed by the second task, i.e. , inter-
agent transform estimation,

R̂e
c, t̂

e
c = argmin || (R · zp

ch + t)− zp
eh||2, h ∈ M̂ (3)

where R̂e
c ∈ SO(2) is a rotation matrix and t̂ec ∈ R2 denotes

a translation vector.

B. Context-based inter-agent object association

Corresponding to the index set IX and IY defined in
section III-A, let the state of the object i ∈ IX be si =
[pT

i ,d
T
i , θi]

T ∈ R3, where pi ∈ R2 and θi ∈ (0, 2π) is the 2D
position and orientation in the Bird’s-eye-view, respectively.
di ∈ R3 denotes 3D dimensions. Similarly, for object j ∈ IY ,
sj = [pT

j ,d
T
j , θj ]

T .
The goal of this subsection is to find the covisible object

set M̂ that contains the same objects observed from different
agents’ view. A coarse-to-fine strategy is employed to approx-
imate this matching correspondence. This involves initially
identifying coarse matching sets that include possible results,
followed by the removal of outliers and the attainment of a
global consensus, ultimately yielding the final estimation. The
details are shown in the following pages.

1) Intra-agent context construction: In real-world traffic
environments, each traffic participant possesses distinct at-
tributes, such as position, direction, and appearance. Con-
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sequently, when viewed from the perspective of an indi-
vidual vehicle, the surrounding environment is inherently
unique, thereby constituting its context. In other words, context
uniquely encodes the relationships between nearby objects
from an object’s local perspective. A simple case is shown in
Fig. 4. Inspired by such an observation, we employ context-
based comparisons to identify and locate identical objects
across multiple views.

Similar to the preprocessing procedure in [10], we first
standardize the measurements by converting them into the Ego
frame using transform

T̃ e
c = f (zc, ze) (4)

for c, e ∈ A, where zc and ze are defined in (1), the
transform function f(·) can be found in [10], representing
the transform calculated from on-board localization systems.
T̃ e
c is the desired T e

c if there is no localization noise in
the measurement of intra-agent position and orientation. As
a result,

z(e)
c = T̃ e

c (zc), z
(e)
cj = T̃ e

c (zcj), ∀j ∈ IY (5)

where the superscript ·(e) indicates that it’s in the coordinate
of the Ego agent. For brevity in the following text, we will
omit the superscript, but it should be understood that all
measurement values related to the cooperative agent have been
transformed into the Ego coordinate system according to (5).

In the Ego frame, the directions of objects (both in IX and
IY ) are adopted by defining their heading towards the front
in the Ego frame as the forward direction. Then the relative
positional measurements between objects in the local frame
are given by

zp
ii′ = RT (zθ

ei) (z
p
ei′ − zp

ei) , ∀i, i′ ∈ IX
zp
jj′ = RT (zθ

cj)
(
zp
cj′ − zp

cj

)
, ∀j, j′ ∈ IY

(6)

where R(θ) ∈ SO(2) is a rotation matrix of a rotation angle
θ. Note that zp

ii′ and zp
jj′ contains perception errors in (2).

In real-world traffic scenarios, each traffic participant occu-
pies a significant space considering their dimensions and the
requirement of maintaining a safe distance between road users.
Therefore, even with some measurement errors, their position
vectors remain highly distinctive within their occupied space,
i.e. , the discrimination of zp

ii′ (zp
jj′ ) as a feature vector can

still be maintained, thereby we define it one of i’s (j’s) context
vectors.

Incorporating all the objects in the vicinity, the context
matrices are obtained,

Pi = [zp
i1, z

p
i2, . . . ,z

p
ii′ , . . .] ∈ R2×Ne

Qj =
[
zp
j1, z

p
j2, . . . ,z

p
jj′ , . . .

]
∈ R2×Nc

(7)

As context captures the relationships among objects and
their neighboring objects, it inherently includes robust spatial
constraints between connected objects and remains invariant
to rigid transformations. It is worth noting that the concept of
context shares similarities with graph descriptors that encode
intra-node and inter-node information. However, the context
incorporates strong spatial constraints between connected ob-
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Ego's detections
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Context of X1 in 
CAV's detections
Context of X1 in 
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X1X1

Rθ Rθ Rθ

Fig. 4. Context of object X1 in the detections of the Ego and
CAV, respectively.

jects, making it more suitable for real-world driving applica-
tions where spatial relationships play a crucial role.

