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Abstract—Recently, there has been an arms race of pose
forecasting methods aimed at solving the spatio-temporal task
of predicting a sequence of future 3D poses of a person given a
sequence of past observed ones. However, the lack of unified
benchmarks and limited uncertainty analysis have hindered
progress in the field. To address this, we first develop an open-
source library for human pose forecasting, including multiple
models, supporting several datasets, and employing standardized
evaluation metrics, with the aim of promoting research and
moving toward a unified and consistent evaluation. Second,
we devise two types of uncertainty in the problem to increase
performance and convey better trust: 1) we propose a method
for modeling aleatoric uncertainty by using uncertainty priors to
inject knowledge about the pattern of uncertainty. This focuses
the capacity of the model in the direction of more meaningful
supervision while reducing the number of learned parameters
and improving stability; 2) we introduce a novel approach for
quantifying the epistemic uncertainty of any model through
clustering and measuring the entropy of its assignments. Our
experiments demonstrate up to 25% improvements in forecasting
at short horizons, with no loss on longer horizons on Human3.6M,
AMSS, and 3DPW datasets, and better performance in uncer-
tainty estimation. The code is available online.

Index Terms—Human-Robot Collaboration, Human-Centered
Robotics, Computer Vision for Automation, Uncertainty

I. INTRODUCTION

HUMAN pose forecasting consists in predicting a se-
quence of future 3D poses of a person, given a sequence

of past observed ones. It has attracted significant attention in
recent years due to the critical applications in autonomous
driving [42], human-robot collaboration [10], [51], robot nav-
igation [8], and healthcare [53]. The field is now witnessing an
arms race of forecasting models using different architectures
that have shown increasing performances [29], [31], [46].

Forecasting human poses is a difficult task with multiple
challenges to solve: it mixes both spatial and temporal reason-
ing, with a huge variability in scenarios; and human behavior
is difficult to predict, as it changes in dynamic and multi-modal
ways to react to its environment. To guarantee safe interactions
with humans, robots should not only predict human motions,
but also identify scenarios in which they are uncertain [4],
[22], [26], [49], and act accordingly. As an example, Fig. 1
illustrates a pose forecasting scenario in autonomous driving
context. Without an uncertainty measure, all the forecast
poses are considered valid. However, uncertainty measures can
detect unconfident outputs, so be treated with more caution.

The research was conducted in VITA laboratory at EPFL. For inquires,
please contact: firstname.lastname@epfl.ch

∗ Equal contribution as the second authors.

Fig. 1: We propose to model two kinds of uncertainty:
1) Aleatoric uncertainty, highlighting the inherent temporal
evolution with lighter colors and thicker bones over time,
illustrated by the left person; 2) Epistemic uncertainty, to
detect non valid, out-of-distribution forecast poses due to
unseen scenarios in training, exemplified by the right person.

Researchers have shown the benefits of estimating uncertainty
for classification [26], [49] and regression tasks [4], [22], but
how to apply it to pose forecasting is not yet studied.

In this paper, we present two solutions to capture the un-
certainty of pose forecasting models from two important per-
spectives. The first one deals with the aleatoric uncertainty, i.e.,
the irreducible intrinsic uncertainty in the data. We reformulate
the pose forecasting objective function to capture the aleatoric
uncertainty. To reduce the number of learned parameters and
improve stability, we introduce uncertainty priors based on
our knowledge about the uncertainty, e.g., that the uncertainty
increases with time. We then train the forecasting model with
the new objective function. This allows the model to focus its
capacity to learn forecasting at shorter time horizons, where
uncertainty is lower and learning is more meaningful, com-
pared to longer ones that are intrinsically harder and uncertain
to forecast. We apply our proposed uncertainty method to
several models from the literature and evaluate on three well-
known datasets (Human3.6M [17], AMASS [30], 3DPW [52])
and achieve up to 25% improvements in forecasting at short
horizons, with no loss on longer horizons.

The second one is about epistemic uncertainty which shows
the model’s lack of knowledge. To this end, we define a
model-agnostic uncertainty metric to reflect the reliability and
certainness of pose forecasting models in real-world scenarios,
where the ground truth is absent for accuracy calculation.
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Unlike previous methods which require accessing model [12]
(i.e., white-box methods) or are specific to certain models [49],
our approach does not require access to the model (i.e., black-
box approach) and is model-agnostic. Since there is no label
for motions, we train a deep clustering network to learn the
distribution of common poses and measure the dissimilarity
between the predictions’ embeddings and cluster centers. We
achieve better performance in detecting out-of-distribution
forecast poses using our epistemic uncertainty metric than
other approaches from the literature.

