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Abstract—Deep learning has led to remarkable strides in scene
understanding with panoptic segmentation emerging as a key
holistic scene interpretation task. However, the performance of
panoptic segmentation is severely impacted in the presence of out-
of-distribution (OOD) objects i.e. categories of objects that deviate
from the training distribution. To overcome this limitation, we
propose panoptic out-of-distribution segmentation for joint pixel-
level semantic in-distribution and out-of-distribution classification
with instance prediction. We extend two established panoptic
segmentation benchmarks, Cityscapes and BDD100K, with out-
of-distribution instance segmentation annotations, propose suit-
able evaluation metrics, and present multiple strong baselines.
Importantly, we propose the novel PoDS architecture with a
shared backbone, an OOD contextual module for learning global
and local OOD object cues, and dual symmetrical decoders
with task-specific heads that employ our alignment-mismatch
strategy for better OOD generalization. Combined with our
data augmentation strategy, this approach facilitates progressive
learning of out-of-distribution objects while maintaining in-
distribution performance. We perform extensive evaluations that
demonstrate that our proposed PoDS network effectively addresses
the main challenges and substantially outperforms the baselines.
We make the dataset, code, and trained models publicly available
at http://pods.cs.uni-freiburg.de.

I. INTRODUCTION

Recent advances in deep learning have substantially im-
proved the capabilities of autonomous systems to interpret their
surroundings [1], [2]. Central to these advancements is panoptic
segmentation [3], which integrates semantic segmentation with
instance segmentation, providing a holistic understanding of
the environment. However, a significant challenge is that these
models yield overconfident predictions of object categories
out of the distribution they were trained on, known as out-of-
distribution (OOD) objects. Segmenting these OOD objects
poses a major challenge as they can vary significantly in
appearance and semantics, include fine-grained details, and
share visual characteristics with in-distribution objects, leading
to ambiguity. Moreover, learning to jointly segment both OOD
objects and in-distribution categories is extremely challenging
as detailed in Sec. III-3. Given the potential consequences
of autonomous systems malfunctioning due to unexpected
inputs [4], it is crucial to ensure the safe and robust deployment.

To directly address these challenges at the task level, we
introduce panoptic out-of-distribution segmentation that focuses
on holistic scene understanding while effectively segmenting
OOD objects. Fig. 1 illustrates our proposed task that aims
to predict both the semantic segmentation of stuff classes and
instance segmentation of thing classes as well as an OOD
class. An object is considered OOD if it is not present in
the training distribution but appears in the testing/deployment
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Fig. 1: The panoptic segmentation network (*) presents erroneous predictions
when the input contains objects that are not representative of the distribution
it was trained on. Panoptic out-of-distribution segmentation aims to address
this by predicting both semantic and instance segmentation of stuff and thing
classes, while also predicting instances of unseen out-of-distribution classes.

stages. This distinguishes panoptic OOD segmentation from
the closely related open-set panoptic segmentation [5]. Further,
panoptic OOD segmentation does not reason about the semantic
differences between OOD objects since in most robotics
settings, especially navigation, it is sufficient to identify OOD
objects and further semantically categorizing them does not
provide significant utility.

In this work, we establish two challenging benchmarks,
Cityscapes-OOD and BDD100K-OOD, by extending the
standard autonomous driving datasets with OOD instance
segmentation annotations. We present several strong baselines
by combining semantic out-of-distribution segmentation meth-
ods with a class-agnostic instance segmentation decoder or
adapting open-set segmentation approaches. We also intro-
duce a tailored Panoptic Out-of-Distribution Quality (POD-
Q) metric to quantify the performance. More importantly,
as a first novel approach, we propose the PoDS architecture
that incorporates out-of-distribution perception ability into a
panoptic segmentation network conditioned on prior knowledge
of in-distribution classes. By doing so, the network avoids the
pitfalls of ambiguously modeling both OOD and in-distribution
classes, thereby improving generalization and adept handling
of unseen OOD objects. We perform extensive experimental
evaluations that first demonstrate the feasibility of the task
and further that our proposed PoDS architecture significantly
outperforms the baselines, ensuring a balanced performance
on both in-distribution and out-of-distribution classes.

In summary, the contributions of this work are as follows:

1) We introduce the novel panoptic OOD segmentation
task, identifying its main challenges, along with multiple
baselines, and a suitable POD-Q metric.

2) We present the Cityscapes-OOD and BDD100K-OOD
benchmarks, which extend the established datasets with
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OOD instance segmentation annotations.
3) We propose the novel PoDS architecture that incorporates

the proposed modules to embed OOD segmentation capa-
bilities into a panoptic segmentation network leveraging
conditional in-distribution priors.

4) We present comprehensive quantitative and qualitative
evaluations to demonstrate the feasibility of the task and
the efficacy of our proposed PoDS architecture.

5) We make the code, datasets, and models publicly available
at http://pods.cs.uni-freiburg.de.

