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A Safe Preference Learning Approach for
Personalization with Applications to Autonomous

Vehicles
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Abstract—This work introduces a preference learning method
that ensures adherence to given specifications, with an application
to autonomous vehicles. Our approach incorporates the priority
ordering of Signal Temporal Logic (STL) formulas describing
traffic rules into a learning framework. By leveraging Paramet-
ric Weighted Signal Temporal Logic (PWSTL), we formulate
the problem of safety-guaranteed preference learning based on
pairwise comparisons and propose an approach to solve this
learning problem. Our approach finds a feasible valuation for
the weights of the given PWSTL formula such that, with these
weights, preferred signals have weighted quantitative satisfaction
measures greater than their non-preferred counterparts. The
feasible valuation of weights given by our approach leads to
a weighted STL formula that can be used in correct-and-
custom-by-construction controller synthesis. We demonstrate the
performance of our method with a pilot human subject study
in two different simulated driving scenarios involving a stop
sign and a pedestrian crossing. Our approach yields competitive
results compared to existing preference learning methods in terms
of capturing preferences and notably outperforms them when
safety is considered.

I. INTRODUCTION

PREFERENCES are a fundamental aspect of human be-
havior and decision-making, and it is valuable to design

autonomous systems that allow for personalization to better
suit the needs and desires of users. In particular for au-
tonomous driving, surveys have demonstrated that drivers have
different comfort and performance preferences while driving
in different scenarios and conditions [2]–[4]. Moreover, drivers
tend to prefer different driving styles for autonomous vehicles
than their own styles [5]. Customizing autonomous vehicles
based on user preferences can increase user satisfaction with
these vehicles. However, autonomous systems often require
the satisfaction of a set of rules for safe operation. Relying
on human preferences alone may result in unsafe behaviors.
For instance, at an intersection with a stop sign, drivers may
sometimes prefer a rolling stop, which is illegal, over a full
stop. However, an autonomous vehicle should always stop
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completely at a stop sign to guarantee the safety of all agents
in the environment. Preference learning algorithms for safety-
critical operations must consider rule satisfaction. The main
motivation for our work is the need for safe, trustworthy, and
customizable autonomous vehicle algorithms.

For safety-critical applications like driving, there are three
desirable properties a preference learning method should sat-
isfy to allow safe personalization: (i) expressivity: the model
should be expressive enough to capture preferences; (ii) safety:
it ensures safety by preferring a rule-following behavior
against a rule-violating one (even in cases where the latter is
scarce in the training data); and (iii) usability in control design:
the learned model should be easy to integrate into downstream
correct-by-construction control synthesis tasks. In this work,
we propose an integrated framework for personalization and
safety to satisfy all of these properties by using Signal
Temporal Logic (STL). STL is a variant of temporal logic
that is tailored for reasoning about the temporal properties of
time series data and is commonly used in describing correct
behaviors in a variety of autonomous systems [6]–[11].

To develop a personalization framework with the STL
formalism, we use a parametric extension to Weighted Signal
Temporal Logic (WSTL), which is tailored for the ordering of
preferences and priorities in STL formulas [12]. We introduce
a learning framework that is based on this extension. The
learning framework returns the required parameters for the
WSTL formula, which can be used to synthesize a controller
that yields preferred system behaviors, as in [12], [13]. Starting
with a parametric WSTL formula that specifies task objectives
(traffic rules in autonomous vehicles) and a set of pairwise
comparison preferences among a set of safe behaviors, the
goal is to find suitable formula parameters such that preferred
signals have greater satisfaction measure, namely WSTL ro-
bustness, than their non-preferred counterparts. We show how
to cast this problem as an optimization problem. We propose
two different approaches to solve the resulting optimization
problem: a random sampling approach and a gradient-based
approach, which utilizes computation graphs to calculate the
WSTL robustness of signals.

To evaluate the performance of our framework, we simulate
two different driving scenarios: one with an autonomous
vehicle navigating an intersection with a stop sign and one
with an autonomous vehicle approaching a crosswalk while
a pedestrian is crossing the road. We generate two sets of
trajectories that comply with traffic rules for these scenarios
and run a pilot human subject study with eight participants for
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both scenarios. Comparisons with baseline preference learning
methods verify the need for safety-aware preference learning
by showing that baseline methods usually lead to unsafe
selections, whereas our method does not.

II. LITERATURE REVIEW

Preference learning aims to understand and predict individu-
als’ preferences based on a set of their choices [14], [15]. This
can be done through independent evaluations, such as ratings
or comparisons with alternatives. While both evaluations open
new research methods, learning from comparison pairs may
help in terms of dividing the problem into smaller, more
manageable batches [14]. While these methods capture and
reason about preferences, for safety-critical scenarios such as
capturing driving preferences and personalizing driving styles,
they cannot ensure necessary safety guarantees.

Another use of preferences is preference-based learning for
reward functions and task learning in robot systems [16]–[18].
For safety-aware applications, [19] combines preference-based
learning with control barrier functions.