Lastly, it is important to acknowledge that the field of
pose forecasting is rapidly advancing, thanks to the signifi-
cant interest from researchers and practitioners. However, this
happens at the cost of unfair and non-unified evaluations.
All current works use disparate metrics and dataset setups
to report their results, leading to ambiguities and errors in
interpretation. In an effort to mitigate these discrepancies, we
release an open-source library for human pose forecasting
named UnPOSed1. This includes our re-implementations of
over 10 models, processing codes for 3 widely-used datasets
and 6 metrics, all implemented and tested in a standardized
way, in order to ease the implementation of new ideas and
promote research in this field. To summarize our contributions:

• We propose a method for incorporating priors to estimate
the aleatoric uncertainty in human pose forecasting and
demonstrate its efficacy in improving several state-of-the-
art models on multiple datasets;

• We propose a model-agnostic metric of quantifying epis-
temic uncertainty to evaluate models in unseen situations,
outperforming previous methods;

• We develop and publicly release an open-source library
for human pose forecasting.

II. RELATED WORKS

Human pose forecasting: While the literature has ex-
tensively examined the forecasting of a sequence of future
center positions at a coarse-grained level [3], [27], [41] or a
sequence of bounding boxes [6], [43], our focus in this work
is on a more fine-grained forecasting i.e., pose. Additionally,
we limit our focus to the observation sequence alone, rather
than incorporating context information [15], social interac-
tions [1], action class [7] or global movements [38]. Many
approaches have been proposed for human pose forecasting,
with some using feed-forward networks [25] and many others
using Recurrent Neural Networks (RNNs) to capture temporal
dependencies [20], [34]. To better capture spatial dependencies
of body poses, Graph Convolutional Networks (GCNs) have
been utilized [31], [33], along with separating temporal and
spatial convolution blocks and using trainable adjacency matri-
ces [46]. Attention-based approaches have also gained interest
for modeling human motion, showing improvement with a
spatio-temporal self-attention module [31]. More recently,
forecasting in multiple stages [29] and a diffusion model with
a transformer-based architecture [44] have been proposed.

We can categorize all previous works into stochastic and
deterministic models. Stochastic models [2], [28], [32], [37],

1https://github.com/vita-epfl/UnPOSed

[44], [45], [59] can give diverse predictions but we mainly
focus on deterministic models [9], [29], [31], [46] as they
provide more accurate predictions which is crucial for robotics
applications. Given the growing interest in this field, we
believe that greater attention should be paid to uncertainty
estimation in this task.

Uncertainty in pose forecasting: Knowing when a model
does not know, i.e., uncertain, is important to improve trust-
worthiness and safety [35]. Traditionally, uncertainty in deep
learning is divided into data (aleatoric) and model (epistemic)
uncertainty [22]. The aleatoric originates from the intrinsic
noise and inherent uncertainty of data and cannot be reduced
by improving the model, while the epistemic uncertainty
shows the model’s weakness in recognizing the underlying
structure of the data and can be reduced by enhancing the
network architecture or increasing data. Many methods have
been proposed to estimate and utilize these types of uncertainty
in various tasks, including image classification [12], semantic
segmentation [21], and natural language processing [56]. It
has also been explored in pose estimation from images and
videos [19], [23], visual navigation and trajectory forecasting
tasks [16], [18] but not yet studied in human pose forecasting
which includes spatio-temporal relationships modeling. We
will show how modeling the uncertainty can improve accuracy.

Moreover, it is important to measure the epistemic uncer-
tainty of models intended for real-world applications. Bayesian
Neural Networks (BNNs) have conventionally been used to
formulate uncertainty by defining probability distributions over
the model parameters [36]. However, the intractability of
these distributions has led to the development of alternative
approaches to approximate Bayesian inference for uncertainty
estimation. One widely used method is Variational Inference
[5], [13], which is valued for its scalability. A notable example
is Monte Carlo (MC) dropout [12], which involves applying
dropout [47] at inference time to model the parameters of
the network as a mixture of multivariate Gaussian distribu-
tions with small variances. However, those methods are not
model-agnostic. Another approach, known as calibration [14],
requires the model to provide probabilities, but deep neural
networks have been shown to be poorly calibrated. One way
to evaluate model reliability is by measuring the distance
between a new sample and the training samples using a deep
deterministic network, a technique proven effective in image
classification [26], [49]. However, this approach measures the
uncertainty for their own model and is not applicable to
measuring the uncertainty of different models. In contrast,
Deep Ensembles [24] can measure the uncertainty of different
models by training multiple neural networks independently
and averaging their outputs at inference time. Nevertheless,
this method can be computationally expensive and slow. In
this study, we concentrate on the model’s output and define
epistemic uncertainty as the extent to which the model’s
forecasts align with the training distribution, providing a black-
box uncertainty measurement of pose forecasting models.