II. RELATED WORK

In this section, we present an overview of panoptic segmen-
tation methods, followed by out-of-distribution segmentation
approaches and open-set panoptic segmentation methods.
Panoptic Segmentation methods can be categorized as top-down
and bottom-up approaches. Top-down methods [6] employ task-
specific heads, where the instance segmentation head predicts
bounding boxes and corresponding masks for objects, while
the semantic segmentation head generates dense semantic
predictions for each class. The outputs from these heads
are then combined using heuristic-based fusion modules [7],
[6]. Conversely, bottom-up methods [8] begin with semantic
segmentation and then employ various techniques [9] to group
thing pixels together to obtain instance segmentation. Recently,
Mohan et al. [10] introduced the PAPS architecture with a
shared backbone, an asymmetrical dual-decoder, and several
modules for amodal panoptic segmentation [11], which predicts
both visible and occluded object segments. We base our
approach on PAPS’s modal variant, which perceives only visible
segments as it outperforms other bottom-up methods.
Semantic Out-of-Distribution Segmentation is often addressed
through the use of uncertainty estimation techniques. A popular
method is the maximum softmax probability (MSP) [12] that
uses probabilities from the softmax distribution. Following,
maximum logit (MaxLogit) [13] uses the negative of the
maximum unnormalized logit to deliver improved performance
in semantic out-of-distribution segmentation over MSP. On
the other hand, Bayesian networks generate uncertainty esti-
mates by modeling their weights and outputs as probability
distributions rather than fixed values [14]. However, Bayesian
inferences can be computationally expensive, hence in practice
methods such as Dropout [15] or ensembles [16] which capture
model uncertainty by averaging predictions over multiple
models are often used as approximations. Various frameworks
also use density estimation [17] via estimating the likelihood of
samples with respect to the training distribution for addressing
semantic out-of-distribution segmentation. Furthermore, [18]
proposes a loss function to yield high entropy for out-of-
distribution sample predictions. The use of autoencoders on
in-distribution data has also been explored to identify erroneous
and less reliable reconstructions of out-of-distribution samples
due to unseen patterns during training. Generative models [19]
generate OOD data as boundary samples. This is however very
challenging to scale to complex and high-dimensional data such
as high-resolution images of urban scenes. Other approaches
include using adversarial perturbations on the input during
training and test-time to predict in- and out-of-distribution

samples. ODIN [20] uses temperature scaling with small
adversarial perturbations on the input at test-time, while [21]
use adversarial attacks during training as a proxy for out-of-
distribution training samples. In this work, we adapt a number
of aforementioned methods to serve as baselines for panoptic
out-of-distribution segmentation as described in Sec. III-5.
Open-Set Panoptic Segmentation: There are only two ap-
proaches that have been proposed thus far. EOPSN [5] groups
similar unlabeled objects across multiple inputs during training
and assigns labels to unlabeled objects that are surrounded
by known segments. Following, Xu et al. [22] use a known
classification head to reject segments while employing a class-
agnostic classifier to identify the segments as unknown objects.
We use these methods as baselines with some adaptations as
described in Sec. III-5.

III. PANOPTIC OUT-OF-DISTRIBUTION SEGMENTATION

1) Task Definition: Panoptic out-of-distribution segmentation
aims to assign each pixel i of an input image to an output
pair (ci, κi) ∈ (C ∪O)×N . Here, C denotes known semantic
classes, while O represents the out-of-distribution class, such
that C ∩O = ∅, and N is the total number of instances. C is
further divided into stuff labels CS (e.g., sidewalks) and thing
labels CT (e.g., pedestrians). In this task, the variable ci can be
a semantic or OOD class, and κi indicates the corresponding
instance ID. For stuff classes, κi is not applicable.

2) Evaluation Metric: To quantify the performance, it is
essential to evaluate both in-distribution and out-of-distribution
performance equally. To this end, we introduce the Panoptic
Out-of-Distribution Quality (POD-Q), which builds upon the
panoptic quality (PQ) metric [3]. We first determine PQout

representing the PQ for the OOD class and PQin accounting
for all the in-distribution semantic classes. Finally, POD-Q is
computed as the geometric mean of PQout and PQin:

POD-Q = (PQout × PQin)
1
2 . (1)

We use the geometric mean to incentivize balanced perfor-
mance in both out-of-distribution and in-distribution segmenta-
tion while strictly penalizing methods that only excel in one
aspect of the task. For further details on PQout and PQin,
please refer to Sec. S.1 of the supplementary material.

3) Challenges: Classifying and segmenting objects that do
not belong to the known training distribution is challenging
due to the absence of explicit knowledge about diverse OOD
object characteristics. This becomes more challenging with the
simultaneous identification and segmentation of OOD objects
with panoptic segmentation of in-distribution classes. The
increased complexity makes naive adaption of methods from
the less complex tasks such as semantic out-of-distribution
segmentation vulnerable to trade-offs prioritizing one aspect
over the other. Unsupervised methods that condition segmenta-
tion outputs based on threshold scores to predict OOD objects
become sensitive, as any fragmentation in predictions can
result in false instance predictions. Conversely, in learning
with supervised OOD data, where training data is limited and
does not encompass all OOD object variations, models can

http://pods.cs.uni-freiburg.de


(a) Random scaling (b) Depth-based scaling

Fig. 2: Incorporation of OOD objects into a scene from the Cityscapes dataset
is shown, with (c) random scaling and (d) depth-based OOD object scaling.

(a) Cityscapes-OOD (b) BDD100K-OOD

Fig. 3: Sample images from the Cityscapes-OOD and BDD100K datasets.

overfit to specific OOD objects encountered during training.
Consequently, this results in difficulties recognizing new OOD
objects during inference. Considering the panoptic out-of-
distribution task, which demands a balanced performance for
both in-distribution and out-of-distribution scene elements, it
becomes evident that a comprehensive approach is required.

4) Datasets: Given the high cost and complexity of anno-
tating panoptic segmentation data, it is impractical to manually
label a new dataset that encompasses a diverse set of real-world
out-of-distribution instances for panoptic out-of-distribution
segmentation. As an alternative, we extend established urban
scene understanding datasets for panoptic segmentation by
incorporating real-world OOD object instances, creating two
new datasets: Cityscapes-OOD and BDD100K-OOD.

Dataset Creation Protocol: We extract atypical objects
from the LVIS [23] instance segmentation dataset using their
segmentation masks. Objects such as cats and desks that are not
present in the original panoptic segmentation dataset are added
to the images. Their positions and the number of instances are
randomized, with the object likelihood based on their typical
locations (e.g., couches at the bottom, airplanes at the top).
We further employ depth-dependent scaling to resize the OOD
objects, ensuring that objects near the ego-car are relatively
larger than the ones positioned far away. To do so, we begin
by determining the sizes of objects in the original panoptic seg-
mentation dataset and then match these sizes to bins established
based on depth. Based on their size, the extracted OOD objects
are paired with known semantic classes (e.g., surfboard with
person, couch with car). We then overlay these objects, selecting
a size from the depth bin randomly based on their positioning
(Fig. 2 (a) and (b)). We use blending techniques [17] such as
color shifts, depth blur, color curve, and gamma transformations,
and we remove low-quality samples to enhance the dataset’s
quality and remove low-quality samples to improve the dataset’s
quality. Lastly, we ensure OOD objects in the training set are
distinct from those in the test set, guaranteeing novelty during
testing, and consistent with the requirements of the panoptic
out-of-distribution segmentation task.

