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AiSDF: Structure-aware Neural Signed Distance
Fields in Indoor Scenes

Jaehoon Jang1∗, Inha Lee1∗, Minje Kim1 and Kyungdon Joo2†

Abstract—Indoor scenes we are living in are visually
homogenous or textureless, while they inherently have structural
forms and provide enough structural priors for 3D scene
reconstruction. Motivated by this fact, we propose a structure-
aware online signed distance fields (SDF) reconstruction
framework in indoor scenes, especially under the Atlanta
world (AW) assumption. Thus, we dub this incremental SDF
reconstruction for AW as AiSDF. Within the online framework,
we infer the underlying Atlanta structure of a given scene
and then estimate planar surfel regions supporting the Atlanta
structure. This Atlanta-aware surfel representation provides an
explicit planar map for a given scene. In addition, based on these
Atlanta planar surfel regions, we adaptively sample and constrain
the structural regularity in the SDF reconstruction, which enables
us to improve the reconstruction quality by maintaining a high-
level structure while enhancing the details of a given scene. We
evaluate the proposed AiSDF on the ScanNet and ReplicaCAD
datasets, where we demonstrate that the proposed framework is
capable of reconstructing fine details of objects implicitly, as well
as structures explicitly in room-scale scenes.

Index Terms—Deep learning for visual perception, mapping,
incremental learning

I. INTRODUCTION

VARIOUS 3D scene representations, such as explicit
geometric primitive and implicit functions, have been

actively studied in computer vision and robotics [2], [3], [4].
As one of the implicit representations, signed distance fields
(SDF) inherently encode the surface information as the signed
distance between the position in space and the closest surface,
where the zero-level set corresponds to the surface. By virtue
of this characteristic, many vision tasks, such as rendering [5],
and path planning [6], use SDF as a medium, especially neural
implicit reconstruction based on SDF has gained a lot of
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attention [7], [8]. In those tasks, inferring accurate SDF with
low latency is important.

Recently, Ortiz et al. [9] presented an incremental SDF
estimation framework (iSDF in short) that reconstructs the
SDF of room-scale indoor environments using continual
learning in real-time. Given a stream of posed depth images,
iSDF focuses on a neural SDF-based mapping module
within a SLAM framework. By employing a compact MLP
network and sparse sampling, they show that online SDF
reconstruction is feasible using continual learning. However,
iSDF misses several properties in indoor scenes that can
improve reconstruction quality while maintaining efficiency.

From the layout or floorplan of the rooms to various
objects such as furniture, most objects, including the scene
itself, have structural forms in indoor scenes. Concretely,
while they are homogeneous or textureless from a visual
perspective, they consist of a set of orthogonal or parallel
planes (planar segments) from a geometric viewpoint. These
structural characteristics of indoor scenes can be represented
by a few dominant directions; structural assumptions, such as
the Manhattan world (MW) [10], or Atlanta world (AW) [11]
assumptions, have been explored in the literature [12], [13],
[14], [15]. For example, the MW assumption, represented by
three orthogonal directions, describes a given scene with a
strictly aligned shape, like a cuboid shape. In the case of the
AW assumption, it can cover more general indoor scenes, such
as non-orthogonal walls, using vertical and a set of horizontal
directions. These structural assumptions have been exploited
as prior information on indoor scenes.

Motivated by this fact, we propose a structure-aware online
SDF reconstruction framework, AiSDF, in indoor scenes
under the AW assumption (see Fig. 1). To this end, we
continually estimate the underlying Atlanta structure of a given
scene inside the online SDF reconstruction framework. This
structural understanding provides several advantages within
our AiSDF framework. 1) Based on the estimated dominant
Atlanta directions as a priori, we can efficiently extract planar
regions following the AW assumption in the form of surface
elements (surfels). This Atlanta-aware surfel representation
provides an explicit planar map for a given scene. 2) We can
exploit the structural regularity as a constraint. Concretely,
we can adaptively sample points according to the Atlanta-
aware surfels, which enables us to enforce the additional
structural constraint and focus on complex regions. We
seamlessly integrate the structural understanding into the
online SDF reconstruction framework. We demonstrate our
AiSDF framework on the ScanNet [1] and ReplicaCAD [16]
datasets. AiSDF shows that the overall details of the scene and
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Fig. 1: The proposed AiSDF on the ScanNet dataset [1]. Top: Our framework represents the scene as a signed distance fields (SDF)
by considering the structure of the scene in a continual manner. Middle: In addition, we estimate the underlying Atlanta structure (global
Atlanta frame) and extract a 3D explicit planar map in the form of Atlanta-aware surfels. We colorize each surfel with the associated Atlanta
direction. Bottom: We visualize the last keyframe used by AiSDF (RGB image is unused in practice).