On the other hand, encoding safety rules in temporal logic
is an eminent method for safety-critical applications [20], [21].
Specifications in temporal logic can be used for controller
synthesis [6], [7], [21], motion planning [8], [22], [23] and
learning applications [9]–[11], [24]–[28] in many autonomous
systems. In particular, works in [9], [10], [24], [25], [29] try to
infer a temporal logic formula for classification from the data.
As a subset of learning applications, in robot learning, Chou et
al. [26] try to learn task specifications in linear temporal logic
from demonstrations, Puranic et al. [11] score demonstrations
with the help of ordered specifications in the form of signal
temporal logic and works in [27], [28] use temporal logic for
reward shaping and reinforcement learning.

Incorporating preferences and priorities with temporal logic
is studied in [1], [12], [30]–[32]. The work in [12] introduces a
weighted variant of the STL, called Weighted Signal Temporal
Logic (WSTL), in which weights reflect the order of priorities
or preferences. The work in [30] defines Weighted Truncated
Linear Temporal Logic. Both works assume that they have
knowledge of the formula and associated weights. For the
end-user, it is hard to interpret the weights and define their
preferences in the temporal logic formalism, so there needs
to be an intermediate step to infer the weights from the user.
In [31], [32], a parametric extension of WSTL, which we call
PWSTL, is used in a time series classification problem, where
weights of the formula are learned using neural networks.

III. PRELIMINARIES

A. Signal Temporal Logic (STL)

STL is a temporal logic formalism used to reason about
signals s : T → S, where T is a time domain and S ⊆ Rme is
a m dimensional extended real-valued signal domain [33]. We
will consider T to be infinite Z≥0 or finite [0, tfinal] ⊂ Z≥0.
An STL formula ϕ is given by the grammar ϕ ::= ⊤ | π | ¬ϕ |
ϕ1∧ϕ2 | ϕ1U[a,b]ϕ2. Boolean true is ⊤, and π is a predicate of
the form π(s(t)) := fπ(s(t)) ≥ 0 where fπ : S → Re and s(t)
is the signal value at time instant t. The logical not is ¬, the

conjunction is ∧, and U[a,b] is the “Until” operator. Additional
operators, disjunction ∨, Always □[a,b], and Eventually ♢[a,b]

can be derived from operators in the grammar1. Subscript [a, b]
defines the time interval. When the time interval is from 0 to
∞, the subscript is omitted. We will denote the set of all well-
formed STL formulas with F . If a signal s satisfies a formula
ϕ at time t, it is shown as (s, t) |= ϕ. If it violates at t, it
is shown as (s, t) ̸|= ϕ. The qualitative semantics of STL are
defined as follows:

(s, t) |= π ⇔ π(s(t)),
(s, t) |= ¬ϕ ⇔ (s, t) ̸|= ϕ,
(s, t) |= ϕ1 ∧ ϕ2 ⇔ ((s, t) |= ϕ1 and (s, t) |= ϕ2),
(s, t) |= ϕ1U[a,b]ϕ2 ⇔ ∃t′ ∈ [t+ a, t+ b]((s, t′) |= ϕ2

and ∀t′′ ∈ [t, t′) (s, t′′) |= ϕ1).

Derived operators have the following qualitative semantics:

(s, t) |= ϕ1 ∨ ϕ2 ⇔ ((s, t) |= ϕ1 or (s, t) |= ϕ2),
(s, t) |= □[a,b]ϕ ⇔ ∀t′ ∈ [t+ a, t+ b] (s, t′) |= ϕ,
(s, t) |= ♢[a,b]ϕ ⇔ ∃t′ ∈ [t+ a, t+ b] (s, t′) |= ϕ.

For qualitative semantics at time instant t = 0, we omit
t and write s |= ϕ. STL also has quantitative semantics to
measure how well the signal models the formula. There are
different quantitative semantics, also known as robustness met-
rics [34], [35]. In this paper, we use the traditional robustness
metric ρ : S×F×T → Re from [34], defined recursively as2:

ρ(s,⊤, t) = ∞,
ρ(s, π, t) = fπ(s(t)),

ρ(s,¬ϕ, t) = −ρ(s, ϕ, t),
ρ(s, ϕ1 ∧ ϕ2, t) = min

(
ρ(s, ϕ1, t), ρ(s, ϕ2, t)

)
,

ρ(s, ϕ1U[a,b]ϕ2, t) = max
t′∈[t+a,t+b]

(
min

(
ρ(s, ϕ2, t

′),

min
t′′∈[t,t′]

ρ(s, ϕ1, t
′′)
))
.

The robustness for derived operators is given by

ρ(s, ϕ1 ∨ ϕ2, t) = max
(
ρ(s, ϕ1, t), ρ(s, ϕ2, t)

)
,

ρ(s,♢[a,b]ϕ, t) = max
t′∈[t+a,t+b]

ρ(s, ϕ, t′),

ρ(s,□[a,b]ϕ, t) = min
t′∈[t+a,t+b]

ρ(s, ϕ, t′).

The robustness value at t = 0 is shown as ρ(s, ϕ). Note that
for finite signals where tfinal <∞, time interval [t+a, t+b] in
temporal operators may exceed the time length of the signal. In
this case, time interval can be taken as [t+a,min(t+b, tfinal)]
assuming that t + a ≤ tfinal. For simplicity, we keep the
semantics for infinite signals but we use STL for finite signals
with necessary corrections [36]. The robustness metric ρ is
sound, i.e., ρ(s, ϕ, t) > 0 =⇒ (s, t) |= ϕ and ρ(s, ϕ, t) <
0 =⇒ (s, t) ̸|= ϕ [37].