Cityscapes-OOD: We create the Cityscapes-OOD dataset for
panoptic out-of-distribution segmentation, with 11 stuff classes,

(a) Cityscapes-OOD dataset statistics. (b) BDD100K-OOD dataset statstics.

Fig. 4: Dataset statistics for (a) Cityscapes-OOD and (b) BDD100K-OOD.
Note that each stuff class has a single occurrence per image.

8 thing classes, and an OOD class by extending Cityscapes [24].
It consists of 2975 training and 500 test images at a resolution
of 2048×1024 pixels. Test set annotations which are generated
from the validation set of Cityscapes are not publicly released,
and evaluation is only possible through an online server. Fig. 3
(a) and Fig. 4 (a) shows an example and dataset statistics.

BDD100K-OOD dataset consists of 7000 training and 1000
validation images with a resolution of 1280× 720 pixels and
is an extension of BDD100K [25], augmented with out-of-
distribution objects. It features one OOD class, 11 stuff classes
including roads and buildings, and eight thing classes such as
cars and bicycles. Fig. 3 (b) and Fig. 4 (b) present an example
and dataset statistics, respectively.

5) Baselines: We present seven baselines for the panop-
tic out-of-distribution segmentation task. We adapt four ef-
fective semantic out-of-distribution segmentation methods
(MSP [12], MaxLogit [13], ODIN [21], Meta-OOD [18])
with the PAPS [10] modal panoptic segmentation architecture
(PAPS∗ as described in Sec. IV-1). We compute the OOD
semantic class from the semantic segmentation output from
PAPS∗ and then use the post-processing approach from [8]
for thing+OOD foreground segmentation to obtain the final
panoptic out-of-distribution segmentation prediction. For the
two remaining baselines, EPSON [5] and DD-OPS [22], we
restrict the segmentation of unknown classes to a single OOD
class and enhance their base network with EfficientPS [6], a
state-of-the-art top-down panoptic segmentation network.

IV. PODS NETWORK ARCHITECTURE

In this section, we detail our proposed PoDS architecture
depicted in Fig. 5. We first present an overview of the PoDS
network, followed by a detailed description of each constituting
component. PoDS builds on top of a base panoptic segmentation
network that has a shared backbone and task-specific decoders
(purple) by incorporating modules specially designed to embed
out-of-distribution capabilities based on prior knowledge of
in-distribution classes. We incorporate an OOD contextual
module (blue) that complements the robust in-distribution
semantic features of the shared backbone with both global
discriminatory and fine local OOD object representations.
Subsequently, we introduce an additional task-specific decoder
(green), equipped with dynamic modules, alongside the existing
ones. This design allows for adaptive integration of OOD
features while preserving the in-distribution features of the
high-performing base panoptic network. The unique dual task-



Fig. 5: Illustration of our proposed PoDS architecture that consists of a shared backbone with an OOD contextual module and symmetrical task-specific
decoder arranged in a dual configuration setup to facilitate an alignment-mismatch learning strategy. The shared backbone learns robust feature representations
for in-distribution semantic categories while the OOD contextual module supports both global and local features for OOD objects. The network comprises
symmetrical semantic and instance decoders that include dynamic modules to adaptively balance the features between in- and out-distribution representations.

specific decoder configuration benefits further from our novel
alignment-mismatch loss. This loss encourages learning finer
details within in-distribution semantic classes and what lies
outside by balancing consensus and divergence between the
two heads. Furthermore, we incorporate a data augmentation
strategy to facilitate the training of our novel modules. Please
refer to Sec. S.2 of the supplementary material for further
implementation details.

1) Base Network: Building on the modal variant of
PAPS [10], which excels in panoptic segmentation, we develop
an architecture for panoptic out-of-distribution segmentation.
The modal PAPS architecture has a shared backbone, decoders,
prediction heads, a context extractor, and a cross-task module.
For our PoDS network, we streamline this by excluding the
instance segmentation decoder and cross-task module. Instead,
we adopt the semantic segmentation decoder with the dense
prediction cell module, along with two upsampling stages
and skip connections for the instance segmentation decoder.
The instance segmentation head remains intact, handling
instance center prediction and regression. This streamlined
PAPS architecture, termed PAPS∗, achieves a PQ score of
63.7 on the Cityscapes validation set, close to PAPS’s 64.3. As
shown in Fig. 5 purple boxes with red locks, we pretrain PAPS∗

on in-distribution panoptic segmentation datasets, and keep its
weights fixed throughout the out-of-distribution segmentation
training.

2) OOD Contextual Module: We introduce the OOD Con-
textual Module for the PoDS architecture, designed to capture
both global and local features of out-of-distribution (OOD)
objects in images. As depicted in Fig. 5 (blue box), this
module incorporates two residual bottleneck blocks, similar
to the fourth and fifth stages of Regnet [26]. The module
takes the output from the last layer of the backbone’s stage
2, processes it through the first block, combines it with the
output from the last layer of stage 3, and routes it through
the second block. Subsequently, the output from the second
block, named Oocm, proceeds to a global average pooling layer

and then to a classification head. In parallel, Oocm undergoes
upsampling followed by two convolution layers. This processed
output splits into two branches: one path goes to an in/out-
distribution segmentation head, while the other undergoes
further upsampling and convolutions before reaching a second
segmentation head. Both heads distinguish between pixel-
wise in-distribution and out-of-distribution regions. During
training, we apply random data augmentation, as detailed
in Sec. IV-6, generating samples with OOD objects from the
panoptic segmentation dataset to train both the classification
(targeting OOD global features) and pixel-wise segmentation
heads (focusing on OOD local features). We employ binary
cross-entropy loss for the classification head and weighted pixel-
wise cross-entropy loss for the in/out-distribution segmentation
heads, with weights of 0.7 and 0.8 respectively. Thus, Locm is
the sum of the aforementioned losses. Notably, backpropagation
for the pixel-wise loss is only triggered when an OOD object
is present in the input.