2) Context similarity-based coarse matching: Given Pi and
Qj , the similarity between zp

ii′ and zp
jj′ (denoted as zi′ and

zj′ below) is defined as

Sz =
α

σ1

(
arccos

∣∣zT
i′ zj′

∣∣
∥zi′∥2 · ∥zj′∥2

)
+

β

σ2
∥zi′ − zj′∥1

(8)
where Sz ∈ R, || · ||1 denotes l1 norm. The first term denotes
the angular distance and the second characterizes the length
difference between the local context of ith object in IX and
jth object in IY . α > 0 and β > 0 are the parameters to tune
the weights of angular and length distance. σ1 is set to tolerate
angular perception errors caused by the positional error of the
surrounding objects (i′ and j′) and the heading angle error
of the center object (i and j). σ2 is set to handle the vector
length noise caused by the positional error of both the center
and surrounding objects. The use of absolute value operation
in the

∣∣zT
i′ zj′

∣∣ term is intended to avoid ambiguity caused by
heading direction since detecting the direction of a road user
frequently results in opposite judgments.

For the sake of efficiency, we set α = 1 and β = 0 first to
get a preliminary similarity S

(1)
z , then pick out those highly

similar pairs to further compare Euclidean similarity S(2)
z . The

whole procedure is defined as follows:
for i ∈ IX and j ∈ IY do

Initialize an void correspondence set Lij ;
for i′ ∈ IX and j′ ∈ IY do

if S(1)
z = Sz(α = 1, β = 0) ⩽ 1 and

S
(2)
z = Sz(α = 0, β = 1) ⩽ 1 then
Lij ← Lij ∪ (i′, j′);

end
end

end
After these steps, a preliminary correspondence Lij for each

pair i ∈ IX and j ∈ IY is obtained, resulting for a local
correspondence matrix related to Lij as

Lij(i
′, j′) =

{
1, if (i′, j′) ∈ Lij and card(Lij) ≥ 2.

0, otherwise.
(9)

where Lij ∈ {0, 1}Ne×Nc , and operator card(·) denotes
counting the number of elements in the set.
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By changing the soft thresholds σ1 and σ2, Lij can encom-
pass a large number of potential matches, aiming to include
a significant portion of the ground truth correspondences. The
solution of the object association problem can be obtained by
filtering outliers from Lij , and we achieve this by maximizing
the global consensus across all i ∈ IX and j ∈ IY .

3) Global consensus maximization: To filter out mis-
matched correspondences in Lij , a global filter matrix Gij ∈
{0, 1}Ne×Nc is developed for each object pair i ∈ IX and
j ∈ IY . The basic idea is to assess the already matched
pairs from a global perspective. We eliminate pairs that are
accepted as matched ones in some objects’ local frames but
not embraced by all the objects,

Gij(i
′, j′) =





1, if
∑

(k′,h′)∈Lij

Lk′h′(i′, j′) > 1.

0, otherwise.
(10)

This operation assesses the non-zero correspondences in Lij

from each other’s perspective to maximize global consensus.
Then the improved correspondence matrix becomes

L
(1)
ij = Gij ◦Lij , (11)

where L
(1)
ij ∈ {0, 1}Ne×Nc .

To further eliminate one-to-many matching correspon-
dences, where one object in IX matches with several objects
in IY , or vice versa, an extra rule is added, then

L
(2)
ij (i′, j′) =





0, if





Nc∑

j′=1

L
(1)
ij (i′, j′) > 1, or

Ne∑

i′=1

L
(1)
ij (i′, j′) > 1.

L
(1)
i,j (i

′, j′), otherwise.

(12)

Finally, the suboptimal matching correspondences can be
obtained by

M = argmax
i,j

∥∥∥L(2)
ij

∥∥∥
0

(13)

where || · ||0 is l0 norm. The corresponding matched set is

M̂ = {(i, j)|i ∈ IX , j ∈ IY ,M(i, j) ̸= 0}. (14)

where i and j are the same objects in the real world.