Example 1: Let s =
[
s1 s2

]T
=

[
1 −1 −2 −2
1 1 1 2

]
∈

R2×4 be a two-dimensional signal with the time length
tfinal = 3. Let ϕSTL = ♢(−s1 ≥ 0 ∧ s2 ≥ 0) be an STL

1Disjunction is ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2), Eventually is ♢[a,b]ϕ =
⊤U[a,b]ϕ, and Always is □[a,b]ϕ = ¬(♢[a,b]¬ϕ).

2To represent Boolean-valued quantities, we use signals p : T →
{−∞,+∞} and simply write p as a predicate instead of p ≥ 0. If such
a signal is the ith coordinate of s and π(s(t)) := eTi s(t) ≥ 0 with ei being
the ith natural basis vector, we have ρ(s, π, t) = eTi s(t) = p(t).
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formula. Satisfaction of ϕ by the signal s means that “There
is a time t∗ ≤ tfinal such that s1(t∗) ≤ 0 and s2(t

∗) ≥ 0”.
The robustness of s at time t = 0 over ϕSTL is

ρ(s, ϕSTL) = max
t′∈[0,3]

(min(−s1(t′), s2(t′))) = 2.

B. Weighted Signal Temporal Logic (WSTL)

WSTL is tailored to represent priorities and preferences in
STL formulas [12]. Its syntax extends STL syntax as

ϕ := ⊤ | π | ¬ϕ | ϕ1 ∧w ϕ2 | ϕ1Uw
1,w2

[a,b] ϕ2,

where the weights are w ∈ R2
+ and w1, w2 ∈ R(b−a+1)

+ . All
operators are interpreted as in STL.

In [12], the quantitative semantics of WSTL is called the
WSTL robustness, denoted as r : S×F×T → Re. We adopt the
WSTL formalism with the following quantitative semantics:

r(s,⊤, t) =∞
r(s, π, t) = ρ(s, π, t)

r(s,¬ϕ, t) =−r(s, ϕ, t),
r(s, ϕ1 ∧w ϕ2, t) =min

(
w1r(s, ϕ1, t), w2r(s, ϕ2, t)

)
,

r(s, ϕ1Uw
1,w2

[a,b] ϕ2, t) = max
t′∈[t+a,t+b]

(
min

(
w1
t′−t−a+1r(s, ϕ2, t

′),

w2
t′−t−a+1 min

t′′∈[t,t′)
r(s, ϕ1, t

′′)
))
.

(1)
Derived operators have WSTL robustness definitions as:

r(s, ϕ1 ∨w ϕ2, t) = max
(
w1r(s, ϕ1, t), w2r(s, ϕ2, t)

)
,

r(s,□w[a,b]ϕ, t) = min
t′∈[t+a,t+b]

(wt′−t−a+1r(s, ϕ, t
′)),

r(s,♢w[a,b]ϕ, t) = max
t′∈[t+a,t+b]

(wt′−t−a+1r(s, ϕ, t
′)),

with r(s, ϕ) denoting the WSTL robustness at t = 0.
Note that since we have ⊤ when defining Eventually from

Until, and since the WSTL robustness of ⊤ is ∞, we drop
the set of weights w2 in the WSTL robustness of Eventually
because they do not affect the result of the min operation
in the computation of the WSTL robustness of Until. That
is the reason why Eventually (and hence Always) has fewer
weights than Until. Moreover, the Boolean true, predicates,
and negation operators do not have associated weights, i.e.,
these operators have weights equal to 1.

Example 1: (cont.) Let ϕ be the weighted version of ϕSTL

with weights {w♢
i }4i=1 = [1.5, 0.3, 3, 1.2] and {w∧

i }2i=1 =
[1, 2]. The WSTL robustness of s at time t = 0 is

r(s, ϕ) = max
t′∈[0,3]

(w♢
t′+1 min(−w∧

1 s1(t
′), w∧

2 s2(t
′))) = 6.

The following result is adapted from Theorem 2 in [12].
Lemma 1: Let r̃ : S×F×T → R be a quantitative semantics.

For a WSTL formula ϕ, let ϕSTL be the STL formula ob-
tained by removing the weights in ϕ. If sign(ρ(s, ϕSTL, t)) =
sign(r̃(s, ϕ, t)) for all (s, ϕ, t) ∈ S × F × T (i.e., r̃ is sign-
consistent), then r̃ is sound.

Theorem 1: Quantitative semantics in (1) is sound.
Proof: According to Lemma 1, it is sufficient to prove

that quantitative semantics in (1) is sign-consistent. Since all
weights are defined as positive, multiplying a robustness value
with a weight does not change its sign. Therefore, for each

recursive operation in the WSTL robustness calculation, the
sign of the robustness value associated with this recursion
step is preserved. Then, we see that sign(ρ(s, ϕSTL, t)) =
sign(r̃(s, ϕ, t)) for all (s, ϕ, t) ∈ S × F × T and for all non-
negative weights.

In the WSTL definition of [12], weights are pre-determined
positive real values. In this work, we use an extension to
WSTL that we call Parametric Weighted Signal Temporal
Logic (PWSTL) in which some of the weights are unknown
parameters and the remaining weights are given constants (cf.,
[31]). We denote the set of unknown parameters as W and
denote PWSTL formulas as ϕW , where we omit the known
weights with slight abuse of notation since for most of the
results in the letter, W is the entire weight set. A PWSTL
formula results in a WSTL formula ϕW=w with the valuation
w of the parameters.