3) Dynamic Module: The dynamic module is defined by
the following inputs: an input feature map F , Oocm (G) from
the OOD contextual module, and feature map and convolution
functions (K and g1(·, w1) and g2(·, w2), respectively) from the
base network. The inputs from the base network are represented
by the red, yellow, and pink arrows in Fig. 5, respectively.

FR = g∗1(F,w1 +∆w∗
1), (2)

FR = g∗2(FR, w2 +∆w∗
2), (3)

FO = h1(G) · FR + (1− h1(G)) ·K, (4)

where g∗1(·, w1+∆w∗
1) and g∗2(·, w2+∆w∗

2) denote convolution
functions with learned weights w∗ as offsets from the weights
w of g1(·, w1) and g2(·, w2), respectively. The computation of
FR is performed in a sequential manner with an initial input
F using the functions g∗1(·) and g∗2(·). The weighted gating
function h1 is composed of a consecutive global pooling and
a 1× 1 convolution layer. By using offset weights and OOD
contextual features Oocm, the proposed module establishes
a pre-training and training link between the convolutional



weights of the base network and its own weights, which can be
dynamically adjusted. This allows the module to maintain the
pre-learned knowledge of the base network while incorporating
out-of-distribution capabilities, making minor adjustments if
the OOD object is similar to known semantic classes and
significant adjustments if it is considerably different.

4) PoDS Decoders and Heads: In the PoDS framework, we
utilize additional decoders akin to the base network described
in Sec. IV-1, as visualized with green boxes in Fig. 5. Each
decoder starts by merging the upsampled DPC features from
their base network’s task-specific decoders (purple boxes)
with the A8 features from the OOD contextual module (blue
boxes). The resulting features (F ) are then processed by a
dynamic module, which also takes in the output of the existing
convolution layers (K1) of the ×8 stage in the base network.
The output of the module is then upsampled and concatenated
with C4 (Sec. IV-1) and both are fed to another dynamic module
along with the output of the existing convolution layers (K2) of
×4 stage in the base network. The final output of this module
is then fed to the corresponding task-specific heads.

The PoDS base network targets only in-distribution classes.
To expand the network’s capabilities, we incorporate additional
task-specific heads that can learn about both in-distribution
and out-of-distribution classes. These heads consist of two
sequential layers of 3 × 3 depthwise-separable convolutions,
followed by a task-specific 1× 1 predictor. The OOD semantic
segmentation head uses a predictor with Nstuff +Nthing + 1
for segmentation labels. The OOD instance segmentation heads
have two predictors: instance center prediction and instance
center regression, which learn on thing + void regions. To train
the semantic head, we use the weighted bootstrapped cross-
entropy loss (Lsem). For the instance center prediction, we
use the Mean Squared Error (MSE) loss (Lcp) to minimize the
distance between the predicted heatmaps and the 2D Gaussian
encoded groundtruth heatmaps. For instance center regression,
we use the L1 loss.

5) Learning from alignment-mismatch: We train the seman-
tic segmentation head SHin from the PoDS base network
only for known in-distribution classes and we train the PoDS
head SHout for an added OOD class. The SHin consistently
labels pixels with known semantic classes, irrespective of in-
or out-of-distribution object. During the training of SHout,
we aim to amplify the prediction discrepancies between
(SHin and SHout) for out-of-distribution class pixels while
promoting consensus for in-distribution object predictions. To
implement the alignment-mismatch strategy, we ensure the
output dimensions of SHin and SHout match. Given SHin

has (Nstuff + Nthing) × H × W channels and SHout has
(Nstuff +Nthing + 1)×H ×W , we derive an extra channel
for SHin by taking the maximum across the semantic class
dimension. We employ the following loss to foster alignment-
mismatch between the two heads, depending on whether the

pixel belongs to an in-distribution or out-of-distribution object:

ei = |s(SHin(xi))− s(SHout(xi))|2, (5)
si = (1− yi)ei, (6)
di = yi max(0,m− ei), (7)

Ls−am =
1

2N

N∑
i=1

si + di, (8)

where N is the number of pixels, xi is the input image pixel,
yi is the label that indicates out- or in-distribution class, m is
the hyperameter and s = ln (1 + ex) is the softplus acitvation
function. We use the softplus to encourage that SHout predicts
void class for out-of-distribution pixels with higher logits
compared to SHin’s maximum logit. We use softplus to ensure
SHout predicts the ood class for out-of-distribution pixels with
logits higher than the maximum logit from SHin. Since softplus
always yields positive output and weights of SHin are frozen,
the only way for SHout to reduce the loss is by predicting
out-of-distribution classes with high logits, especially when
the margin hyperparameter m in the loss is sufficiently large.

For instance segmentation, we strive to foster alignment-
mismatch between the instance center prediction and instance
center regression heads. We achieve this by employing a similar
loss as Ls−am but applied in the feature space to the features
Xin and Xout prior to the predictor for respective heads.
This separates in-distribution from out-of-distribution features,
making it easier to perform the center prediction and center
regression. We define instance segmentation losses as

ei = |Xi
j−in −Xi

j−out|, (9)

Lj−am =
1

2N

N∑
i=1

si + di, (10)

where Xi
j−in and Xi

j−out are the features computed at location
i for the instance segmentation heads. si and di are the same
as (6) and (7), respectively. j ∈ [c, r] represents the instance
center prediction or instance center regression heads, from
which we obtain the losses Lc−am and Lr−am, respectively.

