
Continuous Object State Recognition for Cooking Robots Using
Pre-Trained Vision-Language Models and Black-box Optimization

Kento Kawaharazuka1, Naoaki Kanazawa1, Yoshiki Obinata1, Kei Okada1, and Masayuki Inaba1

Abstract— The state recognition of the environment and
objects by robots is generally based on the judgement of the
current state as a classification problem. On the other hand,
state changes of food in cooking happen continuously and
need to be captured not only at a certain time point but
also continuously over time. In addition, the state changes of
food are complex and cannot be easily described by manual
programming. Therefore, we propose a method to recognize the
continuous state changes of food for cooking robots through the
spoken language using pre-trained large-scale vision-language
models. By using models that can compute the similarity
between images and texts continuously over time, we can
capture the state changes of food while cooking. We also show
that by adjusting the weighting of each text prompt based on
fitting the similarity changes to a sigmoid function and then
performing black-box optimization, more accurate and robust
continuous state recognition can be achieved. We demonstrate
the effectiveness and limitations of this method by performing
the recognition of water boiling, butter melting, egg cooking,
and onion stir-frying.

I. INTRODUCTION

State recognition of the environment and objects by robots
is essential for various tasks such as daily life support,
security, and disaster response. This includes recognition of
the open/closed state of doors, the on/off state of lights, and
the relationships among objects, all of which determine the
state of objects at a certain time [1]–[3]. On the other hand,
changes in the state of food, as represented by cooking,
happen continuously and need to be captured not only
at a certain time point but also continuously over time.
In addition, the state changes are complex and cannot be
easily described by manual programming. Even if each state
recognition is trained by a neural network, it is difficult to
cover the wide variety of state changes that occur in food,
and it is necessary to prepare datasets, models, and programs
for each state recognition, which also creates problems in
managing source codes and computational resources.

Various cooking robots have been developed to handle
changes in the state of food. [4] has developed a system
where two robots cook pancakes from a recipe. [5] has
developed a system to optimize the quality of omelette
cooking by batch bayesian optimization. However, these two
systems do not capture the state changes of food directly, and
the cooking is based on the time of applying heat. Although
this has a certain effect, it is important to capture changes in
the state of food directly, taking into account the individual
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Fig. 1. The concept of this study. We propose a continuous object state
recognition method for cooking robots by using pre-trained large-scale
vision-language models and black-box optimization.

differences of the food, the differences in heat power, and
cooking with unknown recipes. On the other hand, there have
been some studies that capture changes in the state of food
by using images [6]–[9]. However, these all deal with clas-
sification problems based on convolutional neural networks,
which determine whether the vegetable is sliced, shredded,
chopped, etc., and cannot capture continuous changes in the
state of food. At the same time, since the recognition is based
on a predefined classification, it is difficult to respond to
changes in states that are not included in the classification.
It is also difficult to understand the degree of change.

Therefore, we propose a method to continuously recognize
changes in the state of food for cooking robots through
the spoken language using pre-trained large-scale vision-
language models (VLMs) [10], [11] as shown in Fig. 1. In
this study, we utilize VLMs that have learned the semantic
correspondences between images and the spoken language
through a large dataset [12], [13]. By using the spoken
language, the proposed method can appropriately capture
diverse and ambiguous state changes in the cooking process.
Due to the semantic training of correspondences, VLMs
are also robust to changes in images. Moreover, by using
pre-trained VLMs, the method does not require any manual
programming or training of neural networks. Using only a
single VLM makes it easy to manage the source codes and
computational resources for each state to be recognized. We
prepare a set of various texts about the state of the food to
be recognized, and capture the state changes as continuous
changes in the similarity between the texts and the current
image. We also show that by adjusting the weighting of each
text prompt based on fitting the similarity changes to a sig-
moid function and then performing black-box optimization,
more accurate and robust continuous state recognition can be
achieved. The sigmoid function is capable of representing
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the basic patterns of continuous state changes through its
parameter variations and is well-suited for continuous state
recognition. Our method corresponds to obtaining a value
that changes more significantly in synchronization with the
state change. It is important to note that no annotation
of images is required since only the degree of change is
captured. We demonstrate the effectiveness and limitations
of our method through experiments on water boiling, butter
melting, egg cooking, and onion stir-frying. Our contribu-
tions are summarized as follows:

• New Continuous State Recognition Task: Proposing
a continuous recognition task for the state changes of
food for cooking robots.

