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Stein Variational Belief Propagation for
Multi-Robot Coordination

Jana Pavlasek1, Joshua Jing Zhi Mah1, Ruihan Xu1, Odest Chadwicke Jenkins1, and Fabio Ramos2

Abstract—Decentralized coordination for multi-robot systems
involves planning in challenging, high-dimensional spaces. The
planning problem is particularly challenging in the presence of
obstacles and different sources of uncertainty such as inaccurate
dynamic models and sensor noise. In this paper, we introduce
Stein Variational Belief Propagation (SVBP), a novel algorithm
for performing inference over nonparametric marginal distri-
butions of nodes in a graph. We apply SVBP to multi-robot
coordination by modelling a robot swarm as a graphical model
and performing inference for each robot. We demonstrate our
algorithm on a simulated multi-robot perception task, and on
a multi-robot planning task within a Model-Predictive Control
(MPC) framework, on both simulated and real-world mobile
robots. Our experiments show that SVBP represents multi-modal
distributions better than sampling-based or Gaussian baselines,
resulting in improved performance on perception and planning
tasks. Furthermore, we show that SVBP’s ability to represent
diverse trajectories for decentralized multi-robot planning makes
it less prone to deadlock scenarios than leading baselines.

Index Terms—Distributed robot systems, probabilistic inference.

I. INTRODUCTION

MULTI-ROBOT coordination is an essential capability
for applications involving teams of robots, such as

industrial robots, delivery vehicles, and autonomous cars.
Planning for multi-robot systems is challenging due to the
high-dimensionality introduced by a large number of agents.
Decentralized algorithms enable each robot to perform local
computations using information from neighboring robots. This
distributed approach is well-suited to multi-robot systems since
it involves solving lower-dimensional, local problems compared
to the expensive high-dimensional centralized approach.

Decentralized control algorithms [1], [2] are prone to
deadlock scenarios which arise from the multi-modality of the
solutions that each robot must consider. Considering multiple
possible trajectories as a distribution allows us to represent
diverse solutions [3], [4]. This ability lends added robustness
in dynamic environments, such as those with multiple mobile
agents. We therefore consider the problem of multi-robot
coordination as a probabilistic inference problem. We represent
the robot swarm as a graphical model, where each robot is a
node in the graph, and edges connect robots in communication
range [5]–[7]. This representation enables distribution of
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Fig. 1. Stein Variational Belief Propagation (SVBP) computes marginal
trajectory distributions for each robot in a multi-robot system. SVBP represents
the relationships between robots as a Markov Random Field (a) and maintains
multi-modal distributions over each robot trajectory (b). Example final
trajectories for each robot are shown in (c).

possible trajectories for each robot to be inferred via graphical
inference (see Fig. 1).

We propose Stein Variational Belief Propagation (SVBP),
an algorithm for performing probabilistic inference on a
Markov Random Field (MRF) through message passing, and
demonstrate its applicability to multi-robot coordination. SVBP
employs Stein Variational Gradient Descent (SVGD) [8] to infer
marginal posterior distributions as a set of particles through
nonparametric belief propagation [9], [10]. Leveraging SVGD
enables effective representation of multi-modal distributions,
mitigating mode collapse compared to sampling-based methods.
Our formulation extends SVGD to graphical models by
leveraging the particle message update rules from Particle
Belief Propagation (PBP) [11]. In contrast to SVGD, SVBP
approximates the marginals rather than the full posterior, and
can therefore scale to higher dimensional problems. The re-
sulting algorithm is highly parallelizable since the particles are
deterministically updated using gradient information, making
it well-suited to efficient implementation on a GPU.

We demonstrate our approach on two applications: a
simulated multi-robot perception task, and a multi-robot
Model-Predictive Control (MPC) task, both in simulation
and on a real-world mobile robot swarm. We demonstrate
how these problems can be formulated as MRFs [5], [12]
and solved via SVBP. The belief propagation framework
enables multi-hop information to be passed through the graph
while only passing messages between immediate neighbors.
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The perception experiments show that SVBP can maintain
multi-modal belief distributions in uncertain environments,
leading to lower localization error compared to baselines. The
planning experiments demonstrate that SVBP is more resilient
to deadlock scenarios, and produces smoother trajectories
resulting in faster time-to-goal. Our robot experiments show
that our SVBP controller is robust to noisy localization and
dynamics and asynchronous message passing. Video results are
available at: https://progress.eecs.umich.edu/projects/stein-bp.

II. RELATED WORK

Decentralized multi-robot coordination algorithms are those
in which each robot executes a controller to satisfy individual
objectives considering local information from neighbors. This
technique is highly scalable to large and dynamic swarms.
Optimal Reciprocal Collision Avoidance (ORCA) [2], a variant
of velocity obstacles [1], demonstrates real-time collision avoid-
ance for thousands of agents with independent objectives but are
highly prone to deadlock scenarios. We focus on decentralized
Model-Predictive Control and graphical approaches in this
section and refer the reader to existing surveys [13], [14] for
broader coverage.