III. ALEATORIC UNCERTAINTY IN POSE FORECASTING

Pose forecasting models usually take as input a sequence
x of 3D human poses with J joints in O observation time

https://github.com/vita-epfl/UnPOSed


SAADATNEJAD et al.: HUMAN POSE FORECASTING WITH UNCERTAINTY 3

frames, and predict another sequence ŷ of 3D poses to forecast
its future y in the next T time frames. In addition to this, we
want a model to estimate its aleatoric uncertainty u along with
the predicted poses ŷ, to indicate how reliable these can be.

For this, we model the probability distribution of the error,
i.e., the euclidean distance between ground truths y and
forecasts ŷ, with an exponential distribution following [4]:

∥y − ŷ∥2 ∼ Exp(α), (1)

where α is the distribution parameter to be selected. Its log-
likelihood therefore writes

ln p(∥y − ŷ∥2) = lnα− α ∥y − ŷ∥2 . (2)

We then define the aleatoric uncertainty as u := − lnα, and
set it as a learnable parameter for the model. When training the
model with maximum likelihood estimation, the loss function
L to minimize is then given by

L(y, ŷ, u) = − ln p(∥y − ŷ∥2) = e−u ∥y − ŷ∥2 + u. (3)

We consider pose forecasting as a multi-task learning prob-
lem with task-dependant uncertainty, i.e., independent of the
input sequences x. There are several ways to define tasks in
this manner, e.g., by separating them based on time frames,
joints, actions (if the datasets provide them), or any other
combination of them. In the following, we consider dividing
tasks based on time and joints2. In this case, for each future
time frame t and joint j, the model predicts an uncertainty
estimate uj

t associated with its 3D joint forecasts ŷjt . This
formulation yields the corresponding loss function:

Ltotal(y, ŷ, u) =
∑

t=1...T
j=1...J

e−uj
t

∥∥∥yjt − ŷjt

∥∥∥
2
+ uj

t , (4)

where T refers to the number of prediction frames and J is
the number of joints.

Since the loss function (Eq. (4)) weighs the error∥∥∥yjt − ŷjt

∥∥∥
2

based on the aleatoric uncertainty e−uj
t , it forces

the model to focus its capacity to points with lower aleatoric
uncertainty. In particular, we expect short time horizons to
have lower uncertainty, and therefore to present better im-
provements than longer ones.

Unfortunately, learning all aleatoric uncertainty values uj
t

independently leads to an unstable training. To address this
issue, we introduce uncertainty priors F , in order to inject
knowledge about the aleatoric uncertainty pattern and stabilize
the training. For this, we choose a family F of functions
parameterized by a given number of parameters θ. Instead
of learning all uncertainty values uj

t independently, the model
now only learns θ, which can be chosen to be of a smaller size
so as to ease the training. With a learned θ∗, the uncertainty
values uj

t are obtained with the function F (θ∗):

uj
t = F (θ∗)(j, t). (5)

It is noticeable that this framework generalizes the previous
case (without prior) by setting F to yield a separate parameter
for each uncertainty value:

uj
t = Id(θ∗)(j, t) = θjt . (6)

2Extending the formulation to other task definitions is straightforward.

Intuitively, the more parameters F has, the more scenarios
it can represent, but at the cost of stability. We, therefore,
compare several choices for F , with variable numbers of
learnable parameters as different trade-offs between ease of
learning and representation power. We select three functions
that constrain the temporal evolution of aleatoric uncertainty,
independently for each joint. We select functions with a
logarithmic shape due to the observed exponential pattern in
error evolution over time. The first one, Sig3, is a sigmoid
function used to ensure that uncertainty only increases with
time, and has three parameters per joint to control this pattern:

uj
t = Sig3(θ)(j, t) =

θj2

1 + e−θj
0(t−θj

1)
. (7)

Then we leverage Sig5, which is a generalized version of the
sigmoid function [40] with 5 parameters per joint:

uj
t = Sig5(θ)(j, t) = θj0 +

θj1
1 + ab+ (1− a)c

, (8)

where the terms a, b and c are defined by

a =
1

1 + e
− 2 θ

j
2 θ

j
4

|θj2+θ
j
4|

(θj
3−t)

, b = eθ
j
2(θ

j
3−t), c = eθ

j
4(θ

j
3−t). (9)

Note that optimization with Sig5 can converge to all un-
certainty coefficients learnable with Sig3, but also additional
values, benefiting from its strictly larger output space.