C. Transform estimation and perception fusion

Given the set of matched object pairs ∀ (i, j) ∈ M̂, if we
denote the rotation matrix R and translation vector t, then

R∗, t∗ = argmin
R,t

|M̂|∑

i=1

ψ
(
∥zp

ei − (R · zp
ci + t)∥2

)
(15)

where | · | denotes the number of elements in the set, and
R ∈ SO(2), t ∈ R2. We adopt the strategy in [11] to design
ψ(x) and solve R and t, please check [11] for the details of
the solution.

Finally, the estimated inter-agent transform matrix is

T̂ e
c =

[
R∗ t∗

0 1

]
· T̃ e

c (16)

After imposing the calibration transform on the objects
detected by the cooperative agent, the objects from multiple
views are aligned under the Ego frame and fused using Non-
maximum suppression (NMS) [15], [32], which is typically
integrated as the final step of the object detection algorithm.
Please refer to [32] for details.

IV. VALIDATION ON REAL-WORLD DATASET

A. Experiments setting

Dataset. Due to the nascent stage of cooperative perception
technology, most datasets are focused on evaluating object
detection performance, and very few datasets are available
for evaluating spatial robustness and object association per-
formance. We opt to use SIND [33], which is a real-world
drone dataset captured from a signalized intersection from a
stationary aerial perspective for about 420 minutes. The dataset
includes more than 13,000 traffic participants in various types
like cars, pedestrians, and motorcycles.

Metrics and Benchmarks. Given the estimated association
set M̂ and the ground truth matching set M, we evaluate the
average precision. Three benchmarks are considered, including
Iterative Closest Point (ICP) [28], Robust Iterative Closest
Point (RICP) [11], and VIPS [12]. ICP is a fundamental
technique for point association. As a classical method, many
variants have occurred recently, among which RICP is the lat-
est achievement. VIPS is the state-of-the-art method for inter-
vehicle object association using graph matching techniques.
Compared with other graph matching-based algorithms, faster
processing speed and higher accuracy are achieved for VIPS.

Co-visible objects. In real-world traffic scenarios, non-
covisible objects exist due to a limited field of view and
occlusions. These objects are outliers that have a serious
impact on matching tasks. Given the object index set I at
a single frame, we randomly sampled the co-visible object set
M to simulate cooperative perception, such that card (M) =
η · card (I) ,M ⊆ I, where η is the rate of co-visible
objects. The remaining objects are evenly assigned to the two
cooperative agents, then we have IX∪IY = I, IX∩IY =M,
where IX and IY denote the perceived set by the two agents.

Perception errors. To investigate the impact of perception
errors in (2), different levels of position and orientation angle
errors are added to the objects in the dataset. They are set to be
Gaussian distributed as N (0, σp) and N (0, σθ), respectively.
For object detection algorithms, determining the orientation of
an object is a difficult task and prone to errors. To simulate
this, we added a direction noise to the orientation with a 50%
probability to make it face the opposite orientation.

Localization errors. Since the initial relative pose trans-
formation reflects the magnitude of the pose error of the
cooperating vehicles, it is set as a fixed value. In practice, the
objects in IY are translated by 3 m in the x and y directions
and rotated by 5° as a whole, i.e. , the agents’ relative position
offset entirely based on accurate poses of the two vehicles.

B. Average precision of inter-agent object association

We test the performance of benchmarks on inter-agent
object association under different levels of outlier rate and
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Fig. 5. Quantitative results and qualitative demonstration on SIND.

perception errors (including position errors and orientation
errors), the results are shown in Fig. 5.

As shown in the result, η has a more significant impact than
standard deviations σp and σθ. RICP exhibits a higher overall
AP level than ICP, but they are both highly sensitive to η, this
might be due to their use of iterative searching for the closest
point in the correspondence identification step that converged
to a local optimum. VIPS outperforms them in terms of AP,
and it shows good robustness to changes in η. The proposed
method outperforms the previous three methods in both overall
precision and robustness to changes in η.