Multi-robot coordination with graphical models: Prob-
abilistic graphical models present a natural formulation for
decentralized multi-robot coordination, whereby individual
robots are represented by nodes in a graph and edges connect
communicating robots [5]. This formulation has been used to
solve for robot localization and control with Gaussian Belief
Propagation [7]. Graphical representations have also been used
to learn factors for robot control via graph neural networks [6],
[15]. This technique requires expert trajectory demonstrations
from a centralized controller for training.

Multi-robot Model Predictive Control: Decentralized
model-predictive control (DMPC) has been applied to multi-
agent collision avoidance problems [16]–[20]. By planning over
a horizon, these techniques mitigate deadlock scenarios issues
but introduce complexities due to the higher dimensionality
introduced. These works consider the problem of finding
a single trajectory solution. In work most similar to ours,
Patwardhan et al. use Gaussian Belief Propagation for collision
avoidance in multi-robot planning [7]. This method restricts
the trajectory distributions to Gaussian forms, and requires
all factors to be linearized about an estimate. In contrast, our
approach can be used with any differentiable factor and uses a
more flexible nonparametric distribution.

III. BACKGROUND

A. Belief Propagation
Let G = (V,E) denote a Markov Random Field (MRF)

with nodes V and edges E. Let X = {xs | s ∈ V } denote the
set of all hidden nodes in the graph, and Z = {zs | s ∈ V }
denote the observed nodes corresponding to each hidden node.
The joint probability of the graph G can be expressed as a
product of its clique potentials:

p(X ,Z) ∝
∏

(s,t)∈E

ψst(xs, xt)
∏
s∈V

ϕs(xs, zs). (1)

The function ψst is the pairwise potential, describing the
correspondence between neighboring nodes, and ϕs is the

unary potential, describing the correspondence of a hidden
variable xs with the observed variable zs. Note that in the
following equations, we omit the observation, zs, from the
unary potential ϕs for brevity.

Belief propagation estimates the marginal posterior distribu-
tion of a hidden node s using the following equation:

p(xs | Z) ∝ ϕs(xs)
∏

t∈ρ(s)

mt→s(xs) (2)

where ρ(s) denotes the neighbors of s. The message from node
t to node s, mt→s, is defined as:

mt→s(xs) =

∫
xt

ϕt(xt)ψts(xt, xs)
∏

u∈ρ(t)\s

mu→t(xt) dxt

(3)
Belief propagation provides exact marginals for tree structured
graphs. For graphs with loops, messages can be computed
iteratively. This approach is proven effective in practice [21].
We refer the reader to Wainwright and Jordan [22] for further
details on message passing techniques.

A number of belief propagation algorithms have been
proposed in the literature. Gaussian Belief Propagation (GaBP)
is an efficient algorithm when the node distributions and their
corresponding factors can be represented as Gaussian [23],
[24]. This method enables efficient computation and has been
shown to be effective for multi-robot collision avoidance and
localization [7], [25]. However, many applications in robotics
are complex and multi-modal, and cannot be fully represented
by unimodal Gaussian uncertainty.

B. Particle Belief Propagation

Nonparametric Belief Propagation (NBP) [9], [10] repre-
sents distributions nonparametrically as mixtures of Gaussians
and are well-suited to cases where the integral in Eq. (3)
is intractable. NBP algorithms involves expensive product
operations between mixture distributions. NBP has been applied
to robotic perception of articulated objects, using an efficient
sampling-based message product technique [26], learned unary
factors [27], and end-to-end learned factors [28]. While these
methods enable complex representations of belief distributions,
they rely on expensive sequential sampling operations.

Particle Belief Propagation (PBP) defines a sampling-based
algorithm for computing the messages in Eq. (3) for cases
where the integral is intractable due to the complexity of the
state space [11]. PBP represents the belief at each node with
a set of N particles, {x(i)s }i=1:N . Given samples from node
t ∈ ρ(s), {x(i)t }i=1:M drawn from a candidate distribution Wt,
PBP defines the approximate message:

m̂t→s(x
(i)
s ) =

1

M

M∑
j=1

ϕt(x
(j)
t )

Wt(x
(j)
t )

ψts(x
(j)
t , x(i)s )

∏
u∈ρ(t)\s

mu→t(x
(j)
t ). (4)

This message definition is used to draw samples from the
marginal posterior, p(xs | Z), using importance sampling.