IV. PROBLEM STATEMENT AND SOLUTION METHOD

As we focus on driving scenarios, inputs to our problem are
signals. Preferences are given in pairs and preference data for
signals is defined as follows.

Definition 1 (Preference Data): Preference data P :=
{(s+i , s

−
i )}Pi=1 is a set of P pairwise comparisons. In each pair

(s+i , s
−
i ), s

+
i represents the preferred signal and s−i represents

non-preferred one.
The goal of this work is to select a weight valuation w̃ for

the parameter set W of the PWSTL formula ϕW . Formula
ϕW is determined according to system rules so that it reflects
safety specifications. Formally, this paper aims to solve the
following problem:

Problem 1: Given a PWSTL formula ϕW with a weight
parameter set W , and a preference data P , find a valuation w
of W such that

r(s+i , ϕW=w) > r(s−i , ϕW=w) ∀(s+i , s
−
i ) ∈ P. (2)

Problem 1 is a feasibility problem. In the next subsection,
we reformulate it as an optimization problem to be able to
handle infeasibility. Before doing so, we provide an analysis
of the set of feasible weights using the syntax tree of STL
formulas. An STL formula has an associated syntax tree, in
which nodes represent Boolean and temporal operators, leaf
nodes represent predicates, and edges represent the connec-
tion between operators and operands [38]. The syntax tree
associated with the STL formula in Example 1 is given in
Figure 1. Let the root weights of a WSTL formula be the
weights associated with the weighted operator closest to the
root of its syntax tree. For instance, for ϕ of Example 1, the
root of the syntax tree is ♢ operator and the root weights are
{w♢

i }4i=1. Consider another example with ϕ̃ = ¬ϕ, although
the root operator is ¬ since it is not a weighted operator, we
need to look at its children until we find a weighted operator.
Hence, the root weights are again {w♢

i }4i=1.
Next, we show that the feasible weight valuations of Prob-

lem 1 are unbounded, when non-empty, due to homogeneity
with respect to the root weights of the formula.

Lemma 2: Let ϕW be a PWSTL formula with weight set
W containing only the weight parameters for the root weights
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Fig. 1: Syntax tree of ϕ of Example 1.

of ϕ. Other weights of ϕ are fixed constants. If valuation w of
W solves Problem 1, then w̃ = αw also solves the problem
for any α > 0.

Proof: If the WSTL formula with valuation w is a feasible
solution for Problem 1, we know that for all pairs in P ,
r(s+i , ϕW=w) > r(s−i , ϕW=w) holds. We also have

r(s, ϕW=w̃) = αr(s, ϕW=w).

This together with α > 0 implies for all (s+i , s
−
i ) ∈ P ,

r(s+i , ϕW=w̃) > r(s−i , ϕW=w̃). Hence, the WSTL formula
with valuation w̃ is a feasible solution for Problem 1.

Given the above property, namely root-level homogeneity,
we will show that it is possible to restrict the weight valuations
to a bounded set D that is guaranteed to include at least one
solution whenever a solution exists.

Theorem 2: Let D = B∞(0)∩Rn+, i.e., the intersection of the
n-dimensional closed unit ball in infinity-norm and the positive
quadrant. If Problem 1 is feasible with weight valuation w,
then there exists at least one weight valuation w̄ in the domain
D such that ϕW=w̄ solves the problem.

Proof: Let Problem 1 be feasible for the valuation w. If
w ∈ D, the proof is trivial. So, let us assume w /∈ D.

We will prove the theorem by induction on the depth d of
the syntax tree of ϕW=w. For each subformula ϕs at level k
(k < d) of the syntax tree of ϕW=w, assume that the root
weights of ϕs are ws and all the remaining weights of ϕs are
already less than or equal to 1 (note that this trivially holds in
the base case when k = d where we pick w(d) = w). Then,
we will show that we can define a new set of weights w(k)

for ϕW such that r(s, ϕW=w(k) , t) = r(s, ϕW=w(k+1) , t) such
that the weights of each subformula at level k − 1 except for
their root weights are less than or equal to 1.

Consider an arbitrary subformula ϕs at level k with
weights ws satisfying the induction hypothesis. We use
ϕs,ws

as a shorthand for such a pair to differentiate
it from the same formula with updated weights, ϕs,w̄s

.
Define w̄s = ws/max (ws). Clearly, r(s, ϕs,ws

, t) =
max (ws)r(s, ϕs,w̄s , t) and all weights of ϕs,w̄s are less than
or equal to 1. However, we can scale the weights wu that
multiply r(s, ϕs,ws

, t) at level k−1 with max (ws) so that with
valuation w(k), where the weights max (ws)wu and w̄s are
replaced by wu and ws, we achieve the same WSTL robustness
value, establishing the induction hypothesis.

Finally, we can decrement k until we reach the root weights
of ϕW=w and invoke Lemma 2 to scale the root weights to be

less than or equal to 1 while preserving feasibility. Therefore,
the scaled valuation is in D.