• Capturing Cooking State Changes: Capturing diverse
and ambiguous state changes during the cooking process
through spoken language analysis.

• Simplified Implementation: Eliminating the need for
manual programming or neural network training, and
ensuring easy code management and efficient resource
use with a single pre-trained vision-language model.

• Improved Performance: Achieving accurate continu-
ous state recognition by adjusting text prompt weights
using a sigmoid function and black-box optimization.

II. ROBOTIC CONTINUOUS STATE RECOGNITION USING
PRE-TRAINED VISION-LANGUAGE MODELS AND

BLACK-BOX OPTIMIZATION

A. Pre-Trained Vision-Language Models for Robotic Contin-
uous State Recognition

There are various types of pre-trained VLMs. Among
them, it is necessary to obtain the results as continuous values
rather than discrete ones for continuous state recognition.
[10] has classified the tasks that VLMs can handle into four
categories: Generation Task, Understanding Task, Retrieval
Task, and Grounding Task. Generation Task includes Im-
age Captioning (IC) and Text-to-Image Generation (TIG).
Understanding Task includes Visual Question Answering
(VQA), Visual Dialog (VD), Visual Reasoning (VR), and
Visual Entailment (VE). Retrieval Task includes Image-to-
Text Retrieval (ITR) and Text-to-Image Retrieval (TIR),
which retrieve the correspondence between images and texts
from alternatives using similarity. Grounding Task includes
Visual Grounding (VG), which extracts the corresponding
regions in the image from the text. Among these tasks, only
ITR and VG output continuous numerical values, while the
others output sentences or images. Between the two, only
ITR, which can compute the similarity between the current
image and the texts describing the change in the state of
food, is consistent with our purpose.

In this study, we conduct experiments using CLIP [12] and
ImageBind [13] as models that are capable of ITR. CLIP is a
model that can calculate the cosine similarity between images
and texts by vectorizing them into latent space. ImageBind
is a model that can compute similarity not only for images
and texts, but also for many other modalities including audio,
depth images, heatmaps, and inertial sensors. Note that it is
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Fig. 2. The overview of the proposed method: we obtain time series
of images D, prepare a variety of text prompts, calculate the continuous
similarity changes with pre-trained vision-language models and text weight,
fit the similarity changes to a sigmoid function, compute the evaluation
value, and iteratively optimize the text weight with black-box optimization.

necessary to extract the target region for state recognition,
which can be done by using VG provided in [14].

B. Robotic Continuous State Recognition Using Pre-Trained
Vision-Language Models

Continuous state recognition is performed using VLMs
capable of ITR. The method is simple. First, we prepare a
text prompt Q for the state to be recognized. For example,
“boiled water” to recognize water boiling and “melted but-
ter” to recognize butter melting. Image V is continuously
acquired (at 10 Hz in this study), V and Q are vectorized
into v and q using ITR, respectively, and the cosine similarity
vTq is calculated. By plotting them continuously over time,
we can quantify continuous state changes. In the case of
water boiling recognition, the similarity of the current image
to the text “boiled water” gradually increases. If we obtain
the moving average of the similarity, we can recognize the
beginning of the state change when the slope of the value
with respect to time becomes large, or we can recognize the
end of the state change when the slope becomes small. It
is also possible to set a certain threshold and recognize that
a state change has started or ended when the value exceeds
the threshold.