6) Data Augmentation: For training the PoDS architecture,
we mix samples containing solely in-distribution classes with
those that include both in- and out-of-distribution objects. To
curate out-of-distribution samples, we source web images via
specific keywords, ensuring they exclude known in- or out-of-
distribution objects from the Cityscapes-OOD and BDD100K-
OOD test set. Using an unsupervised instance segmentation
network [27], we generate pseudo instance masks for these
images, facilitating the extraction and compilation of a diverse
out-of-distribution (OOD) object repository. During training,
images are either augmented with randomly positioned and
scaled OOD objects or left as in-distribution. Additionally, the
compiled OOD objects are split into two types based on sim-
ilarity to known semantic classes. Initially, training focuses on
vastly dissimilar objects such as hair dryers, with a progressive
shift towards more similar objects such as monkeys, ensuring
gradual learning from distinct to closely related OOD objects.



TABLE I: Panoptic out-of-distribution benchmarking results on the Cityscapes-
OOD and BDD100K-OOD test set. Subscripts out and in refer to out-of-
distribution class and in-distribution classes, respectively. All scores in [%].

Model Cityscapes-OOD BDD100K-OOD

POD-Q PQout PQin POD-Q PQout PQin

MSP [12] 12.8 3.4 47.6 9.1 2.6 32.1
MaxLogit [13] 15.9 5.2 48.6 12.7 4.7 34.5
ODIN [20] 20.8 8.7 49.8 16.9 7.9 36.1
EPSON [5] 29.4 15.9 54.4 23.7 14.3 39.4
Meta-OOD [18] 41.7 31.3 55.6 34.5 28.6 41.6
DD-OPS [22] 46.1 36.1 58.7 38.0 33.2 43.5

PoDS(Ours) 53.4 45.9 62.2 42.3 38.7 46.3

V. EXPERIMENTAL EVALUATION

A. Training and Inference Protocol

We adopt a two-stage training approach for our network.
Initially, we train the base layers of the PoDS network for
160,000 iterations on Cityscapes and 240,000 on BDD100K
to instill strong in-distribution priors. Subsequently, these base
layers are frozen and the other components of the PoDS network
are trained using the data augmentation techniques outlined
in Sec. IV-6 for 90K and 150K iterations on Cityscapes and
BDD100K, respectively. For each training phase, we employ
the Adam optimizer with a poly learning rate schedule, setting
the initial learning rates at 0.001 for Cityscapes and 0.005
for BDD100K. We optimize the following loss functions for
training the network:

L = Locm + Lsem + αLcp

+ β1(Lcr + Ls−ad) + β2(Lc−ad + Lr−ad),
(11)

where α = 200, β1 = 0.01 and β2 = 0.001. All of
the individual losses are defined in Sec. IV. We set the
margin hyperparameter m to 50. During inference, we use
the same post-processing as [8] with the semantic and instance
segmentation head predictors that learn with the inclusion of
OOD class.

B. Benchmarking Results

In Tab. I, we compare the performance of our PoDS
architecture with the baselines on the Cityscapes-OOD and
BDD100K-OOD test sets. The first three baselines, MSP [12],
MaxLogit [13], and ODIN [20], adapt any panoptic segmen-
tation network for out-of-distribution segmentation without
modifications. We observe that they perform poorly compared
to other reported methods as the task also requires identifying
instances of out-of-distribution objects and not only obtaining
dense predictions for them. While thresholding confidence
scores from these baselines enhances OOD object sensitivity, it
often results in fragmented detections and misclassifications of
in-distribution objects as OOD. Consequently, these baselines
are not ideal for directly employing them for panoptic out-of-
distribution segmentation. EPSON [5] mines labels from void
regions to learn clusters for OOD objects. While it improves
OOD detection and reduces in-distribution misclassification,
its low POD-Q scores indicate limited generalization to unseen
OOD objects during testing. Meta-OOD [18] emphasizes higher
entropy for OOD predictions, whereas DD-OPS [22] refines

TABLE II: Evaluation of various architectural components in PoDS. Results
are presented on the Cityscapes-OOD test set. Subscripts out and in refer to
out-of-distribution class and in-distribution classes. All scores are in [%].

Model POD-Q PQout PQin

M1 28.2 16.2 49.3
M2 26.9 15.3 47.5
M3 47.1 38.4 58.0
M4 (PoDS) 53.4 45.9 62.2

the utilization of void regions, rejecting objects using known
classes and employing a class-agnostic classifier for OOD
determination. PoDS employs a dual-head predictive setting
to delineate the boundaries between in-distribution and out-of-
distribution classes and to increase confidence in OOD object
segmentation during training. By leveraging the alignment and
mismatch between the heads, PoDS achieves the highest POD-
Q scores of 53.4 on Cityscapes-OOD and 42.3 on BDD100K-
OOD.

C. Ablation Study

1) Detailed Study on the PoDS Architecture: While develop-
ing the PoDS architecture, we incorporated various components
to address specific challenges. Tab. II presents four model
configurations, labeled Mi, to determine the impact of each
component. The M1 configuration uses the base network
PAPS∗ with OOD classes as an extra class, trained from
scratch with data augmentation. We observe that M1 achieves
a low POD-Q score of 28.2 as it tries to cover both in-
distribution and out-of-distribution classes, leading to poor
generalization on the test set for unseen OOD classes. In
M2, we incorporate the dual predictive head architecture of
PoDS into M1 and train it with our alignment-mismatch loss.
However, this leads to a drop of 1.3 in the POD-Q score
compared to M1, indicating that the pretrained backbone
does not encode OOD objects effectively enough for the
new decoders and heads to learn. As a result, the alignment-
mismatch loss hinders the performance of M2. In M3, we
incorporate the OOD contextual module into M2. The notable
performance improvement compared to M2 indicates that by
learning highly discriminative features through the simplified
task of OOD classification and segmentation, the dual predictive
head, combined with the alignment-mismatch loss, prioritizes
understanding what lies outside the in-distribution rather than
trying to model the distribution of out-of-distribution objects.
Finally, in M4, we incorporate the dynamic module into the
non-pretrained decoders of M3. The results of M4, with a POD-
Q score of 50.5, underscore the benefits of learning features
not previously encompassed in the in-distribution feature space.
As elaborated in Sec. IV-3, this is achieved by leveraging
pretrained weight offsets and dynamically transitioning between
the robust knowledge base of the pretrained decoder for in-
distribution classes and the decoder trained to recognize features
in the presence of both in-distribution and out-of-distribution
objects. Moreover, the improvements from Mi−1 to Mi result
not only from the new additions but also from their synergy
with the existing modules. M4 embodies our proposed PoDS
architecture.
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Fig. 6: Qualitative panoptic out-of-distribution segmentation results of our proposed PoDS network in comparison to the state-of-the-art baseline DD-OPS [22]
on Cityscapes-OOD (a, d) and BDD100K-OOD (b, c) datasets.