the structure in the form of a 3D planar map are recovered
better than comparison methods [17], [9]. In summary, our
contributions are:

• We propose a new structure-aware online neural SDF,
AiSDF that reconstructs a given indoor scene under the
AW assumption with an online process.

• Based on the structural understanding, we introduce an
Atlanta-aware surfel representation, which approximates
a given indoor scene to a set of rectangular surfels.

• By utilizing the Atlanta-aware surfels, we effectively
sample points considering the structure of the scene.
In addition, we perform a structure-aware tight bound
computation for self-supervised learning.

• In addition to obtaining a neural implicit map, AiSDF
extracts a low-memory explicit planar map that can make
it easier for robots to access the structure information of
the scene.

II. RELATED WORK

Structural assumptions. Thanks to their simplicity,
represented by a few dominant directions, and their
applicability in structured environments, various structural
assumptions have been studied in robotics and computer
vision [18], [19], [15] (please refer to [18] for a detailed
review). The Manhattan world (MW) assumption [10],
represented by three orthogonal directions, can approximate
cuboid shape scenes, such as an indoor room. Beyond the
MW assumption, the Atlanta world (AW) assumption [11] is
defined by a vertical direction and a set of horizontal directions
orthogonal to the vertical one, which can describe most indoor
scenes, including non-orthogonal walls.

These two structural assumptions have been broadly
used in various vision applications, such as scene
understanding [20], [21], camera calibration [22], visual
odometry [14], SLAM [13], [15], and so on. In particular,
Joo et al. [15] propose a linear SLAM framework for

structured environments. They estimate the underlying
Atlanta structure and explicitly use planar features supporting
the Atlanta structure as measurements. In this work, we
assume a given indoor scene follows the AW assumption.
Neural scene reconstruction. Recently, research on neural
scene reconstruction using implicit representations, such as
occupancy, neural radiance fields (NeRF), and SDF has been
actively conducted [23], [24], [25], [26]. Among various
implicit representations, SDF has gained much attention in that
it can implicitly encode surface information using continuous
values [27], [28], [29], [30]. In addition, SDF can make
significant synergy with volumetric rendering and produce a
high-quality reconstruction [31], [32], [33].

Neural scene reconstruction also can be utilized in
conjunction with online processes, such as SLAM [7], [8].
Within the traditional real-time SLAM pipeline (i.e., front-end
tracking and back-end mapping), iMAP [7] takes an RGB-D
image as input and exploits an MLP to implicitly represent a
3D volumetric map in the form of volume density. Recently,
Ortiz et al. [9] propose iSDF, a continual SDF reconstruction
framework given a stream of posed depth images. Inspired by
iMAP, iSDF adopts a keyframe selection module to achieve
real-time performance as well as train the model in a continual
manner. Although this recent progress in online implicit 3D
scene reconstruction is impressive and impactful, they less
attention to improving the reconstruction quality. In other
words, they focus on the efficiency of 3D neural scene
representation.

Several research works [34], [35], [36] pay attention
to enhancing the quality of neural scene reconstructions
by combining geometric priors (e.g., depth and normal).1

Guo et al. [36] propose a neural 3D scene reconstruction
method with a strict structural assumption of indoor
scenes. This ManhattanSDF method seamlessly combines

1Note that this line of research works focuses on enhancing reconstruction
quality by offline process regardless of computational efficiency.
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Fig. 2: Overview of AiSDF. Given a stream of posed depth images, AiSDF first selects the keyframe and adds it to the keyframe set for
continual learning. We update the global Atlanta frame (AF) by extracting the dominant directions from a new keyframe and then generate
surfels that represent the planar regions supported by the updated global AF. From a set of keyframes with Atlanta-aware surfels, we sample
the 3D points considering the structure of the scene. Finally, sampled point x is queried to MLP that outputs signed distance value s, and
we optimize the network in a self-supervised manner by measuring the loss between s and bound b. Note that we intentionally present
intermediate steps of continual learning to show the process of extracting the new Atlanta direction and surfels supported by updated global
AF. In Atlanta-aware sampling (blue box), we use the ground truth mesh to visualize the sampling effectively. The final mesh result indicates
the reconstructed mesh by AiSDF using all keyframes.