The text input to VLMs does not have to be a single text,
but can be multiple synonyms and antonyms (in the case
of antonyms, it is necessary to add a minus sign, −vTq).
It is also possible to add noise to the current image and
take the average, or to use multiple models. In [15], we
have experimented with the case where a set of antonyms
is prepared and one model is used.

C. Robotic Continuous State Recognition Using Black-Box
Optimization

There are several challenges with the previously de-
scribed method. First, preliminary experiments show that
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Fig. 3. Types of continuous state changes. All of these changes can be
represented by a sigmoid function.

the recognition performance varies greatly depending on
the choice of texts. By using a variety of texts, we can
absorb the differences in recognition performance among
texts and obtain stable recognition performance. However, if
diverse texts are used uniformly, texts with low recognition
performance may have a negative impact. In addition, the
recognition of the beginning and end of state changes relies
on human thresholding. It is desirable to have a system
that automatically obtains high-performance state recognition
with as little human intervention as possible.

Therefore, we propose a method to automatically obtain a
high-performance state recognizer by adjusting the weighting
of various texts, as shown in Fig. 2. We obtain data on the
state changes only once, fit the continuous similarity changes
to a sigmoid function, compute an evaluation function, and
adjust the weighting of each text based on black-box opti-
mization. By obtaining similarity changes with larger state
changes and smaller variance, accurate and robust continuous
state recognition can be achieved. Here, no annotation of
the data is required. Moreover, there is no need to prepare
a model or program for each state recognition, as only
the text set and weighting need to be changed for each
state recognition, which facilitates the management of source
codes and computational resources.

Here, we discuss the reason for using the sigmoid function
for fitting. As shown in Fig. 3, there are basically four
possible state changes: (i), (ii), (iii), and (iv) (note that the
vertical axis of the graph, atw, is the weighted similarity of
Eq. 1 described subsequently). They are (i) the case where
the state change continues at all times, (ii) the case where
there is no change at the beginning but a continuous change
happens thereafter, (iii) the case where a state change occurs
from the beginning but the change eventually converges, and
(iv) the case where (ii) and (iii) are combined. The sigmoid
function can represent all of these cases by changing the
slope of its shape or by shifting it to the left or right, and
is suitable for representing continuous state changes. It is
also useful in that the value range falls within (0, 1), which
allows automatic threshold design such that the state change
is considered to have ended when, for example, the value
reaches the 80% change point (0.8).

In the following, we describe the optimization procedure.
First, the data D of the state change to be recognized is
obtained once. This D consists of a time series of images
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means that the state change can be detected more easily. By increasing β,
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Vt (1 ≤ t ≤ T , where T denotes the number of images).
We also prepare a set of texts Qi (1 ≤ i ≤ N ) that describe
the state change to be recognized. Here, let Q1

i (e.g. “boiled
water” and “melted butter”) be the set of texts that indicate
the change has occurred, and Q−1

i (e.g. “unboiled water”
and “unmelted butter”) be the set of texts that indicate the
change has not occurred.

Next, for each weight wi (1 ≤ i ≤ N , 0 ≤ wi ≤ 1) of
each text, we set an evaluation function E to be maximized
based on black-box optimization. Here, wi represents the
importance of each text and how to weigh recognition results
computed from each text. First, given a weight w, the
similarity atw between the current image Vt and the text set
Q is calculated as follows,

atw :=

N∑
i

piwiv
T
t qi/

N∑
i

wi (1)

where pi is a variable that returns 1 for Q1
i and −1 for

Q−1
i . It can be said that the similarity vT

t qi for each text is
weighted by piwi. The continuous change of this value is
fitted to a sigmoid function. The sigmoid considered in this
study has the following form,

f(t) :=
1

1 + e−α(t−β)
(2)

where α and β are adjustable parameters that determine the
shape of the sigmoid. As shown in Fig. 4, the larger the α
is, the larger the slope of the sigmoid function becomes, and
the more clearly the similarity changes. β is a parameter
that shifts the center of the sigmoid function along the t-
axis, and the larger it is, the less likely the state change is
misidentified early in the process, since the change in f(t)
occurs at the end of process. Since 0 < f(t) < 1 for this
sigmoid function, the scale of atw must be changed. In this
study, we compute âtw where atw is scaled as follows,