TABLE III: Evaluation of the top two baselines with PoDS’ data augmentation.
Results are presented on the Cityscapes-OOD test set. Subscript out and in
refers to out-of-distribution and in-distribution classes. All scores are in [%].

Model Data Augmentation POD-Q PQout PQin

Meta-OOD [18] 41.7 31.3 55.6
DD-OPS [22] 46.1 36.1 58.7

Meta-OOD [18] ✓ 43.0 32.7 56.5
DD-OPS [22] ✓ 48.5 39.4 59.8

2) Impact of Data Augmentation Strategy: We evaluate our
proposed augmentation learning strategy, which introduces
diverse out-of-distribution objects not sourced from a fixed
distribution. We apply this strategy to the top-performing
baselines, Meta-OOD and DD-OPS, on the Cityscapes-OOD
dataset. The results in Tab. III show that their POD-Q scores
increase by 1.3 for Meta-ODD and 2.4 for DD-OPS post-
augmentation without affecting the PQin performance. This
increase stems from the progressive exposure of augmented
OOD data that allows the network to initially discern objects
distinctly different from the in-distribution objects. However,
comparing these improvements with M1 and M2’s performance
from Sec. V-C1, we infer that while augmentation does
contribute to the improved performance of PoDS, the other
network components of PoDS are equally crucial for its
significant improvement.

3) Evaluation in Real-World OOD Scenarios: In this exper-
iment, we evaluate the utility of our models and baselines in
real-world settings using the Cityscapes dataset. We include
two thing classes, bicycle, and motorcycle, from the eight
Cityscapes thing classes as part of the OOD class. We exclude
any image from the training set containing at least one instance
of this OOD class, reducing the training set from 2975 to 2620
images. This exclusion ensures that the bicycle and motorcycle

TABLE IV: Evaluation of best panoptic out-of-distribution segmentation
methods on the Cityscapes val set. Subscript out and in refers to out-of-
distribution and in-distribution classes. Subscript base refers to the base
panoptic segmentation network. All scores are in [%].

(a) Panoptic out-of-distribution performance
using bicycle and motorcycle classes as OOD.

Model POD-Q PQout PQin

Meta-OOD [18] 39.1 27.1 56.3
DD-OPS [22] 44.7 33.4 59.8
PoDS 50.3 39.8 63.6

(b) Influence of OOD seg. on
in-distribution performance.

Model PQ PQbase

Meta-OOD [18] 60.7 63.9
DD-OPS [22] 62.5 63.9
PoDS 63.1 63.7

TABLE V: Performance of PoDS models trained on Cityscapes but evaluated
on BDD100K val set and BDD100K-OOD test set. All scores are in [%].

Training Method Evaluation Dataset

Dataset BDD100K BDD100K-OOD

PQ POD-Q PQin PQout

Cityscapes PAPS∗ 39.6 − − −
PoDS 38.9 28.1 38.2 20.6

classes are treated as unseen OOD objects during evaluation.
The results, presented in Tab. IVa demonstrate that PoDS
consistently outperforms the top two baselines by a substantial
margin, reinforcing the findings from Tab. I and underscoring
its applicability to real-world OOD scenarios. In Sec. S.3, we
further qualitatively demonstrate the generalization ability of
PoDS in real-world driving scenarios using our in-house data
collected in Freiburg.

4) Influence of OOD Segmentation on In-Distribution Perfor-
mance: We first study the impact of learning panoptic out-of-
distribution segmentation on network performance when only
in-distribution classes are present in the input. We compare with
the top three methods: Meta-OOD, DD-OPS, and PoDS, and
also report the performance of their base panoptic segmentation



networks. From the results shown in Tab. IVb, we observe that
the PQ score of Meta-OOD substantially decreases, while DD-
OPS and PoDS show a smaller drop in performance. However,
PoDS shows the least drop of 0.6, demonstrating the ability
to segment out-of-distribution objects while preserving the in-
distribution class knowledge. Subsequently, we evaluate the
generalization ability of PoDS by training it on the Cityscapes
dataset and evaluating it on the BDD100K dataset. Results
from this experiment presented in Tab. V show that PoDS
performs nearly as well as its base network PAPS∗, achieving
a POD-Q score of 28.1 on BDD100K-OOD and a PQ of 38.9
on BDD100K. This highlights the ability of PoDS to infer
known semantic class boundaries from Cityscapes, constrained
only by its base network’s performance. We anticipate further
advancements in this field by the robotics community will
surpass these limitations in the future.

D. Qualitative Evaluations

We qualitatively compare the performance of PoDS with the
best-performing baseline DD-OPS [22] as illustrated in Fig. 6.
We observe that DD-OPS misclassifies OOD objects with
known semantic classes, while PoDS excels at distinguishing
them. PoDS exploits its dynamic module and the alignment-
mismatch strategy to identify OOD features based on known
semantic characteristics, enabling it to accurately distinguish
between OOD objects, and bicycles and cars. However, we
observe that PoDS struggles with cluttered OOD objects
and is limited by its base network, as shown in Fig. 6 (d),
misclassifying a bus as stuff due to its size and sample
constraints. We hope that this work encourages solutions in
the future to address these limitations.