the planar regions following the MW assumption with the
learning of implicit neural representations and improves
the reconstruction quality, especially in textureless and
homogeneous regions. While the above methods show
improved reconstruction quality, they cannot be utilized in
the online process. Therefore, we seamlessly integrate an
online SDF reconstruction framework with a general structural
assumption, the AW assumption.
Sampling strategy. Unlike offline scene reconstruction
approaches [33], [27], [36] that fully utilize input data
regardless of computational time and memory consumption,
sampling strategy becomes essential for online scene
reconstruction to ensure efficiency. In the 2D image domain,
iMAP [7] proposes loss-guided active sampling, which
samples more points in the complex (high-frequency) regions
based on loss calculated from the image grid. In the depth
domain, iSDF [9] randomly samples a small number of pixel
coordinates (≤200) from each selected keyframe for efficiency.
Such sparse sampling strategies for scene reconstructions
require an appropriate sampling rate based on the structural
complexity of the scene. However, the accurate decision on
the complexity of scenes in 2D or 2.5D domains is still a
difficult challenge. To alleviate this issue, we exploit planar
surfel regions supported by the AW assumption, which allows
us to use Atlanta structure-aware sampling.

III. ATLANTA-AWARE ISDF FRAMEWORK

In this work, we propose a new structure-aware online
SDF reconstruction framework in indoor scenes (see Fig. 2).
Unlike the previous iSDF [9] that focuses on reconstructing
SDF itself, we exploit the structural regularity of indoor
environments, especially the AW assumption [11]. We dub
this structure-aware online SDF estimation AiSDF in short.
AiSDF takes as input a stream of posed depth images {Di}

and camera poses {Tci
w}, and aims to learn a neural network

f(x) based on the structural understanding of the AW, where
f(x) estimates SDF value s at a 3D point x ∈ R3. Specifically,

for a consecutively selected keyframe Kj=(Dj ,T
cj
w ), AiSDF

infers the underlying Atlanta structure (i.e., Atlanta frame)
within a continual framework. Based on this structural
understanding, we then estimate planar regions that support the
estimated AF in the form of surfel representation. According
to surfel regions, we perform Atlanta-aware sampling to force
the structural regularity and focus on complex regions in
SDF reconstruction adaptively. Thus, the proposed AiSDF
framework improves the SDF reconstruction quality at the
structure level as well as generates an explicit 3D planar map
composed of Atlanta-aware surfels.

A. Structural assumption: Atlanta frame

The AW assumption [11] can approximate a given indoor
scene into a set of orthogonal and parallel planes, where planar
walls are orthogonal to floors but do not have to be orthogonal
to each other. We can formally define a set of dominant
directions satisfying the AW assumption, which consists of
a vertical dominant direction vv and a set of M horizontal
dominant directions vhm

, where vv ⊥ vhm
. We call this

direction set V = {vv,vh1
,vh2

,· · ·,vhM
} the Atlanta frame

(AF) or Atlanta directions. In this work, we assume that a
given indoor scene follows the AW assumption and use the AF
parametrization [19]2 that represents Atlanta directions using
the rotation matrix R and a set of 1D angles {αm}. We denote
the estimated AF for the given j-th keyframe at the camera
coordinate as local AF Vj

L and the unified AF for the observed
keyframes at the world coordinate as global AF VG.