âtw :=
atw − amin

w

amax
w − amin

w

(3)

where a
{min,max}
w denotes the minimum and maximum val-

ues in the moving average of atw (1 ≤ t ≤ T ) over 3 seconds.
This makes 0 ≤ âtw ≤ 1, which facilitates fitting to f(t).
During inference, it is important to note that the entire time



series data D is not available from the beginning, and so Eq.
3 is performed using the computed a

{min,max}
w during the

optimization process. Assuming that the default parameter
of (α, β) is (0.1, T/2), we obtain (α, β) by fitting using
the nonlinear least-squares method. Note that the constraints
α ≥ 0 and β ≥ 0 are imposed in the fitting. From these, we
define the evaluation function E to be maximized as follows,

E(w) := αβ/σ (4)

where σ is the root mean squared error of the fitting. In other
words, the evaluation function is designed to minimize the
fitting error while making the amount of change as large as
possible and ensuring that a large change in f(t) occurs at
the end of the state change as possible.

Finally, we perform black-box optimization. In this study,
we apply a genetic algorithm using the library DEAP [16]
as the algorithm. The gene sequence represented by wi is
optimized based on the maximization of E. The function
cxBlend is used for crossover with a probability of 50%, and
mutGaussian is used for mutation with a probability of 20%
with mean 0 and variance 0.1. Individuals are selected by the
function selTournament, where the tournament size is set to
5, the number of individuals is set to 300, and the number of
generations is set to 300. The choice of optimization method
is flexible, and we have tried several methods such as Tree-
structured Parzen Estimator (TPE) and Covariance Matrix
Adaptation Evolution Strategy (CMAES), but we did not ob-
serve significant differences in the results. Therefore, we used
a common genetic algorithm with minimum computational
cost.

III. EXPERIMENTS

In this study, we perform four experiments: recognition
of water boiling, butter melting, egg cooking (fried egg),
and onion stir-frying. Each experiment with the prepared
text set Q are shown in Fig. 5. First, we prepare a dataset
Dopt for optimization and a dataset Deval for evaluation.
The state changes of water, butter, and egg are obtained
at 10 Hz when the mobile robot PR2 looks at the stove
that is heated to a certain degree. For onion stir-frying, the
image of the onion is acquired every time PR2 stirs the pan
with a spatula, because the onion would get burned if not
stirred constantly. Although all experiments are conducted
at the same heat intensity, the length T of each data is
slightly different. For each experiment, the time when the
state change ends is annotated as tdata. Next, we prepare at
most a set of 50 texts Q describing the state change for each
experiment. We prepare a large number of Q by changing
the article, state expression, and expression form. We use five
kinds of articles: “a”, “the”, “this”, “that”, and no article. For
state expressions, antonyms such as “boiled”/“unboiled” and
“melted”/“not melted” are used (synonyms are also used).
The expression form is slightly changed, such as “boiled
water” and “water that is boiled” are used.

In this study, we conduct experiments using two models,
CLIP and ImageBind. For each model, we evaluate both Dopt

and Deval datasets in three settings, OPT, ONE, and ALL.