We also compare with a more generic polynomial function
Polyd of degree d, which has d+ 1 learnable parameters per
joint and constrain the uncertainty less:

uj
t = Polyd(θ)(j, t) = θj0 + θj1t+ θj2t

2 + ...+ θjdt
d. (10)

IV. EPISTEMIC UNCERTAINTY IN POSE FORECASTING

Now, we address the epistemic uncertainty to capture the
model’s uncertainty due to the lack of knowledge. We want to
quantify the intuition that the models with predicted motions
dissimilar to the training distribution in the latent represen-
tation are less reliable and, therefore, should be treated with
caution. Notably, our aim in this section is not to improve
accuracy but rather to measure uncertainties associated with
pose forecasting models.

We improve upon existing literature of uncertainty quan-
tification by introducing temporal modeling and clustering
in epistemic uncertainty. Specifically, we employ an LSTM-
based autoencoder (Fig. 2) due to its proficient capability to
encode spatio-temporal dependencies and learn potent latent
representations. We then rely on clustering on that space as
there are no predefined motion classes.

In the next parts, we first explain how to estimate the
number of motion clusters K and train the deep clustering.
We then illustrate how to measure the epistemic uncertainty.

A. Determining the number of motion clusters

Determining K, the number of clusters, is essential since
it corresponds to the diversity of motions in the training
dataset. An optimal K, therefore, captures the diversity in the
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LSTM
Encoder

LSTM
Decoder

Input Pose
Sequence

Reconstructed
Pose Sequence

Deep Embedded
Clustering

Cluster Assignments

Fig. 2: The motion is encoded into a well-clustered representa-
tion space Z by our LSTM encoder-decoder. The probabilities
of the cluster assignments are provided by our deep embedded
clustering on that space to estimate the epistemic uncertainty.

training dataset while also reducing the time complexity of
our subsequent algorithms.

We first train an LSTM auto-encoder (Fig. 2) to learn
low dimensional embeddings Z by minimizing the recon-
struction loss Lrecons over the training dataset. We then
follow DED [55] which uses t-SNE [50] to reduce Z to a
2-dimensional feature vector z′. Subsequently, local density
ρi and delta δi for each data point are calculated:

ρi =
∑
j

χ(dij − dc), δi = min
j:ρj>ρi

dij , (11)

where χ(.) = 1 if . < 0 else χ(.) = 0, dij is the distance
between z′i and z′j , and dc is the cut-off distance. We then
define γi = ρi.δi similar to [54]. A larger γi corresponds to a
greater likelihood of being chosen as a cluster center; however,
the number of clusters still remains a hyperparameter. We fully
automate it by defining ri as the gap between two γi and γi+1

values (where γi+1 < γi):

ri =
γi

γi+1
, i ∈ [1, N − 1]. (12)

We set K = argmax(ri) since γK represents the largest shift
in likelihood of a sample being a cluster itself.

B. Deep embedded clustering

Having identified the number of clusters, we now learn the
optimal deep clustering of our embedding. We initialize the
cluster centers {µk}Kk=1 using the K-means algorithm on the
feature space. We then minimize the clustering loss Lcluster

as defined in DEC [57] jointly with the reconstruction loss in
order to learn the latent representation as well as clustering.
We incorporated the reconstruction loss into the loss function
to act as a regularizer and prevent the collapse of the network
parameters. The loss function is defined as:

L = Lcluster + λLrecons, (13)

where λ is the regularization coefficient. Finally, when the
loss is converged, we fine-tune the trained network using the
cross-entropy loss on the derived class labels in order to make
clusters more compact.

C. Estimating epistemic uncertainty

Now, we estimate the epistemic uncertainty of a given
forecasting model. Specifically, for each example, denote the
probability of assignment to the kth cluster by pk. The
epistemic uncertainty is then calculated as follows:

EpU =
1

N

N∑
i=1

entropy(p1i , . . . , p
K
i ), (14)

where N is the size of the dataset. In other words, a model
that does not generate outputs close to the motion clusters is
considered uncertain.

V. EXPERIMENTS

A. Datasets and Metrics

Human3.6M [17] contains 3.6 million body poses. It com-
prises 15 complex action categories, each one performed by
seven actors individually. The validation set is subject-11, the
test set is subject-5, and all the remaining five subjects are
training samples. The original 3D pose skeletons in the dataset
consist of 32 joints. Similar to previous works, we have 10/50
observation frames, 25 forecast frames down-sampled to 25
fps, with the subset of 22 joints to represent the human pose.

AMASS (The Archive of Motion Capture as Surface
Shapes) [30] unifies 18 motion capture datasets totaling
13,944 motion sequences from 460 subjects performing a
variety of actions. We use 50 observation frames down-
sampled to 25 fps with 18 joints, similar to previous works.

3DPW (3D Poses in the Wild) [52] is the first dataset with
accurate 3D poses in the wild. It contains 60 video sequences
taken from a moving phone camera. Each pose is described as
an 18-joint skeleton with 3D coordinates similar to AMASS
dataset. We use the official instructions to obtain training,
validation and test sets.