B. Estimation of underlying Atlanta frame

For a consecutively selected keyframe, we estimate the
underlying Atlanta structure (i.e., global AF) in a continual

2AF parametrization [19] uses the rotation matrix R = [r1, r2, r3] ∈
SO(3) to represent the vertical direction and the first horizontal direction
(i.e., vv = r1 and vh1

= r2, where vh1
acts as a reference location). Then,

each vhm can be defined as a 1D angle parameter αm by rotating vh1
by

αm around vv .
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Fig. 3: Illustration of underlying AF estimation. (a) Given
global AF VG (solid arrows) and surface normal distribution of
new keyframe Kj , the Atlanta structure analysis proceeds in two
steps. (b) First, we estimate potential dominant horizontal directions
(black bars) from a 1D histogram of inlier surface normals. (c) The
new dominant direction (purple arrows) is extracted by associating
potential directions with the global AF in the world coordinate.

manner, as shown in Fig. 3. Unlike the previous work [15]
that detects the AF at each frame and then naively associates
them, we fully exploit the property of the AW assumption that
dominant horizontal directions are orthogonal to the vertical
direction. That is, the potential horizontal direction does exist
on the horizon defined by the vertical direction. Based on this
property, we reduce search space for the potential horizontal
directions to 1D space in the range of [−180◦, 180◦]. In this
1D domain, we detect dominant horizontal directions and then
associate them with the current global AF.

Specifically, given the current global AF VG and a new
posed keyframe Kj with its surface normal distribution3,
we first transform the vertical direction vv∈VG into camera
coordinate by T

cj
w

−1. We then set an inlier horizon region
w.r.t. the vertical direction and identify the inlier surface
normals within the inlier horizon region (see the green band
region in Fig. 3(b)). These inlier surface normals describe the
distribution of potential dominant horizontal directions of the
new keyframe. Thus, we construct a 1D histogram with 361
buckets, spaced at 1◦ intervals in the range [-180◦, 180◦] for
the inlier surface normals, and detect the dominant directions
from peak points of smoothed histogram via Gaussian filtering.
By doing so, we can efficiently estimate potential dominant
horizontal directions under a known vertical direction. Finally,
we transform the potential directions to the world coordinate
by T

cj
w and then associate them with the current global AF to

determine the local AF Vj
L and update the global AF V̂G (see

Fig. 3(c)).
We initialize VG as the dominant Manhattan directions

(e.g., [37]) and set the angle thresholds for inlier horizon
region and association as 20◦ to detect the dominant one and
be robust against noise.

3Given a depth image and intrinsic parameter, we can directly compute the
corresponding surface normal map using x-axis and y-axis gradient values
and their cross-product.

With surfel

W/O surfel

Atlanta direction

(a) (b)

Fig. 4: Illustration of the Atlanta-aware surfels and surfel-aware
bound computation. Left: (a) Atlanta-aware surfel representation.
(b) 2D surfel mask Ms overlaid on the depth image. Right: Selected
points to compute bound values with surfels (top) and without surfels
(bottom). With Atlanta-aware surfels, AiSDF can compute more tight
bound values while covering a denser and wider area.

C. Atlanta-aware surfel representation

Given a keyframe Kj with the estimated local AF Vj
L,

we extract dominant planar regions supporting the AF in
the form of surface elements, Atlanta-aware rectangular
surfels, as shown in Fig. 4(a). We represent an Atlanta-aware
rectangular surfel s with its center point c, surface normal
n, two axes s1 and s2, and the corresponding lengths l1
and l2. Through Atlanta directions, we can constrain the
surface normal of surfels and define axes of rectangular
surfels using other Atlanta directions orthogonal to the surface
normal. This process allows us to explicitly extract a set of
rectangular surfels without a learning-based module (e.g., wall
segmentation module [36]) and force the structural regularity
inside the online SDF framework.

We first detect an Atlanta-aware plane using plane RANSAC
as in [15]. Let v be one of the given Atlanta directions and
Xv be a set of 3D points having similar normals with v. With
randomly sampled 1-point in Xv and v, we can compute a
potential Atlanta-aware plane and perform plane RANSAC
using the Euclidean distance between the potential plane and
Xv. We denote the detected Atlanta-aware planes by RANSAC
as πv and its inlier points as X̂v⊂Xv. We then extract Atlanta-
aware rectangular surfel s on the detected plane, where its
surface normal and two axes are directly computed from v and
two orthogonal Atlanta directions (e.g., n = vv , s1 = vh1

, and
s2=vv×vh1 ). Specifically, we project X̂v on πv, of which 2D
space is defined by two axes s1 and s2. On this 2D projection
domain, we randomly sample 2-point and construct an axis-
aligned rectangular surfel. We generate a set of candidate
rectangular surfels by random sampling and select dominant
surfels in terms of their area and occupancy by points, where
the occupancy is measured by a ratio of associated points on
the surfel against X̂v. For each direction v ∈ Vj

L, we extract
Atlanta-aware surfels {s} in 3D space and 2D surfel mask Ms

in the depth image domain.