When considering the perception errors, we observed that
the proposed algorithm is robust to position and orientation
errors, with only an overall downward shift in the AP curve
at σp = 0.9 m. For different levels of errors, the AP curve
remains highly consistent with the zero error scenarios. RICP
exhibits poor robustness to position errors, VIPS demonstrates
good robustness against position errors but is unable to deal
with large orientation errors. This is because VIPS uses
the sine difference of the heading angles of two nodes to
encode edge-to-edge similarity. This makes it fragile to errors
contained in the heading angle of the objects.

V. EVALUATION ON COOPERATIVE PERCEPTION DATASET

A. Experiment setting

Dataset. OPV2V [15] is a large-scale dataset that contains
73 scenes for V2V-based cooperative perception, including
2170 frames for test subset, and 549 frames for test culver city
(tcc). The latter is developed to narrow down the gap between
the simulated and real-world traffic scenarios, which can be
used to test the adaptability and portability of the proposed
algorithm. The reasons of using OPV2V are a) incorporation
of cooperative vehicles and their locally perceived information,
and b) provision of a wide range of scenarios, including highly
complex traffic scenes with numerous traffic participants. The
first row of Fig. 6 illustrates the distributions of co-visible
object rate and absolute object counts across two test sets.

Object detection and perception errors. Object detection
module provides inter-node measurements in (2). For fairness,
We trained an object detection network PointPillars [34] using
the train subset provided by OPV2V and kept it the same
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Fig. 6. Statistics of OPV2V dataset.

for all benchmarks. The performance of PointPillars on the
dataset is evaluated in the second row of Fig.6. The third
subfigure of Fig. 6 depicts the distribution of lateral (y)
and longitudinal (x) position errors in the bounding boxes
detected by PointPillars. It shows that the position errors in
both directions approximately follow a Gaussian distribution,
with greater errors observed in the longitudinal direction, and
similar error distributions are observed across both datasets.
This result supports the setting of σp in SIND. The fourth
subfigure of Fig. 6 shows the distribution of angular errors in
the network’s perceived results. Specifically, we calculated the
degree of deviation between the perceived bounding boxes and
ground truth in the heading direction. It shows that the angular
errors were distributed mostly between −20° and 20°, posing
a significant challenge to association algorithms.

Localization errors. Without loss of generality, two sce-
narios are considered for demonstration and comparison: the
first one assumes that the participating agents have no position
and orientation errors, while the second one assumes that the
position and orientation errors both follow zero-mean Gaussian
distribution with standard deviation σL

p = 3 m and σL
θ = 5°.
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B. Evaluation of inter-agent association performance

Precision and recall. The precision and recall results
for the matching task on OPV2V are shown in Table. I.
Compared with the benchmarks, the proposed method achieves
higher precision and recall and shows good robustness to the
pose errors. Note that VIPS performs significantly worse on
OPV2V compared to SIND, primarily due to the complex and
challenging natures of the scenarios in OPV2V, such as a larger
amount of objects and perception errors.

Distance between correspondence pairs. Matching preci-
sion and recall may not be a perfect indicator of the perception
performance, for example, when the two objects are close to
each other, their incorrect pose estimation would not deviate
significantly from the ground truth, and it would not have
a major impact on the perception results. Therefore, another
metric that can assess the impact of matching performance
on perception is required. We defined a metric AD (average
distance) d = 1/N

∑
(i,j)∈M̂ d

(
si − sj

)
that measures the

average distance between the matched object pairs, where
N = card(M̂), and operator d(·) denotes calculating the
Euclidean distance. Table. I shows the performance of the
methods of d on two datasets, test and test culver city. Notably,
the d values of the proposed method are quite small, which
means even for incorrectly associated object correspondences
in the matching results, the distances between them are not
too far away to cause fatal impacts on the estimation of the
pose transformation in the back end.

Impact of outliers. We present Fig. 7 depicting the
distribution of average matching precision against the rate of
non-co-visible objects on the test culver city and test datasets.
The results consistently align with those obtained from the
SIND dataset, as illustrated in Fig. 5. This reaffirms that the
proposed method exhibits remarkable resilience to outliers.
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Impact of global consensus module. Ablation study
is implemented by substituting L

(2)
ij in (13) with Lij , the

result is shown in the last row of Table I. It’s observed that
the absence of the global consensus module has a minor
impact on precision and recall. However, it has a significant
influence on the matching distance, showing an increase of
approximately 35% and 50% on the two datasets, respectively.
This indicates that global consensus is effective to distinguish
those mismatches with ambiguity.
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TABLE I: Matching performance on OPV2V with σL
p =

3 m, σL
θ = 5◦. Pre.: precision, Rec.: recall, Dis.: distance.