We measure the accuracy in terms of MPJPE (Mean Per
Joint Position Error) in millimeters (mm) per frame and in
terms of A-MPJPE as the average for all frames when needed.
We also report EpU as defined in Eq. (14).

B. Baselines

We apply our approach to several recent methods that are
open-source [29], [31], [46] and compare the performances
of with and without the incorporation of our approach. Note
that we follow their own training setup in which some use
10 frames of observation [9], [29], [46] and the rest 50
frames of observation [25], [31], [33], [34]. We report the
results obtained from the pretrained model of deterministic
STARS* [58] as documented on their GitHub page. We also
consider Zero-Vel, a simple and competitive baseline [34], that
forecasts all future poses by outputting the last observed pose.

Inspired by the common trend to treat sequences with
Transformers, we have designed our own simple transformer-
based architecture referred to as ST-Trans. We followed the
best practices proposed in [48] and adapted their design
elements to the task of pose forecasting. As depicted in
Fig. 3, it is composed of several identical residual layers,
each layer consists of a spatial and a temporal transformer
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Model 80ms 160ms 320ms 400ms 560ms 720ms 880ms 1000ms

Zero-Vel [34] 23.8 44.4 76.1 88.2 107.4 121.6 131.6 136.6
Res. Sup. [34] 25.0 46.2 77.0 88.3 106.3 119.4 130.0 136.6
ConvSeq2Seq [25] 16.6 33.3 61.4 72.7 90.7 104.7 116.7 124.2
LTD-50-25 [33] 12.2 25.4 50.7 61.5 79.6 93.6 105.2 112.4
MSR-GCN [9] 12.0 25.2 50.4 61.4 80.0 93.9 105.5 112.9
STARS* [58] 12.0 24.6 49.5 60.5 78.6 92.6 104.3 111.9

STS-GCN [46] 17.7 33.9 56.3 67.5 85.1 99.4 109.9 117.0
STS-GCN + pUAL (ours) 13.2 27.1 54.7 66.2 84.5 97.9 109.3 115.7
gain 25.4 % 20.1 % 2.8 % 1.9 % 0.7 % 1.5 % 0.5 % 1.1 %

HRI* [31] 12.7 26.1 51.5 62.6 80.8 95.1 106.8 113.8
HRI* + pUAL (ours) 11.6 25.3 51.2 62.2 80.1 93.7 105.0 112.1
gain 8.7 % 3.1 % 0.6 % 0.6 % 0.9 % 1.5 % 1.7 % 1.5 %

PGBIG [29] 10.3 22.6 46.6 57.5 76.3 90.9 102.7 110.0
PGBIG + pUAL (ours) 9.6 21.7 46.0 57.1 75.9 90.3 102.1 109.5
gain 6.8 % 4.0 % 1.3 % 0.7 % 0.5 % 0.7 % 0.6 % 0.5 %

ST-Trans 13.0 27.0 52.6 63.2 80.3 93.6 104.7 111.6
ST-Trans + pUAL (ours) 10.4 23.4 48.4 59.2 77.0 90.7 101.9 109.3
gain 20.0 % 13.3 % 8.0 % 6.3 % 4.1 % 3.1 % 2.7 % 2.1 %

TABLE I: Comparison of our method on Human3.6M [17] in MPJPE (mm) at different prediction horizons. +pUAL refers to
models where aleatoric uncertainty is modeled.
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Fig. 3: ST-Trans consists of 2 MLP layers and 6 Trans-
former Blocks with skip connections. Each Transformer Block
contains two cascaded temporal and spatial transformers to
capture the spatio-temporal features of data.

encoder to learn the spatio-temporal dynamics of data utilizing
the attention mechanism.

C. Aleatoric uncertainty

We first show the impact of aleatoric Uncertainty-Aware
Loss (pUAL) with the prior Sig5 to several models from
the literature and our ST-Trans. Table I shows the overall
results on Human3.6M [17]. To have a fair evaluation between
all models, we adapt HRI [31] to predict 25 frames in one
step (denoted as HRI*). We observe that all methods get
better results when taking aleatoric uncertainty into account

Model
AMASS 3DPW

160ms 400ms 720ms 1000ms 160ms 400ms 720ms 1000ms

Zero-Vel [34] 56.4 111.7 135.1 119.4 41.8 79.9 100.5 101.3
ConvSeq2Seq [25] 36.9 67.6 87.0 93.5 32.9 58.8 77.0 87.8
LTD-10-25 [33] 20.7 45.3 65.7 75.2 23.2 46.6 65.8 75.5