We illustrate the proof with our running example.
Example 1: (cont.) The weight values w of ϕ are not in

D. We can construct a new weight valuation that preserves
preference orders using Theorem 2. Let us denote ϕ as
ϕW=w and consider two signals x and y with robustness
order r(x, ϕW=w) > r(y, ϕW=w). At level k = 2, we have
maxi(w

∧
i ) = 2. Define w̃∧ = w∧/maxi(w

∧
i ) = [0.5, 1].

Then, scale the weights in the upper level with maxi(w
∧
i )

and obtain w̃♢ = [3, 0.6, 6, 2.4]. Note that r(x, ϕW=w) =
r(x, ϕW=w̃) and r(y, ϕW=w) = r(y, ϕW=w̃). Now, let k = 1,
which is the root level, and consider W = w̃. Leave the
lower levels as is: w̄∧ = w̃∧ and scale the root weights
as w̄♢ = w̃♢/maxi(w̃

♢
i ) = [0.5, 0.1, 1, 0.4]. By root-level

homogeneity, we know that, if r(x, ϕW=w̃) > r(y, ϕW=w̃),
which is the case by construction of w̃, then r(x, ϕW=w̄) >
r(y, ϕW=w̄). Hence, w̄ preserves the orders and it is in D.

Having a bounded feasible domain will be useful in our
computational approach.

A. An Optimization Reformulation

Problem 1 can be formulated as an optimization problem.
Problem 2: Given preference data P , PWSTL formula ϕW

and domain D described in Theorem 2, solve

w∗ ∈ arg min
w∈D

∑
(s+i ,s

−
i )∈P

−1(w)(r(s+i ,ϕW=w)−r(s−i ,ϕW=w)>0), (3)

where 1(w) is the indicator function which takes 1(w) = 1
when the subscripted condition is satisfied and takes 1(w) = 0
otherwise.3

By construction of the problem (3), we have the following
result that states that relates the solution of this optimization
problem to Problem 1.

Proposition 1: If Problem 1 is feasible, then a minimizer
w∗ of Problem 2 is a solution to Problem 1. Moreover, if
Problem 1 is infeasible, Problem 2 finds a valuation for ϕW
that maximizes the number of pairs that satisfy Inequality (2).

Problem 2 not only transforms the feasibility Problem 1
into an optimization problem but also returns a valuation that
makes maximum number of pairs correctly ordered according
to Inequality (2) when Problem 1 is infeasible.

It is important to note that with Problem 2 and weights being
positive, it is impossible to find weight valuations that result in
a greater robustness value of a rule-violating behavior than the
robustness value of a rule-satisfying one. Violating signals will
always have negative robustness values. If there exists a pair
in the preference dataset such that the person prefers a rule-
violating behavior over a satisfying behavior, we cannot satisfy
Inequality (2) for this pair, Problem 1 becomes infeasible
and we will find a valuation that satisfies Inequality (2) for
maximum number of pairs.

Remark 1: We note that for certain STL formulas
ϕSTL, the corresponding WSTL robustness metric satisfies
r(s, ϕW=w) ≤ 0 for all signals s and all weights w ∈ Rn+.

3Since the objective function takes only finitely many values, it always has
a minimum. Therefore, searching for argmin is valid.
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In this case, the problem of learning weights only from rule-
satisfying signals is not meaningful since these signals will
have r(s, ϕW=w) = 0 for any weight w; and satisfaction
cannot be deduced when r(s, ϕW=w) = 0. While such
formulas can be uncommon in certain domains, we find them
to be common in driving scenarios when the specification
involves coming to a full stop or a Boolean indicator for
pedestrians or traffic lights. Hence, we discuss a workaround
to enable preference learning among satisfying signals for
a class of such formulas but similar workarounds can be
devised for other cases too. Consider a formula of the form
ϕ = ϕ1 ∧ □(f(s) ≥ 0 ∧ −f(s) ≥ 0), second part
of which essentially represents an equality f(s) = 0. To
enable preference learning in this case, we append s with
a new coordinate b such that b(t) = ∞ if f(s(t)) = 0
and b(t) = −∞ otherwise; and replace the formula with
ϕ′ = ϕ1∧□b. With this transformation, if for all t ∈ [0, tfinal],
b(t) = ∞, the WSTL robustness of ϕ′ is determined by ϕ1;
otherwise the WSTL robustness of ϕ′ becomes −∞, which
indicates a violation of ϕ. Applying our method to ϕ′ allows
us to rank rule-satisfying signals.

B. Computational Approach

We note that Problem 2 is highly non-convex and non-
differentiable. As a result, it is hard to solve this problem
to a global minimum. In the following, we propose two
approaches, one gradient-based, the other sampling-based that
aim to find an approximate solution.

a) Gradient-based optimization: Thanks to the preva-
lence and success of gradient-based methods and back-
propagation in machine learning, many temporal logic learning
algorithms using gradients have been proposed [39]. To be
able to compute the gradient, we need a differentiable loss
function. In the WSTL robustness definition, we replace max
and min functions with their soft differentiable versions
softmin/softmax as in [39]. We also replace the indicator
function with the logistic function with a shift. The shift
helps avoid equality of robustness values in preference pairs.
Overall, we propose the following surrogate loss