OPT is the result of applying the black-box optimization
proposed in this study. ONE is the result when only the best
Q that maximizes E is used among the prepared Q. Using
only one best Q means that a state in which only one of the
N scalar values in w is 1 and the rest are 0 is created, and the
w with the highest E is selected. ALL is the result when all
the prepared Q are used equally without optimization. This
means that wi = 1 (1 ≤ i ≤ N ). Regarding Dopt, we plot
the transition of âtw and its moving average over 3 seconds
for OPT, ONE, and ALL, respectively. Note that the moving
averages are not plotted for the onion stir-frying experiment,
since the number of images is small. Regarding Deval, we
plot âtw, which is transformed by each Eq. 3 obtained from
OPT, ONE, and ALL in Dopt, and its moving average. For
each plot, tdetected is the time when the moving average first
exceeds the set threshold Cthre (Cthre = 0.8 in this study).
As tdiff = |tdetected − tdata|, tdiff should be as small as
possible. For each experiment, the evaluation value E when
fitting the change in âtw into the sigmoid function f(t) is
described. Note that while E is appropriate regarding Dopt,
it is for reference only regarding Deval, since âtw may not
fall between [0, 1] depending on the experiment.

Finally, as a cooking experiment utilizing the proposed
method, the PR2 robot boils water, blanches broccoli, and
stir-fries it with melted butter.

A. Water Boiling Experiment

The results of the water boiling experiment are shown
in Fig. 6. Here, “raw” is the raw value, “average” is the
moving average, “sigmoid” is the result of fitting f(t) to
âtw, “detected” is the function that becomes 1 after tdetected,
and the red arrow indicates tdata. As for CLIP, the change
in similarity of ALL fluctuates and does not change pro-
portionally with the boiling state. Thus, the fitting is not
successful, the evaluation value E is zero, and tdiff is large.
On the other hand, the change in similarity of ONE gradually
increases with time, thus E is larger and tdiff is smaller
than that of ALL. However, because of the gradual change
in the similarity, the state is determined to be boiling earlier
than in actuality. In contrast, for OPT, the abrupt change
in similarity occurs almost simultaneously with boiling, thus
E is the largest and tdiff is quite small (about 1 second).
The variance of the similarity changes is also small and
stable recognition results are obtained. As for ImageBind,
reasonable performance is obtained even for ALL and ONE,
and tdiff is relatively small. The change in similarity of
OPT is more stable than that of ALL and ONE, indicating
higher performance. Note that the top 5 text prompts and
their weights are water that is not boiling in the pot (0.12),
water that is boiled in pot (0.12), water that is not boiling in
the pot (0.12), water that is not boiling in this pot (0.12), and
boiling water in that pot (0.11) (the weight is normalized to
be Σwi = 1).

B. Butter Melting Experiment

The results of the butter melting experiment are shown
in Fig. 7. As for CLIP, the change in similarity of ALL



• {, not} {boiled, boiling} water in
{, a, the, this, that} pot

• water that is {, not} {boiled, boiling} in
{, a, the, this, that} pot

• {melted, unmelted, not melted} butter in
{, a, the, this, that} frying pan

• butter that is {melted, unmelted, not 
melted} in {, a, the, this, that} frying pan

• {cooked, uncooked, fried, unfried, raw} egg 
in {, a, the, this, that} frying pan

• egg that is {cooked, uncooked, fried, unfried, 
raw} in {, a, the, this, that} frying pan

• {sauteed, fresh, caramelized, raw, cooked, 
uncooked, grilled, crisp} onion in {, a, the, 
this, that} frying pan

Water Boiling Experiment Butter Melting Experiment Egg Cooking Experiment Onion Stir-frying Experiment

Fig. 5. The experimental setup: the text prompts and representative images for water boiling, butter melting, egg cooking, and onion stir-frying experiments.
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Fig. 6. Results of the water boiling experiment. For the two models CLIP and ImageBind, the results of OPT, ONE, and ALL are shown regarding
Dopt and Deval. In the graphs, “raw” expresses the raw value of similarity, “average” expresses the moving average of the raw value over 3 seconds,
“sigmoid” expresses the sigmoid function fitted to “average”, and “detected” expresses the function that becomes 1 after tdetected. The red arrow shows
tdata, the annotated time of state change.