STS-GCN [46] 20.7 43.1 59.2 68.7 20.8 40.3 55.0 62.4
STS-GCN + pUAL 20.4 42.4 59.1 68.1 20.5 40.0 54.8 62.2

HRI [31] 20.7 42.0 58.6 67.2 22.8 45.0 62.9 72.5
HRI + pUAL 19.9 41.4 58.1 66.5 22.2 44.6 62.4 72.2

ST-Trans 21.3 42.5 58.3 66.6 24.5 47.4 64.6 73.8
ST-Trans + pUAL 18.3 39.7 56.5 66.7 22.3 45.7 63.6 73.2

TABLE II: Comparison of our proposed method on
AMASS [30] and 3DPW [52] in MPJPE (mm) at different
prediction horizons. +pUAL refers to models where aleatoric
uncertainty is modeled. The models were trained on AMASS.

during learning, therefore confirming the need for aleatoric
uncertainty estimation. It is noticeable that pUAL gives better
improvements for shorter prediction horizons, e.g., up to
25.4 % and 20.1 % for STS-GCN [46] at horizons of 80ms and
160ms, which correspond to the less uncertain time frames,
where pUAL focuses training more (smaller discount in the
loss function, as seen in Eq. (4)). At the same time, adding
pUAL does not degrade the performances at longer horizons.
In the context of close human-robot interactions, this improved
precision can significantly enhance the overall system perfor-
mance. Examples of predicted 3D pose sequences using pUAL
are depicted in Fig. 4, and show that the estimated uncertainty
increases over time, with joints farther away from the body
center associated with higher uncertainties. Moreover, we
report the performances of the models on AMASS and 3DPW
datasets in Table II. Again, we observe that modeling aleatoric
uncertainty leads to more accurate predictions, especially at
shorter horizons, with improvements up to 14.1 % on AMASS
and up to 9.0 % on 3DPW for ST-Trans at a horizon of 160ms.

We argue that modeling the aleatoric uncertainty leads to
more stable training. In order to demonstrate this, we conduct
five separate trainings of ST-Trans and present in Fig. 5 the
average of the A-MPJPE values along with their respective



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION.

(a) Walking (b) Phoning (c) Taking Photo

Fig. 4: Qualitative forecast poses on Human3.6M [17] depicting different actions over time. For each action, time progresses
from left to right. Higher aleatoric uncertainty is shown with a lighter color. Uncertainty of any bone is considered as its outer
joint’s uncertainty assuming the hip is the body center. We observe that the estimated uncertainty increases over time, with
joints farther away from the body center associated with higher uncertainties.
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Fig. 5: A-MPJPE and its standard deviation in training epochs
for 5 trained models. The model with pUAL has a lower
standard deviation, meaning a more stable training.

Uncertainty
prior (tasks)

Number of
parameters

Standard
deviation ST-Trans HRI* STS-GCN

None – 0.643 111.6 113.8 117.0

Id (T, J) 25 · 22 0.557 109.3 114.6 115.8
Poly9 (T, J) 10 · 22 0.505 110.3 114.7 118.1
Sig5 (T, J) 5 · 22 0.496 109.3 112.1 115.7
Sig3 (T, J) 3 · 22 0.537 110.3 113.1 115.9
Sig5 (T ) 5 0.505 109.7 112.4 115.9

TABLE III: Comparison of different priors for aleatoric uncer-
tainty in terms of MPJPE (mm) at 1 s on Human3.6M. Lower
standard deviation in training is better.

standard deviations for each epoch. The plot highlights that the
model with pUAL is more stable across runs, as indicated by a
lower standard deviation. Moreover, we compute AP-MPJPE,
which is the average pairwise distance of predicted motions in
terms of MPJPE, and observe that it decreases from 24.2mm
to 20.3mm when pUAL loss is added, showing again lower
standard deviation in the model’s output.

So far, results have been reported using the Sig5 uncertainty
prior (Eq. (8)) to model the time and joint (T, J) aleatoric
uncertainty. In Table III, we report the performances of other
choices, and compare against using a single prior Sig5 for
all joints (only time dependency T ) and other priors Sig3,
Poly9. The results show again that taking aleatoric uncertainty
into account with pUAL is beneficial and that a good choice
of uncertainty prior is important. In particular, Sig5 performs
better than using no prior for all models. Using a prior can
lead to similar aleatoric uncertainty than the unconstrained
case, but with fewer learnable parameters and better stability.

D. Epistemic uncertainty

Evaluating the quality of epistemic uncertainty is diffi-
cult due to the unavailability of ground truth annotations,
yet important. Our goal is to identify instances where pose
forecasting is not reliable, essentially making this a binary
classification problem. Selective classification is a widely used
methodology to evaluate uncertainty quality, where a classifier
has the option to refrain from classifying data points if its
confidence level drops below a certain threshold [11]. In other
words, if a pose forecasting model is trained on action A and
evaluated on actions A and B, a reliable measure of epistemic
uncertainty should effectively distinguish between these two
sets of forecasts.