D. Atlanta-aware sampling

Given a set of keyframes {Kj} with the estimated structure-
aware surfels {s}, we perform structure-aware sampling that
effectively considers planar surfel regions (i.e., 2D surfel mask
on depth image domain). According to the surfel mask Ms, we
separately sample points on the surfel and non-surfel regions
(Ns number of surfel points Xs={xs} and Nn number of non-
surfel points Xn={xn}). By performing this structure-aware
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sampling, we intend to sample more non-surfel points (i.e.,
relatively dense sampling) on the complex non-surfel regions
while fewer surfel points on homogeneous surfel regions, as
illustrated in the blue-colored box of Fig. 2.

Concretely, for the non-surfel regions, we randomly select
a set of pixels and then sample a bunch of 3D points along
the corresponding ray for each sample pixel as in [9]. For
the surfel regions, we uniformly sample 3D points on the 3D
surfel region directly (see the left side of Fig. 4), where the
number of sampled points for each surfel is the same as the
number of sampled points for a pixel along the ray for the
non-surfel region.

We then compute the bound and approximated gradient
depending on where the points are sampled. In the case of
bound computation, we use zero bound value for Xs and the
closest distance to surface points and surfel points for Xn,
where we consider the sign by computing the difference of
depth between the depth from a sensor and the point sample
along the ray:

b(x,P)=

{
sgn(D[u, v]− d)min

p∈P
|x− p| x∈Xn

0 x∈Xs

(1)

where sgn(·) is the sign function, P is a set of surface points
and surfel points, and D[u, v] and d are depth values of pixel
[u, v] and query point, respectively. The approximated gradient
is computed with the closest surface point for x ∈ Xn, while
it is replaced with the Atlanta direction for Xs:

g(x,P)=

sgn(D[u, v]−d)(x−argmin
p∈P

|x−p|) x∈Xn

v x∈Xs

(2)

where v is an Atlanta direction. By directly sampling points
from surfels, we can cover a denser and wider area without
increasing the total number of samples. This leads to a more
accurate approximation of the SDF and gradient, as shown on
the right side of Fig. 4. As a result, using these approximated
values according to the type of sampled points, we can enforce
AiSDF to learn more tight SDF reconstruction in a self-
supervised manner.

E. Loss for training AiSDF

Similar to [9], the loss function for training AiSDF basically
consists of three terms: SDF, gradient, and Eikonal loss terms
to satisfy the geometric properties of SDF. We adaptively
utilize each loss term according to the identity of sampled
3D points (i.e., surfel points Xs or non-surfel points Xn). In
the case of non-surfel points as query points, we optimize the
network using three loss functions used in iSDF (see details
in [9]) with approximated bound and gradient computed by
Eqs. (1) and (2). In this work, we introduce a surfel-guided
loss function for surfel points, which allows us to enforce
structural regularity.
Surfel loss. Given sampled surfel points xs∈Xs, we strongly
constrain planar regions. To represent its geometry, the
predicted SDF value is forced to have zero value:

Ls
sdf(f(xs; θ)) = |(f(xs; θ)|. (3)

Also, since the normal of xs is aligned with Atlanta direction
v, we can apply the gradient loss to align the two vectors:

Ls
grad(∇xs

f(xs; θ),v) = 1− ∇xs
f(xs; θ) · v

∥∇xs
f(xs; θ)∥ ∥v∥

, (4)

where ∇xs
f(xs; θ) denotes the gradient of the predicted SDF.

In particular, we can constrain the normal in a common
direction regardless of keyframes due to using global AF,
which is one of our contributions using structural regularity.

Following [38], the Eikonal loss enforces the SDF to have
a unit norm gradient to produce a high-fidelity surface:

Ls
eik(f(xs; θ)) = |∥∇xs

f(xs; θ)∥ − 1| . (5)

Our entire surfel loss is as follows:

Lsurfel = λs
sdfLs

sdf + λs
gradLs

grad + λs
eikLs

eik, (6)

where λs
sdf, λ

s
grad and λs

eik are the weight factors of the SDF
loss, gradient loss and eikonal loss for surfel points. We set
{λs

sdf, λ
s
grad, λs

eik} = {1, 0.4, 0.2}.
Total loss. Finally, the total loss of AiSDF is as follows:

l(θ) = LiSDF + Lsurfel, (7)

where LiSDF indicates the loss term composed of SDF,
gradient, and Eikonal loss for non-surfel sampled 3D points.
We set the weight factors of each loss term of LiSDF to be the
same as iSDF.