fluctuates as with Section III-A, and does not change pro-
portionally with the degree of melting. Thus, E is small and
tdiff is large. The performance of ONE is better than that of
ALL, but the change in similarity still fluctuates. Compared
to ONE, OPT shows a stable change in the similarity, but the
state change is detected earlier, especially for Dopt. As for
ImageBind, state changes are recognized with high accuracy
for all settings, thus E is large and tdiff is small. ALL has a
larger variance of similarity changes compared to ONE and
OPT, resulting in E being approximately halved. Note that
the top 5 text prompts and their weights are butter that is not
melted in that frying pan (0.24), butter that is not melted in
frying pan (0.24), not melted butter in a frying pan (0.19),

not melted butter in that frying pan (0.18), and melted butter
in frying pan (0.08).

C. Egg Cooking Experiment

The results of the egg cooking experiment are shown
in Fig. 8. As for CLIP, the change in similarity of ALL
fluctuates as with Section III-A and Section III-B, and thus
E is small and tdiff is large. For Dopt, the performance of
ONE and OPT is reasonable and tdiff is small. On the other
hand, the results for Deval are significantly different from
those for Dopt, and the accuracy is low. As for ImageBind,
there is no large difference between Dopt and Deval as with
CLIP, but in most cases, the similarity increases significantly
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Fig. 7. Results of the butter melting experiment. For the two models CLIP and ImageBind, the results of OPT, ONE, and ALL are shown regarding
Dopt and Deval. In the graphs, “raw” expresses the raw value of similarity, “average” expresses the moving average of the raw value over 3 seconds,
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Fig. 8. Results of the egg cooking experiment. For the two models CLIP and ImageBind, the results of OPT, ONE, and ALL are shown regarding Dopt

and Deval. In the graphs, “raw” expresses the raw value of similarity, “average” expresses the moving average of the raw value over 3 seconds, “sigmoid”
expresses the sigmoid function fitted to “average”, and “detected” expresses the function that becomes 1 after tdetected. The red arrow shows tdata.

in the early phase of the state change and then remains
constant. Therefore, the state change cannot be detected

properly, thus tdiff is large. Note that the top 5 text prompts
and their weights are raw egg in that frying pan (0.07),
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Fig. 9. Results of the onion stir-frying experiment. For the two models CLIP and ImageBind, the results of OPT, ONE, and ALL are shown regarding
Dopt and Deval. In the graphs, “raw” expresses the raw value of similarity, “sigmoid” expresses the sigmoid function fitted to “raw”, and “detected”
expresses the function that becomes 1 after tdetected. The red arrow shows tdata.

cooked egg in a frying pan (0.07), cooked egg in the frying
pan (0.07), cooked egg in this frying pan (0.07), and egg that
is fried in frying pan (0.06).

D. Onion Stir-frying Experiment

The results of the onion stir-frying experiment are shown
in Fig. 9. Unlike the previous experiments, the number of
images is small, so there is no “average” and only “raw”
is shown. As for CLIP, the changes in similarity of ALL
and OPT are stable as the state changes, indicating that
the recognition is highly accurate. On the other hand, for
ONE, the change in similarity is not as clear as for ALL and
OPT, and tdiff is larger. As for ImageBind, the recognition
performance is not so high for ALL and ONE, since the
change in similarity fluctuates. On the other hand, OPT
recognizes the state change with high accuracy as with CLIP.
Note that the top 5 text prompts and their weights are cooked
onion in this frying pan (0.36), raw onion in that frying pan
(0.19), grilled onion in this frying pan (0.11), cooked onion
in frying pan (0.1), and fresh onion in frying pan (0.08).