We assess the performance of our epistemic uncertainty
estimation using selective classification, and measure how well
actions ”sitting” and ”sitting down” can be separated from
actions ”walking” and ”walking together”, all from the test
set of Human3.6M, based solely on the predicted uncertainty
of the model. The forecasting model and clustering are trained
on Human3.6M walking-related actions, and we anticipate
low uncertainty values for those actions and high uncer-
tainty values for sitting-related actions, i.e., not encountered
and significantly distinct actions. During the assessment, we
compute uncertainty scores for both actions and measure the
classification results for a range of thresholds. Similar to prior
research [39], we utilize the AUROC metric, where a higher
score is desirable and a value of 1 indicates that all walking-
related data points possess lower uncertainty than all sitting-
related data points. In Table IV, we present our findings and
compare them to alternative approaches, where our proposed
method demonstrates higher AUROC. The full ROC curve is
in Fig. 6. Note that our approach is model-agnostic in contrast
to MC-Dropout.

Another feature of our approach is computational efficiency,
which is attributed to its ability to compute in a single forward
path. This is in contrast to MC-Dropout and Ensemble meth-
ods. We provide a comparison of the average inference latency,
measured in milliseconds, between our method and other
approaches in Table IV. Our approach shows lower latency
and only requires one training. Notably, the performance gap
between our approach and other methods may increase when
using more computationally expensive forecasting models.

We conducted another experiment to showcase our met-
ric’s effectiveness in out-of-distribution (OOD) motions. By
shuffling the frames’ order or joints in each pose sequence
of the test set, we generated OOD data. The EpU on the
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Method AUROC Latency Trainings

Deep-Ensemble-3 0.87 6.28 3
Deep-Ensemble-5 0.90 10.43 5
MC-Dropout-5 0.90 9.57 1
MC-Dropout-10 0.92 18.98 1
Ours 0.95 6.23 1

TABLE IV: AUROC, inference latency (ms) and the number
of training runs for different epistemic uncertainty methods.

Fig. 6: ROC curve for a model trained on walking-related
actions and tested on both walking-related and sitting-related
actions. The objective is to distinguish between these sets by
utilizing uncertainty estimates.

AMASS 3DPW

Model EpU A-MPJPE EpU A-MPJPE

Zero-Vel [34] 0.449 85.72 0.566 64.44
HRI [31] 0.351 43.76 0.463 43.62
STS-GCN [46] 0.332 45.49 0.455 42.60
ST-Trans + pUAL 0.336 35.86 0.439 40.02

TABLE V: Comparison of different models in terms of A-
MPJPE and EpU on AMASS and 3DPW datasets. The clus-
tering and forecasting models were trained on AMASS.

original test set is 0.085, while for shuffled joints, it was
observed to be 1.53 due to the lack of correspondence with in-
distribution (ID) poses. Furthermore, a high EpU value of 2.18
was obtained for shuffled frames, highlighting the importance
of frame order in generating an ID motion. The full table of
performances in all actions can be found in the appendix.

Additionally, we report the forecasting models’ perfor-
mances in Table V in terms of A-MPJPE, along with the
epistemic uncertainties EpU associated with their predictions,
on both the AMASS and 3DPW datasets. Note that the
forecasting models and the clustering method were trained
on the AMASS dataset. Higher uncertainties were recorded
on 3DPW as an unseen dataset while prediction errors were
lower. It underscores the reliability of our uncertainty quantifi-
cation approach and suggests that relying solely on a model’s
prediction errors may not provide a comprehensive assessment.

VI. CONCLUSION

In this paper, we focused on modeling the uncertainty of
human pose forecasting. We suggested a method for modeling

aleatoric uncertainty of pose forecasting models that could
make state-of-the-art models uncertainty-aware and improve
their performances. We showed the effect of uncertainty priors
to inject knowledge about the pattern of uncertainty. Moreover,
we measured the epistemic uncertainty of pose forecasting
models by clustering poses into motion clusters, which enables
us to evaluate the trustworthiness of victim models. We made
an open-source library of human pose forecasting with several
models, datasets, and metrics to move toward a unified and fair
evaluation. We hope that the findings and the library will pave
the way to more uncertainty-aware pose forecasting models.
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VIII. APPENDIX

Here, we provide supplementary materials. It comprises an
experiment that explores the uncertainties of various joints and
priors, and qualitative results related to aleatoric uncertainty.
It also includes an evaluation of EpU across a wider range of
actions, as well as a OOD motion experiment, and a discussion
on motion clustering for epistemic uncertainty.