L =
∑

(s+i ,s
−
i )∈P
(1 + exp(M [r(s+i , ϕW=w)−r(s−i , ϕW=w)−ϵ]))−1

+ log(1 + θ exp(∥Wϕ∥22−∥W init
ϕ ∥22)),

where M is a large number, ϵ is a small shift, and θ is
an optimization weight for the second term. Here, the first
term is an approximation of the cost function in Equation (3)
and the second term promotes the norm of the weights Wϕ

not to change too much compared to its initial value W init
ϕ ,

where W init
ϕ ∈ D. This second term is essentially a surrogate

for the constraints in Equation (3); and due to Theorem 2
and the equivalence of the infinity norm and 2-norm in finite
dimensions, does not change the validity of the solutions.
Implementation details: Inspired by [39], we construct a
computation graph for the robustness of WSTL formulas
from syntax trees. This computation graph takes a signal as
input and returns the WSTL robustness value of that signal
at all times as output. We use PyTorch along with Adam

[40] optimizer. Several strategies are investigated to mitigate
convergence issues of the gradient-based method: (i) decreas-
ing the softness coefficient β of softmin/max, possibly
compromising the soundness guarantee, (ii) decreasing the
steepness of the logistic function, i.e., decreasing M , but
this makes the surrogate L less similar to the objective in
Problem 2, (iii) initializing the iteration from multiple random
points to overcome bad local minima.

b) Random Sampling: Randomized methods have shown
some success in temporal logic planning [41], especially when
there is a multitude of feasible solutions. Similarly in [42], it
is shown that simple random search can give not only com-
petitive but also faster results compared to gradient methods.
This inspires our attempt to solve Problem 2 through random
sampling in the region D = B(0)∞∩Rn+. We uniformly sample
weight valuations in D.
Implementation details: We want weight valuations such that
the absolute difference in robustness of signals within a pair
should exceed 5% of the range between the maximum and
minimum robustness values among all signals. While this
condition is not required for the random sampling approach
alone, it can be useful for two downstream tasks: (i) when
using the best performing of these weights as initialization
of gradient-based approaches4, this separation helps start the
iterations at a part of the weight space where the logistic
function well-approximates the indicator function; (ii) when
using the learned formula in controller synthesis, weights that
well-separates the preferences lead to controllers that more
robustly reflect the preferences.

V. EXPERIMENTS

In this section, we provide a comparison of solution ap-
proaches with baseline methods, along with demonstrating the
need for a safety-guaranteed preference learning framework.5

We also showcase the framework’s performance in capturing
the personal preferences of different participants in a human
subject study. For these purposes, we use two different driving
scenarios.

Driving Scenarios: We use STL to specify traffic rules in
driving scenarios. The first scenario is a simple intersection
with a stop sign, a screenshot is shown in Figure 2a. The
vehicle must stop before the stop sign, but there is some
flexibility in the approach and final position. The traffic rule
can be expressed as follows: ϕstop = ♢□(x−xstop ≥ 0∧v =
0) ∧ □(v ≥ 0) where x and v are the position and speed
signals of a vehicle, respectively, and xstop is the stop sign
position. Note that ρ(s, ϕstop) ≤ 0 for any signal due to
equality condition. We substitute v = 0 with an indicator
variable as discussed in Remark 1. We construct the PWSTL
formula ϕstopW with a weight parameter set W that contains
all weights in the formula. In the second scenario, we observe
an ego vehicle approaching a pedestrian while she is crossing
the road, as illustrated in Figure 2b. The traffic regulation,

4We tried this combination in our experiments, however, the performance
improvement was not significant. Therefore, due to space constraints, we do
not report these results further.

5The code and the data can be accessed from https://github.com/ruyakrgl/
SPL-WSTL

https://github.com/ruyakrgl/SPL-WSTL
https://github.com/ruyakrgl/SPL-WSTL
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(a) Stop Sign Scenario: Vehicle approaching to an intersection with
a stop sign. The traffic rule says that vehicles should stop before the
stop sign.

(b) Pedestrian Scenario: Vehicle approaching to a pedestrian cross-
walk, while a pedestrian is crossing. The vehicle can come to a
complete stop or slow down sufficiently to allow the pedestrian.

Fig. 2: Two scenarios that are used for experiments

in this case, is expressed in STL form as ϕpedes = □[
(
p ∧

(x−xcross ≤ 0)
)

=⇒
(
x−xcross ≤ 0 U ¬p

)
∧ (v ≤ vlim)]

where x, v represent position and velocity signals, respectively.
Boolean signal p indicates the presence of a pedestrian, and
vlim and xcross are constants denoting the speed limit and the
crosswalk position, respectively.

Human Subject Studies: Studies are completed under IRB
Study No. HUM00221976. For each scenario, we collaborate
with eight participants with a 75−25% male-female ratio from
the 25−35 age group. We simulate a hundred trajectories that
satisfy the temporal logic formula per scenario. We compose
fifty pairs such that the Euclidean distance between each pair
is greater than a threshold. This threshold value is deter-
mined manually as the point at which the difference between
signals becomes difficult to discern. These pairs are shown
to participants who then choose their preferred behavior. As
human decisions can vary in consistency, for the first scenario,
we repeat the same question set twice to get a measure of
the participant’s decisiveness. The consistency levels of four
participants are reported in Figure 3a.