IV. EVALUATION

In this section, we demonstrate the proposed AiSDF
framework on synthetic and real-world datasets. In Sec. IV-A,
we provide the details of the experiment setting. In Sec. IV-B
and Sec. IV-C, we show the qualitative and quantitative results
to give a better understanding of reconstruction in various
scenarios. In addition, we analyze the proposed AiSDF via an
ablation study in Sec. IV-D. It should be noted that additional
experiments are available in the supplementary video.

A. Experiment setting

Implementation details. Following [9], we model AiSDF as
a single MLP composed of four hidden layers. Specifically,
both sampled surfel points Xs and non-surfel points Xn are
transformed by positional embedding to make the network
learn high-frequency regions. Then, embedded features are
passed to four hidden layers that each composed of a linear
layer and a softplus activation function. The output of the
network is the SDF value and produces a mesh from this value
by running a marching cube algorithm. AiSDF is implemented
by PyTorch [39] and trained on a single RTX 3090 GPU. To
optimize our AiSDF, we employ an AdamW optimizer [40]
with a learning rate 1.3×10−3 and a weight decay 1.2×10−2.
In addition, we utilize the same keyframes and iteration
process as iSDF [9] for a fair comparison.
Dataset. We validate the proposed AiSDF on two datasets.
1) The ScanNet dataset [1] captured by an RGB-D camera
contains 1, 513 scans of real-world indoor scenes with camera
parameters, semantic labels, and surface reconstructions.
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Fig. 5: Qualitative evaluation on the ScanNet and ReplicaCAD datasets. The purple boxes are close-up views to show the details of
each scene. The second column presents the half-transparent explicit planar map composed of surfels overlaid on the mesh. Here, the green
color denotes the surfels supported by the vertical Atlanta direction, and the other colors represent the surfels by the other horizontal Atlanta
directions. Note that the size of the surfels may look smaller in the ReplicaCAD due to the different scales of scenes.

Among these scans, we use six sequences satisfying the
Manhattan structure and three sequences following the Atlanta
structure. 2) The ReplicaCAD dataset [16] is a photo-realistic
3D indoor scene reconstruction dataset, which is a recreated
version of the ‘FRL apartment’ from the Replica dataset [41].
This dataset provides six scenes with variations of placement
of large furniture, as well as small objects, for object
rearrangement tasks. In our work, we use the same sequences
used by iSDF [9] for a fair comparison. Specifically, we utilize
two rooms, where each room structure has three sequences
according to different trajectories with their own purpose,
such as navigation, object reconstruction, and manipulation
(six sequences in total).

Comparison method. We compare AiSDF with two methods.
1) Voxblox [17] is an algorithm for incrementally propagating
wavefronts from updated TSDF voxels to create a voxel grid
with the Euclidean signed distance. To conserve hardware
resources, Voxblox uses voxels of large size and raycast
grouping to accelerate integration. These techniques make it
possible to create a map in real-time. We set the voxel size to
5.5cm. 2) iSDF [9], which is our baseline, is a real-time SDF
reconstruction method from a stream of posed depth images
of room-scale environments.

Metric. For quantitative evaluation, we use the same three
metrics as in iSDF [9]: SDF error, collision cost error, and
gradient cosine distance.

AiSDF iSDF

sc
en

e_
00

31

Ground truth
Signed

distance[m]

Fig. 6: Visualization of SDF at a constant height. The SDF is
extracted at the end of the sequence.