Ablation: without global consensus module.

Dataset Metric Method
VIPS ICP RICP Ours Ablation

tcc
Pre. (%) 47.8 46.0 73.6 99.5 -3.1
Rec. (%) 58.5 38.4 72.1 93.0 -0.3
Dis. (m) 28.27 7.84 3.99 0.32 +0.11

test
Pre. (%) 47.2 56.1 78.1 90.6 -5.1
Rec. (%) 57.5 52.2 80.8 78.0 -0.8
Dis. (m) 22.32 5.53 2.58 0.50 +0.25

TABLE II: mean Average precision at IoU=0.7 on OPV2V
under different σL

p .

Dataset Method σL
p (m)

0 0.6 1.2 1.8 2.4 3.0

test

Single 60.0 60.0 60.0 60.0 60.0 60.0
GNSS 80.5 24.5 21.4 24.2 26.0 26.5
ICP 44.3 37.3 32.6 28.1 26.5 26.8

VIPS 25.9 24.2 23.5 22.8 22.8 22.9
RICP 71.9 71.6 70.9 68.9 67.4 64.3
Ours 70.3 68.9 68.8 68.8 68.9 68.9
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Ours 62.1 61.9 61.9 61.9 61.9 61.9

C. Evaluation of transform estimation and perception

The evaluation metrics for transform estimation are a) rel-
ative rotation error RRE = arccos

(
0.5 · Tr

(
RT · R̂

)
− 0.5

)

, and b) relative translation error RTE = ∥t − t̂∥2. Heading
errors are added to the cooperative agents for RRE estimation,
and only position errors are introduced for the evaluation of
RTE. The benchmark performances are compared at a fixed
localization error level σL

p = 3 m or σL
θ = 5°. The results

are shown in Fig. 8, where the GNSS benchmark corresponds
to the results without calibration. The proposed method has
significantly reduced the median RRE to the level of 0.1°
and the median RTE to the level of 0.1 m, achieving an
order of magnitude improvement over the GNSS solution and
outperforming other benchmarks.

Furthermore, perception robustness of the methods against
pose errors is evaluated. The evaluation metric is mean Aver-
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, and b) relative translation error RTE = ∥t − t̂∥2. Heading
errors are added to the cooperative agents for RRE estimation,
and only position errors are introduced for the evaluation of
RTE. The benchmark performances are compared at a fixed
localization error level σL

p = 3 m or σL
θ = 5°. The results

are shown in Fig. 8, where the GNSS benchmark corresponds
to the results without calibration. The proposed method has
significantly reduced the median RRE to the level of 0.1°
and the median RTE to the level of 0.1 m, achieving an
order of magnitude improvement over the GNSS solution and
outperforming other benchmarks.

Furthermore, the perception robustness of the methods
against pose errors is evaluated. The evaluation metric is
mean Average Perception (mAP), computed by comparing the
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Intersection over Union (IoU) of fused bounding boxes and
the ground truth boxes. An IoU threshold of 0.7 is chosen.
Note that this metric is different from the average precision
used in Sec. V-B. The results are presented in Table II. Due
to page limitations, only results for different σL

p are shown.
However, similar trends can be observed in the results for
different σL

θ . The proposed method not only maintains a high
level of performance in mAP, it is also insensitive to agent
pose errors under different levels, aligning with the results in
Fig. 8.

VI. CONCLUSIONS

We propose a novel object-level spatial calibration approach
for connected and automated driving to address the challenges
of obtaining accurate relative transformation with dynamic and
random position and pose errors. The proposed method enables
robust inter-agent object association and relative pose estima-
tion, leading to improved object-level cooperative perception.
Its performance is demonstrated by extensive evaluations of
the real-world dataset SIND and the cooperative perception
dataset OPV2V.
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