A. Baseline Methods

One well-known approach to pairwise preference learning
problem is to recast it as a supervised learning problem [43].
Let ψ(s) be the feature vector of item s. We construct ψ(·)
by dividing the Fourier transform of s into five frequency
bins and adding the traditional robustness metric as the final
feature. To set up the supervised learning problem, for a given
preference pair (s+i , s

−
i ), we construct a new feature vector

as the difference of feature vectors as ψ(s+i ) − ψ(s−i ). All
signal pairs in P belong to Class 0. We generate the data for
Class 1 by reversing the signal order and defining the feature
vector ψ(s−i )−ψ(s

+
i ). This process gives us binary labels for

all comparison pairs and their reverse orders. Then, we use
Support Vector Machines (SVM), with a radial basis function
kernel, to learn a binary classifier. For a test pair (s1, s2), if
ψ(s1)− ψ(s2) is classified in Class 0, we say s1 is preferred
over s2; and we say s2 is preferred over s1 otherwise.

The second baseline method is based on a representation of
pairwise user preferences with the likelihood of selecting one
item over another. In particular, the Bradley-Terry model is
a common likelihood function model in preference learning
applications [44]. The Bradley-Terry model [44] uses the
following likelihood function:

Pv(s
+
i , s

−
i ) =

e<v,ψ(s
+
i )>

e<v,ψ(s
−
i )> + e<v,ψ(s

−
i )>

,

where ψ(·) again represents the feature vector described
earlier. Then, we solve for weights v to maximize the log-
likelihood as follows:

v∗ ∈ argmin−
P∑
i=1

log(Pv(s
+
i , s

−
i )). (4)

In particular, we use stochastic gradient descent (SGD) for
solving this problem. Finally, for a test pair (s1, s2), if
e<v

∗,ψ(s1)> > e<v
∗,ψ(s2)>, we say s1 is preferred over s2;

and we say s2 is preferred over s1 otherwise.

B. Comparison of Solution Approaches

In this section, we compare the performance of the proposed
solution approaches with the baseline methods listed in Sec-
tion V-A. We use the percentage of training (test) pairs that a
model accurately predicts as the metric for comparison.

For each participant, we use ten random 70%− 30% splits
of the preference set in to train-test data, i.e., 35 pairs for
the training set and 15 for the test set. For each split, we
compute the train-test accuracy with respect to traditional
STL and compare two proposed approaches with two baseline
methods. Our first method solves Problem 2 using ϕstop and
ϕpedes for respective scenarios, via random sampling with a
threshold condition, where we sample 1000 weight valuations
per split. For the stop sign scenario, our second method solves
Problem 2 with gradient-based optimization over the loss
function L, initialized eleven times, ten from random weight
valuations and one from the traditional STL valuation. We
report the best training/test accuracy pair among these 11 as a
result. The learning rate is 10−5, ϵ = 0.01, and θ = 0.01. The
softness coefficient for softmax is β = 1010. We terminate
the optimization when the cost value difference drops below
10−6. We divide the training set into batches of five pairs.
Batch selection is random at each iteration. The third method
is the SVM classification baseline. For the last method, we
solve Equation (4) via SGD with the learning rate of 0.1.

Some representative results are shown in Figures 3a and
3b. The average performance of all methods for all users and
splits is shown in Table I. Random sampling gives competitive
results with the baseline methods in the stop sign scenario,
and outperforms all methods in the pedestrian. Although the
gradient-based method gives equally good results as random
sampling for the stop sign scenario, it is much slower. Indeed,
it was too slow to converge for the pedestrian scenario,
due to formula complexity, and is skipped. We conclude
that simple random sampling effectively identifies promising
weight valuations that improve the traditional STL accuracy,
and give comparable results to other methods.
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(a) Intersection with a stop sign scenario

(b) Approaching to a pedestrian scenario

Fig. 3: Human subject study results for the two scenarios for four of the users. “STL” denotes the traditional (unweighted)
robustness when it is used directly, “RS” denotes our method with random sampling, “GB” denotes our method with gradient-
based optimization, “BT” denotes SGD with Bradley-Terry model, and “SVM” represents SVM classification.

TABLE I: Average accuracy results for different methods on
human subject studies. Values represent the average accuracy
over all splits and all eight users for each method.

Method RS (ours) GB (ours) BT SVM
Accuracy Train Test Train Test Train Test Train Test

Stop sign 81.2% 77.0% 80.2% 72.4% 82.7% 75.7% 78.9% 76.7%
Pedestrian 91.5% 91.4% N/A N/A 88.4% 88.4% 88.3% 88.7%

Finally, when we look at Figure 3a, we see that with
decreasing consistency, the generalizability of all methods
decreases, i.e., they perform poorly on test data.