B. Qualitative evaluation

Mesh reconstruction quality. Figure 5 shows the mesh
reconstruction results of AiSDF and comparison methods.
Overall, Voxblox captures the details of even small objects,
but it produces uneven surfaces. On the other hand, iSDF
generates even surfaces, whereas has difficulty capturing the
details of small objects. Unlike comparison methods, the
proposed AiSDF reconstructs flat and complete surfaces while
maintaining a certain level of detail thanks to Atlanta-aware
sampling. For example, AiSDF reconstructs the complete
shape of the sofa and the detail of the sofa armrest in
scene 0031 of ScanNet. For more complex scenes, such as
scene 0010, we can observe that the shape and details of
two nearby chairs are clearly distinguished by AiSDF. In the
apt 3 nav of ReplicaCAD, AiSDF reconstructs the structure
of stairs clearly compared to iSDF, which shows a collapsed
structure. Note that in the case of Voxblox, they show the
clear structure of stairs since they use most of the input
frames for reconstruction, unlike keyframe-based AiSDF and
iSDF (i.e., the viewpoint covered by a few keyframes is
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TABLE I: Quantitative evaluation. We highlight the best and second-best by bold and underline, respectively.

Voxblox [17] iSDF [9] AiSDF (w/o explicit map) AiSDF (w. explicit map)

Dataset Scene SDF Collision Gradient SDF Collision Gradient SDF Collision Gradient SDF ↓ Collision ↓ Gradient ↓
Sc

an
N

et

scene 0004 6.352 0.048 0.215 5.355 0.037 0.134 4.317 0.029 0.125 4.258 0.028 0.125
scene 0005 6.416 0.050 0.120 3.580 0.029 0.131 3.470 0.028 0.127 3.402 0.028 0.124
scene 0009 5.608 0.041 0.112 4.515 0.034 0.161 3.726 0.028 0.149 3.593 0.027 0.145
scene 0010 4.850 0.055 0.347 3.822 0.032 0.154 3.494 0.029 0.149 3.285 0.027 0.147
scene 0030 5.500 0.042 0.942 3.188 0.026 0.099 2.910 0.023 0.095 2.734 0.022 0.092
scene 0031 11.512 0.104 0.317 4.891 0.036 0.126 4.721 0.034 0.133 4.646 0.034 0.132

R
ep

lic
aC

A
D

apt 2 nav 4.672 0.038 0.158 4.349 0.036 0.156 3.585 0.029 0.150 3.317 0.027 0.144
apt 2 mnp 9.744 0.073 0.396 7.707 0.051 0.339 7.464 0.050 0.327 7.123 0.047 0.298
apt 2 obj 8.178 0.071 0.237 4.604 0.034 0.144 4.294 0.031 0.146 4.119 0.030 0.143
apt 3 nav 4.626 0.036 0.128 3.713 0.029 0.119 3.288 0.026 0.116 2.812 0.022 0.107
apt 3 mnp 8.040 0.076 0.232 6.336 0.044 0.192 5.979 0.042 0.194 5.818 0.040 0.187
apt 3 obj 5.802 0.073 0.282 4.368 0.032 0.133 4.406 0.032 0.138 4.294 0.031 0.134

limited). In addition, We can also produce the slice map of
the reconstructed SDF, as shown in Fig. 6.

Explicit planar map. In addition to mesh reconstruction,
AiSDF can generate an explicit 3D planar map composed
of Atlanta-aware surfels (see the second column in Fig. 5).
In particular, explicit maps mainly contain planes of scene
structure (e.g., walls and floors), while also involving relatively
small planes (e.g., stairs and objects). Specifically, even
in scene 0010 containing many objects, and scene 0286
with Atlanta structure, AiSDF robustly extracts various
planes supported by Atlanta directions. Furthermore, these
explicit maps give additional geometric cues to reconstructed
mesh. For example, in apt 3 nav of ReplicaCAD, AiSDF
reconstructs the structure of stairs at the mesh level by
implicitly utilizing the extracted surfels in surfel loss. We
believe that explicit planar maps can also serve as an auxiliary
resource for various downstream (e.g., footstep planners for
humanoids [42] and Roomplan scans [43]). It should be
noted that additional qualitative results are available in the
supplementary video.

C. Quantitative evaluation

Table I shows the quantitative results. Following [9], for
six scenes providing ground truth SDF, we measure three
metrics for 200k sampled points on all rays computed by
randomly sampled pixel coordinates from the frames. In
addition, we consider explicit planar maps together to measure
the performance of AiSDF. To this end, we compute explicit
SDF values by calculating the closest distance from each of
the 200k sampled points to surfel maps. Then, we compare
it to the implicit SDF value and choose the smaller value
to measure SDF and Collision metric with ground truth
values. For the sampled points using explicit SDF values, we
replace implicit gradient vectors with explicit gradient vectors,
obtained by computing the difference between the points and
the corresponding surfel points to measure gradient metric.