A. Aleatoric uncertainty in pose forecasting

1) Study of different joints’ aleatoric uncertainties: In the
main paper, we observe that the uncertainty of joints increases
over time. Another observation in our experiments is that
different joints have different behaviors. For instance, Figure 7
shows that hand joints have lower uncertainties compared to
leg joints in the beginning of the forecasting as hands move
less and are more predictable. However, toward the end of
the forecasting, hands are more unpredictable, therefore have
higher uncertainties compared to legs.
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Hand Joints

Fig. 7: Evolution of uncertainty of hands and legs over time.
Hands’ uncertainty is lower at short prediction horizon, but
higher at longer prediction horizons.

2) Study of different priors: In the main paper, we observed
that using a prior can lead to similar aleatoric uncertainty than
the unconstrained case, but with fewer learnable parameters
and better stability. Here, we plot the learned aleatoric un-
certainty of different prior functions in Figure 8. We observe
that all priors lead to the same general evolution over time
which comes from the exponential behavior of error in time;
however, Sig5 matches the best.
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Fig. 8: The values of the learned aleatoric uncertainties for
different priors trained on ST-Trans.

3) Qualitative results: Examples of forecast pose sequences
are depicted in Figure 9. We observe higher uncertainties for
later time frames.

B. Epistemic uncertainty in pose forecasting

1) Evaluating EpU on OOD motions: The full table of the
OOD motions experiment of the main paper is in Table VI.

Action Normal Frames Joints
Shuffled Shuffled

Walking 0.26 1.35 2.15
Smoking 0.80 1.54 2.17
Posing 0.93 1.57 2.17
Directions 0.93 1.39 2.20
Greeting 0.81 1.50 2.17
Discussion 0.80 1.31 2.19
Walkingtogether 0.33 1.36 2.21
Eating 0.83 1.27 2.19
Phoning 0.82 1.56 2.20
Sitting 1.12 1.75 2.23
Waiting 0.82 1.57 2.15
Sittingdown 1.18 1.89 2.16
WalkingDog 0.95 1.53 2.20
TakingPhoto 1.02 1.47 2.17
Purchases 0.99 1.47 2.24

Average of all actions 0.85 1.53 2.18

TABLE VI: Comparison of EpU on different categories of
Human3.6M. Normal refers to the original test set, Frames
Shuffled refers to the test set in which the frame orders in each
sequence have been randomly shuffled, and Joints Shuffled
refers to randomly shuffled 3D joints in all frames.

2) Evaluating EpU on other actions: Evaluating the quality
of epistemic uncertainty is difficult due to the unavailability of
ground truth annotations. In the main paper, we conducted an
experiment on classifying walking-related and sitting-related
actions. Here, we subsequently present the results of further
assessments of a broader range of actions in Table VII and
detailed ROC curves in Figure 10. Our experimental results
indicate that our proposed method outperformed previous
techniques in almost all test scenarios. Specifically, in the
last column of Table VII, we trained our clustering and
forecasting model on all non sitting-related actions (13 actions)
and evaluated EpU’s ability to classify these actions from
the remaining sitting-related actions (2 actions). Our method
achieved higher AUROC and better ROC curves.

3) Motion clustering: To derive EpU, we opted to use
clustering in the representation space instead of alternative
methods, such as action recognition models or the action labels
of existing human pose datasets, e.g., Human3.6M. There are
several differences between a motion and an action when
dealing with human pose sequences: 1) the actions are limited,
whereas motions can be more varied; 2) multiple consecutive
distinct motions usually constitute an action. Motion clustering
is also generalizable to datasets without action labels and real-
world settings.
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Fig. 9: Six animations showing different forecast pose sequences. Higher aleatoric uncertainty is shown with a lighter color.
It is best viewed using Adobe Acrobat Reader.

Train actions Walking Walking Smoking Smoking Discussions w/o Sitting
Test actions Purchases TakingPhoto Phoning Sitting Directions Sitting

Deep-Ensemble-3 0.83 0.80 0.51 0.69 0.54 0.68
Deep-Ensemble-5 0.86 0.80 0.54 0.77 0.58 0.68
MC-Dropout-5 0.80 0.80 0.48 0.65 0.51 0.54
MC-Dropout-10 0.83 0.82 0.49 0.67 0.52 0.55
Ours 0.93 0.89 0.56 0.71 0.59 0.76

TABLE VII: AUROC for different sets of actions for different epistemic uncertainty quantification methods. The actions on
top indicate the train actions and the ones below them indicate the test actions.
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Fig. 10: ROC curves for a model trained on the first set of actions and tested on both first and second sets of actions.
The objective is to distinguish between these sets by utilizing uncertainty estimates. (a) Walking - Purchases (b) Walking -
TakingPhoto (c) Smoking - Phoning (d) Smoking - Sitting (e) Discussion - Directions (f) w/o Sitting - Sitting
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