E. Cooking Experiment

The experimental result is shown in Fig. 10. We place a
pot with water and a frying pan with butter on the stove. 1⃝
The robot PR2 turns on the heat for the pot, and 2⃝ when
boiling is detected using the proposed method (ImageBind
with OPT), 3⃝ adds the broccoli in a sieve to the pot.
After boiling for 3 minutes, 4⃝ the robot takes the broccoli
out, turns on the heat for the frying pan, and 5⃝ when the
proposed method detects that the butter has melted, 6⃝ adds

the broccoli. Finally, 7⃝ the robot stir-fries the boiled broccoli
in the frying pan and then turns off the heat. A series of
cooking behaviors using the proposed method was realized.

IV. DISCUSSION

The obtained experimental results are summarized, and
their properties and limitations are discussed. In the exper-
iments, we handled state changes related to water boiling,
butter melting, egg cooking, and onion stir-frying, each of
which has different properties, and a variety of results were
obtained. The state change of water boiling is similar to (ii)
in Fig. 3, and is easy to be recognized because the change
of state occurs at once towards the end of the process. The
state change of butter melting is close to (iv) and that of
onion stir-frying is close to (i), and both of them can be
recognized with high performance for the same reason as
above. On the other hand, the state change of egg cooking is
close to (iii), and the performance is limited because a large
state change occurs at the beginning and the subsequent state
changes are difficult to be recognized. More specifically, the
color of the egg white first turns from transparent to white
at once, and subsequently there is only a slight color change
in egg yolk. CLIP and ImageBind, which were used in this
study, were not able to overcome this problem, but we expect
that the performance will be improved if VLM capable of
detecting more precise changes is developed in the future.
As an overall trend, we found that OPT with black-box
optimization has higher recognition performance than ALL
and ONE. Although the performance of ONE is somewhat
higher than that of ALL, it may be reversed depending on the
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Fig. 10. Results of the cooking experiment. The PR2 robot boils water, blanches broccoli, and stir-fries it with melted butter.

state to be recognized. Finally, when comparing CLIP and
ImageBind, ImageBind shows relatively more stable changes
in similarity. For CLIP, the results of Dopt and Deval are
sometimes significantly different from each other, while there
are less of these cases for ImageBind. On the other hand,
there are cases where CLIP performs better than ImageBind,
so it is difficult to say which model is better. We believe that
the simultaneous use of multiple models in the future will
improve the performance of continuous state recognition by
taking advantage of the characteristics of each model.

We discuss the prospects of future research. First, in this
study, continuous state recognition is based only on the
correspondence between images and texts, and there are
still many unused modalities. In particular, video, audio,
and heatmaps are indispensable information for cooking, and
higher performance can be expected by integrating them
into the proposed method. Also, in this study, the text set
Q is manually created. A more practical system can be
constructed by obtaining this text set automatically. We can
use large-scale language models [17] to obtain multiple
synonyms and antonyms of the state to be recognized. In
addition, we would like to consider various other methods
in the future, such as changing the viewing area for robots
to focus on, using multiple models described above at the
same time, and taking into account incomplete images [18].

V. CONCLUSION

In this study, we proposed a continuous state recognition
method for cooking robots based on the spoken language
through pre-trained large-scale vision-language models. A
set of texts related to the state to be recognized is prepared,
and the similarity between the current image and texts is
calculated in the temporal direction. In order to make the
changes in similarity easier to use for state recognition, we
adjusted the weighting of each text based on black-box op-
timization by fitting it to a sigmoid function and calculating
its evaluation value. The sigmoid function is suitable for
continuous state recognition because it can handle various
patterns of state changes. The recognition performance with
optimization is much better than that without optimization,
and we succeeded in recognizing the states of water boiling,
butter melting, and onion stir-frying. On the other hand,
the recognition of egg cooking was difficult due to the fact
that a large change in the image occurs in the early stage
of the recognition, and the subsequent smaller changes are

difficult to be recognized. We used CLIP and ImageBind
as large-scale vision-language models, and while ImageBind
produces more stable recognition results over all, each model
has different strengths and weaknesses, and we may consider
using both models in combination in the future.
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