VI. CONCLUSION

In this work, we introduced the panoptic out-of-distribution
segmentation task, proposed two suitable datasets, established
an interpretable evaluation metric, and adapted several open-
set and semantic out-of-distribution segmentation methods for
baselines. We also proposed the novel PoDS architecture, which
sets a new benchmark in performance. It also demonstrates
the feasibility of incorporating OOD segmentation without a
significant drop in in-distribution performance. We presented an
extended evaluation of each module that we used in our network
with quantitative and qualitative evaluations that demonstrate
their utility. Our novel framework shows the feasibility of
this crucial and holistic scene parsing task and we aim that
our publicly released datasets and benchmark facilitate further
research in this direction.
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[1] N. Vödisch, D. Cattaneo, W. Burgard, and A. Valada, “Continual slam:
Beyond lifelong simultaneous localization and mapping through continual
learning,” in The Int. Symposium of Robotics Research, 2022, pp. 19–35.

[2] N. Gosala, K. Petek, P. L. Drews-Jr, W. Burgard, and A. Valada, “Skyeye:
Self-supervised bird’s-eye-view semantic mapping using monocular frontal
view images,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, 2023, pp. 14 901–14 910.

[3] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic
segmentation,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, 2019, pp. 9404–9413.

[4] D. Bozhinoski, D. Di Ruscio, I. Malavolta, P. Pelliccione, and I. Crnkovic,
“Safety for mobile robotic systems: A systematic mapping study from a
software engineering perspective,” Journal of Systems and Software, vol.
151, pp. 150–179, 2019.

[5] J. Hwang, S. W. Oh, J.-Y. Lee, and B. Han, “Exemplar-based open-set
panoptic segmentation network,” in Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition, 2021, pp. 1175–1184.

[6] R. Mohan and A. Valada, “Efficientps: Efficient panoptic segmentation,”
Int. Journal of Computer Vision, vol. 129, no. 5, pp. 1551–1579, 2021.

[7] A. Kirillov, R. Girshick, K. He, and P. Dollár, “Panoptic feature pyramid
networks,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, 2019, pp. 6399–6408.

[8] B. Cheng, M. D. Collins, Y. Zhu, T. Liu, T. S. Huang, H. Adam, and L.-C.
Chen, “Panoptic-deeplab: A simple, strong, and fast baseline for bottom-up
panoptic segmentation,” in Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition, 2020.
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In this supplementary material, we begin with a detailed
description of the POD-Q metric in Sec. S.1, followed by
additional details on our PoDS architecture in Sec. S.2. Finally,
in Sec. S.3, we provide further evidence supporting the
pertinence of our proposed panoptic out-of-distribution (PoDs)
task in real-world scenarios.

S.1. PANOPTIC OUT-OF-DISTRIBUTION QUALITY

The objective of panoptic out-of-distribution segmentation
is to accurately classify and segment both in-distribution and
out-of-distribution objects in a scene. To effectively evaluate
the performance of this task, we need to equally assess the
performance of both object categories while having the ability
to distinguish the category-specific results. Furthermore, an
ideal evaluation metric should be interpretable and easy to
implement, promoting transparency and simplicity. In this
direction, we propose the Panoptic Out-of-Distribution Quality
(POD-Q), a metric based on the popular panoptic quality (PQ)
metric [3]. To compute the POD-Q metric, we first compute
PQOOD as the PQ for the OOD classes o ∈ O given the
predicted object segments P and their ground truth object
segments G as follows:

PQOOD =

∑
(p,g)∈TPo,

IoU(p, g)

|TPo|+ 1
2 |FPo|+ 1

2 |FNo|
, (1)

Subsequently, we compute the PQ score for all the in-
distribution semantic classes PQin as

PQin =
1

|C|
∑
c∈C

∑
(p,g)∈TPc,

IoU(p, g)

|TPc|+ 1
2 |FPc|+ 1

2 |FNc|
, (2)

where C is the set of in-distribution semantic classes. For both
PQOOD and PQin, the true positives (TPi), false positives
(FPi), and false negatives (FNi) are defined as

TPi = {pi ∈ {P} | IoU(pi, gi) > 0.5, ∀ gc ∈ {G}}, (3)
FPi = {pi ∈ {P} | IoU(pi, g) <= 0.5, ∀ g ∈ {G}}, (4)
FNi = {gi ∈ {G} | IoU(gi, p) <= 0.5, ∀ p ∈ {P}}. (5)

where i takes the value of o for OOD class and c for in-
distribution semantic classes with c ∈ C. Finally, we compute
POD-Q as the geometric mean between PQOOD and PQin, as

POD-Q = (PQOOD × PQin)
1
2 . (6)
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S.2. PODS ARCHITECTURE

This section describes the base network in more detail and
the OOD contextual module of the PoDS architecture proposed
in Fig. S.1.

A. Base Network

The PAPS∗ architecture which is the base network of
PoDS, employs HRNet as its backbone which is designed
to retain high-resolution information throughout the network.
The backbone generates four parallel feature map outputs
at scales ×4, ×8, ×16, and ×32 with respect to the input,
named B4, B8, B16, and B32. These feature maps are further
upsampled to a resolution of ×4 and combined to create the
C4 feature maps. The outputs from the backbone are fed to
both the semantic and instance decoders, which have a similar
architecture. The decoders take B32, B16, and C4 as inputs.
The B32 feature maps are first upsampled to ×16 resolution
and concatenated with B16. This result is then fed into the
dense prediction cell (DPC). The output from the DPC is then
further upsampled to ×8 resolution and processed through
two consecutive 3 × 3 depthwise-separable convolutions. In
the next step, we upsample the output (×4) and concatenate
it with C4. This is then followed by two sequential 3 × 3
depth-wise separable convolutions before being fed to the
task-specific heads. Following, each task-specific head has a
similar design and consists of sequential layers of two 3× 3
depthwise-separable convolutions, followed by a task-specific
1 × 1 predictor. In PoDS, the PAPS∗ part of the network is
pretrained on the in-distribution panoptic segmentation dataset
and its weights remain frozen during the entire panoptic out-
of-distribution segmentation training.