Now we turn our attention to the safety of different ap-
proaches. Ideally, when presented with a pair of signals where
one is violating the traffic rules and the other is satisfying, an
approach should give preference to the satisfying one. Our
method satisfies this nice property by construction. To test
how the baselines do in this case, we simulate a hundred

violating pairs for the intersection with a stop sign scenario
and pair them with satisfying signals. Now, we have fifty
satisfying-satisfying signal pairs that we use in human subject
studies and a hundred satisfying-violating signal pairs. We
create two different training sets: (i) one with fifty satisfying-
satisfying pairs, and (ii) one with fifty satisfying-violating pairs
in addition to satisfying-satisfying pairs. Test sets are hundred
satisfying-violating pairs, and fifty satisfying-violating pairs,
respectively. Table II shows the safety performance of two
baseline methods and random sampling for the stop sign
scenario and one participant. As we can see, baseline methods
trained with only satisfying signals perform poorly when
encountered with violating signals. However, it is not always
feasible to generate real-life behaviors that violate a rule for
safety-critical scenarios. When training baseline methods, we
rely on simulators to generate violating signals, which may not
be realistic. When we look at the results with training set (ii),
the test performance of both baseline methods increases, and
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SVM reaches 100% accuracy. However, none of the baseline
methods ensure the safety of arbitrary safe-unsafe pairs.

TABLE II: Safety-critical selection comparison with baseline
methods. The test values indicate the percentage of test cases
for which the learned model prefers a rule-following (safe)
behavior to a rule-violating (unsafe) one.

Method RS (ours) BT SVM
Trained with (i) (ii) (i) (ii) (i) (ii)

Training Accuracy 92% 96% 78% 82% 76% 85.33%
Test Accuracy 100% 100% 40% 87% 31% 100%

VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

This work introduced a safe preference learning approach
and evaluated its performance in two different driving sce-
narios. Considering three desirable properties of preference
learning for safe personalization mentioned in the introduction,
our results show that our method gives competitive results
with the baselines in terms of expressivity but significantly
outperforms them in terms of safety. Moreover, it is not clear
how models learned by generic preference learning methods
can be used in control design, whereas our STL-based method
can be readily integrated into control synthesis.

We note that neither random sampling nor gradient-based
method guarantees finding an optimal value. We also observe
the gradient-based method to have difficulties in convergence
for certain formulas. It would be interesting to study different
smooth robustness metrics to see if they can mitigate this
issue. While preference data in our experiments appears to
be on a smaller scale, expecting humans to select preferences
for hundreds of signal pairs all at once is impractical. Our
experience shows that even dealing with fifty pairs could be
overwhelming. To this end, our upcoming focus is on an active
learning scheme that maximizes inference using a minimum
amount of question pairs. Additionally, we aim to integrate
the final WSTL formula into a downstream control synthesis
algorithm as in [13] to demonstrate its use in control design
and to run further validation studies.
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[15] K. Martyn and M. Kadziński, “Deep preference learning for multiple
criteria decision analysis,” Eur. Journal of Operational Research, vol.
305, no. 2, pp. 781–805, 2023.

[16] D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia, “Active preference-
based learning of reward functions,” Robotics: Science and Systems,
vol. 13, 2017.

[17] E. Biyik and D. Sadigh, “Batch active preference-based learning of
reward functions,” in Conf. on Robot Learning, vol. 87. PMLR, 29–31
Oct 2018, pp. 519–528.

[18] M. Tucker, N. Csomay-Shanklin, W.-L. Ma, and A. D. Ames,
“Preference-based learning for user-guided hzd gait generation on
bipedal walking robots,” in IEEE Intl. Conf. on Robotics and Automa-
tion, 2021, pp. 2804–2810.

[19] R. Cosner, M. Tucker, A. Taylor, K. Li, T. Molnar, W. Ubelacker,
A. Alan, G. Orosz, Y. Yue, and A. Ames, “Safety-aware preference-
based learning for safety-critical control,” in Learning for Dynamics
and Control Conf., vol. 168. PMLR, 2022, pp. 1020–1033.

[20] E. Plaku and S. Karaman, “Motion planning with temporal-logic spec-
ifications: Progress and challenges,” AI Communications, vol. 29, pp.
151–162, 2016.

[21] P. Nilsson, O. Hussien, A. Balkan, Y. Chen, A. D. Ames, J. W. Grizzle,
N. Ozay, H. Peng, and P. Tabuada, “Correct-by-construction adaptive
cruise control: Two approaches,” IEEE Trans. on Control Systems
Technology, vol. 24, no. 4, pp. 1294–1307, 2016.

[22] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[23] A. Linard, I. Torre, B. Ermanno, A. Sleat, I. Leite, and J. Tumova,
“Real-time rrt* with signal temporal logic preferences,” in Intl. Conf.
on Intelligent Robots and Systems, 2023.

[24] D. Neider and I. Gavran, “Learning linear temporal properties,” in
Formal Methods in Computer Aided Design, 2018, pp. 1–10.

[25] Z. Xu, M. Ornik, A. A. Julius, and U. Topcu, “Information-guided
temporal logic inference with prior knowledge,” in American Control
Conf., 2019, pp. 1891–1897.

[26] G. Chou, N. Ozay, and D. Berenson, “Explaining multi-stage tasks by
learning temporal logic formulas from suboptimal demonstrations,” in
Robotics: Science and Systems (RSS), 2020.

[27] Y. Jiang, S. Bharadwaj, B. Wu, R. Shah, U. Topcu, and P. Stone,
“Temporal-logic-based reward shaping for continuing reinforcement
learning tasks,” in AAAI Conf. on Artificial Intelligence, vol. 35, no. 9,
2021, pp. 7995–8003.

[28] X. Li, Y. Ma, and C. Belta, “A policy search method for temporal
logic specified reinforcement learning tasks,” in American Control Conf.,
2018, pp. 240–245.
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