Overall, AiSDF outperforms comparison methods on the
ScanNet and ReplicaCAD datasets. In particular, when we
consider the estimated explicit planar map of AiSDF together,
it shows better performance. Concretely, in the case of
Voxblox, since it uses large voxel size for real-time, its
performance is much worse than iSDF and AiSDF. Regarding
iSDF, it is difficult to predict an accurate SDF because of
the noisy depth of homogeneous regions. In addition, iSDF

TABLE II: Ablation study of Atlanta-aware sampling.

scene 0010 apt 2 nav

Surfel mask Surfel loss SDF Collision Gradient SDF Collision Gradient
× × 3.822 0.032 0.154 4.349 0.036 0.156
✓ × 3.667 0.030 0.154 4.042 0.033 0.152
× ✓ 3.760 0.031 0.151 3.959 0.032 0.155
✓ ✓ 3.494 0.029 0.149 3.585 0.029 0.150

TABLE III: Runtime of AiSDF. For the sequences of ScanNet used
in the quantitative evaluation, we compute the average time for each
module and then round up (unit: ms).

AF estimation Extract surfels Sampling Compute bound forward backward Total
2 54 5 7 6 14 88

may have difficulty assigning the proper number of samples
to complex regions, whereas AiSDF samples more points on
complex regions by utilizing the Atlanta-aware surfels. On the
other hand, AiSDF obtains more accurate results by using
Atlanta-aware surfels that are robust to noise and allow us
adaptive sampling according to surfels or non-surfels.

D. Analysis

Ablation study. We conduct the ablation study to demonstrate
the effectiveness of Atlanta-aware sampling: surfel mask
and surfel loss (see Table II). Surfel mask Ms provides a
criterion for dividing a scene into complex and planar regions.
Thus, training the model with surface masks allows us to
sample more points on complex areas, resulting in improved
performance. In addition, we observe that regularizing the
network with surfel loss leads to performance improvement.
Specifically, by utilizing surfel points Xs, we can directly
constrain the planar regions and obtain a more accurate
approximated bound and gradient. Consequently, AiSDF
using surface mask and surfel loss together shows the best
performance.
Runtime and memory. Table III shows the running time for
each module in AiSDF. Unfortunately, AiSDF does not work
in real-time, but it is sufficient to reconstruct the scene in an
online process (≤ 100ms) when we consider this process that
corresponds to the back-end part and takes only keyframes, not
each frame. In terms of memory, AiSDF reconstructs the scene
with 1MB of network parameters as in iSDF, while effectively
representing the scene with only hundreds of KB of the explicit
planar map.
Limitation. AiSDF proposes a novel way to combine the
structural regularity of Atlanta structures with the implicit
SDF reconstruction framework working online, which is our
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main contribution. Contrary to this novelty, AiSDF has several
limitations as a pioneer work. To maintain reasonable runtime,
AiSDF independently extracts Atlanta-aware surfels for each
keyframe. Thus, we cannot provide a complete and unified
explicit planar map of a given indoor scene. In addition, the
current AiSDF does not fully exploit the estimated Atlanta
structures in the implicit neural representation; we currently
enforce surfel loss on surfel points to learn SDF. From this
point of view, we believe that encoding Atlanta-aware surfels
itself to SDF could be an interesting research direction.

V. CONCLUSION

Under the AW assumption, we have proposed the
novel AiSDF, a structure-aware online SDF reconstruction
framework of a given indoor scene. To fully exploit the
inherent property of indoor scenes (i.e., structural regularity),
we estimate the underlying Atlanta structure in the form of
dominant Atlanta directions within a continual framework.
This structural understanding allows us to extract Atlanta-
aware surfels, which explicitly play a role as a 3D planar
map. Moreover, Atlanta-aware surfels provide a criterion to
adaptively sample points and make AiSDF implicitly enforce
surfel loss on surfel points. We seamlessly integrate this
structural understanding inside the online SDF reconstruction
framework. As a result, experiments demonstrate that AiSDF
can reconstruct the details of the scene with overall structure
while extracting the lightweight explicit planar map.
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