B. OOD Contextual Module

The architecture of the OOD Contextual Module (OCM) is
shown in Fig. S.1. It consists of two residual bottleneck blocks
comprising repeating units that employ group convolutions
similar to the fourth and fifth stages in Regnet and a decoder.
The output from the last layer of stage 2 of the backbone is
processed by the first block of OCM, then concatenated with the
output from the last layer of stage 3 and passed to the second
block. Subsequently, the output of the second block (Oocm) is
fed to a global average pooling layer which is followed by
a 1 × 1 convolution layer that acts as a classification head.
Following, the decoder takes Oocm as input and upsamples
it by ×2 scale followed by two sequential 3 × 3 depthwise-
separable convolutions and an additional ×2 scale upsampling.
Subsequently, we process the resulting features A8 in two

http://pods.cs.uni-freiburg.de


Fig. S.1: Illustration of our proposed PoDS architecture that consists of a shared backbone with an OOD contextual module and symmetrical task-specific
decoder arranged in a dual configuration setup to facilitate an alignment-mismatch learning strategy. The shared backbone learns robust feature representations
for in-distribution semantic categories while the OOD contextual module supports both global and local features for OOD objects. The network comprises
symmetrical semantic and instance decoders that include dynamic modules to adaptively balance the features between in- and out-distribution representations.

branches. The first branch uses a 1× 1 convolution layer as
an auxiliary semantic segmentation head. The second branch
processes the output with two sequential 3 × 3 depthwise-
separable convolutions followed by ×2 scale upsampling
and 1 × 1 convolution layer as a second auxiliary semantic
segmentation head for the upsampled features.

S.3. GENERALIZATION IN REAL-WORLD SCENARIOS

In this section, we aim to demonstrate the challenges
associated with panoptic out-of-distribution segmentation and
demonstrate the ability of our proposed network to seg-
ment OOD objects, as well as panoptic segmentation of
in-distribution classes. To do so, we collect sequences of
RGB images comprising real-world scenes captured in driving
scenarios. We use the recorded data to qualitatively compare the
performance of a conventional panoptic segmentation network
and the proposed PoDs architecture. This comparison provides
valuable insights into the differences between the two networks
in scenarios that involve the segmentation of out-of-distribution
objects. The results of this comparison show the ability of
our proposed network to reason about objects that are very
different from those presented during training. As a result,
when having real-world images as an input, our network can
provide a segmentation mask for unknown objects where the
panoptic segmentation network incorrectly classifies them as
background.

A. Evaluation in Real-World Scenarios

Panoptic segmentation is crucial for robot perception, as it
enables robots to comprehend visual scenes they encounter
by semantically segmenting and distinguishing instances from
each other. Despite the holistic scene understanding provided
by panoptic segmentation, it still presents limitations when
identifying and segmenting out-of-distribution objects and
maintaining the panoptic segmentation quality simultaneously.
Panoptic out-of-distribution segmentation aims to address the

gap between the current models trained for in-distribution tasks
and the demands of robot perception in real-world scenarios.
This task enables robots to recognize objects not seen during
training, facilitating their operation in dynamic and unstructured
environments with greater flexibility. Furthermore, this task
also allows robots to preserve the panoptic segmentation
quality. Panoptic out-of-distribution segmentation represents a
significant step forward in making robots more suitable for real-
world scenarios, thus improving their capability to comprehend
visual scenes after deployment.

B. Data Description

In order to demonstrate the significance of panoptic out-of-
distribution segmentation in practical settings, we conducted
an additional collection of RGB data using a vehicle equipped
with a sensor array using a FLIR Blackfly 23S3C camera with
a resolution of 1920× 800 pixels. The collected data consists
of video sequences, as opposed to isolated images found in
the Cityscapes-OOD and BDD100K-OOD datasets. Similar
to these datasets, the collected data depicts driving scenarios
relevant to autonomous driving applications. The driving scenes
are composed of in-distribution and out-out-distribution objects.
For in-distribution, the scene contains common objects such
as cars, buildings, and vegetation. Additionally, for out-of-
distribution, we placed uncommon objects, such as a fan, teddy
bear, chair, kettle, suitcase, bottle, and trash bin on the road
and sidewalk.

C. Experimental Setup

We use (Proposal-free Amodal Panoptic Segmentation) PAPS
and PoDS trained on Cityscapes to represent the results while
using a panoptic segmentation network and a panoptic out-
of-distribution segmentation network, respectively. We train
both models using the Cityscapes dataset with images with a
resolution of 2048× 1024. We evaluate on our collected data
that has images with a resolution of 1920 × 800. Given the
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Fig. S.2: Qualitative comparison of the PAPS panoptic segmentation network with our PoDS panoptic out-of-distribution segmentation network on real-world
scenes featuring out-of-distribution objects. The results highlight the feasibility and importance of panoptic out-of-distribution segmentation for safety-critical
applications.

camera resolution difference, as well as the domain difference
between the dataset and our collected data obtaining an accurate
output on these images is challenging. The low illumination
conditions add further complexity to the panoptic out-of-
distribution prediction. As a result, our collected data with real-
world scenes is suitable to test the quality of the segmentation
after deployment.

D. Qualitative Results

We present qualitative comparisons of PAPS and our pro-
posed PoDS architecture in the supplementary video. Addition-
ally, we present results in Fig. S.2. We observe that both models
face challenges inherent to panoptic segmentation as well as
challenges due to domain, dataset, and camera setup changes.

The PAPS model is also unable to identify and segment out-of-
distribution objects effectively. The absence of a mechanism
for categorizing novel objects as unknown, results in PAPS
misclassifying a suitcase as a car and traffic sign in Fig. S.2 (a),
and all out-of-distribution (OOD) objects, either part of road
or sidewalk in Fig. S.2 (b, c, d). In contrast, our PoDS network
generalizes from learning specific objects in the training data
to unseen objects in the real world. Our network is able to
identify more uncommon objects and correctly classify and
segment the pixels corresponding to classes such as suitcase,
trash bin, and chair. The qualitative results are promising and
demonstrate the feasibility of our task as well as the benefits
of learning to segment out-of-distribution objects in the scene
for safety-critical applications.
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