PBP relies on the definition of a sampling distribution,
Wt, which later work proposed to estimate via expectation
maximization [29]. Importance sampling is prone to mode

https://progress.eecs.umich.edu/projects/stein-bp/
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Algorithm 1 The SVBP Algorithm
procedure SVBP(G, Z)

Initialize particles {x(i)s }i=1:N for s ∈ V
for k = 1, . . . ,K do

Update messages (mt→s,ms→t) for (s, t) ∈ E
for s ∈ V do

for i = 1, . . . , N do
Compute γ(x(i)s ) ▷ Eq. (6)
x
(i)
s ← x

(i)
s + ϵγ(x

(i)
s )

collapse, which has been mitigated by drawing from multiple
sampling distributions [30]. However, current solutions to
PBP require careful selection of sampling distributions and
sequential sampling operations.

C. Stein Variational Inference
Stein Variational Inference is an algorithm for approximating

a distribution p(x) using a candidate distribution in the form
of a set of particles, q(x) = {x(i)}i=1:N . Stein variational
gradient descent (SVGD) [8] employs gradient-based optimiza-
tion over the particle set to minimize the kernelized Stein
discrepancy [31] between the true density and a candidate
density represented by the particle set. SVGD is an iterative
algorithm which applies the following update to each particle
i at iteration k:

x(i)[k]← x(i)[k − 1] + ϵγ(x(i)[k − 1]) (5)

γ(x) =
1

N

N∑
j=1

κ(x(j), x)∇x(j) log p(x(j)) +∇x(j)κ(x(j), x)

(6)

where κ(x(j), x) is a kernel function between particles. We can
interpret the first term inside the summation of Eq. (6) as an
attractive force that moves particles according to the gradient of
the log-density, while the second term acts as a repulsive term
keeping particles from collapsing to a single point estimate.
Thus SVGD leverages parallel gradient-based optimization to
generate a diverse set of samples more efficiently than Markov
chain Monte Carlo (MCMC) samplers.

SVGD has proven useful in a number of robotic applications
in recent years, including control, planning, and point cloud
matching [32]–[35]. SVGD has been applied to graphical
models to approximate joint distributions using kernels over
local node neighborhoods [36] and conditional distributions
over nodes [37]. Both these methods rely on the conditional
independence structure of MRFs and as such only pass
messages between immediate neighbors in the graph. In
contrast, our proposed method computes the marginal beliefs
over nodes using belief propagation, which involves passing
messages through the whole graph.

IV. STEIN VARIATIONAL BELIEF PROPAGATION

Given a Markov Random Field (MRF) G = (V,E), we
seek to infer the marginal distribution of a node s ∈ V ,
p(xs), defined in Eq. (2). We propose Stein Variational Belief
Propagation (SVBP), an algorithm for inferring marginal
beliefs in an MRF using SVGD. The marginal distribution

is represented nonparametrically using a particle set for each
node in the graph, {x(i)s }i=1:N . We use SVGD gradient updates
to infer the density p(xs) for each node. We define the posterior
likelihood term in Equation (6) using the marginal belief from
Eq. (2), p(xs), to obtain the SVBP likelihood gradient:

∇xs
log p(xs) = ∇xs

log ϕs(xs)

+
∑

t∈ρ(s)

∇xs log m̂t→s(xs), (7)

where m̂t→s(xs) is defined via the PBP message rule from
Eq. (4). A distinct set of Stein particles represents the posterior
belief at each node.

The inference process using SVBP is described in Algo-
rithm 1. Particles are first initialized based on the problem
domain. At each iteration, messages are updated with Eq. (4).
For each node, particles are updated using Eq. (6), computed
by evaluating the gradients in Eq. (7) and the kernel function.
The process is repeated for K iterations or until convergence.

SVBP provides several key advantages over other NBP
techniques. First, it uses gradient-based, deterministic particle
updates which can be efficiently parallelized on a GPU, without
relying on sequential sampling operations. Second, SVGD is
well-suited to multi-modal applications due to its ability to
maintain diverse modes with fewer particles. SVBP also defines
the kernel function in Eq. (7) over individual nodes in the graph.
This makes SVBP well-suited to high-dimensional problems
which can be represented as a graph.

Computing Gradients: SVBP requires that potentials ϕ and
ψ are differentiable. The message gradients can be computed
as follows:

∇xs
log m̂t→s(xs) =

∇xsm̂t→s(xs)

m̂t→s(xs)
(8)

∇xs
m̂t→s(xs) =

1

M

M∑
j=1

ϕt(x
(j)
t )

Wt(x
(j)
t )

[
∇xs

ψts(x
(j)
t , xs)

] ∏
u∈ρ(t)\s

m̂u→t(x
(j)
t )

(9)

We note that the gradient update from Equation (7) only
involves evaluating gradient information from immediate
neighbors, since the messages mu→t in Eq. (4) are not a
function of xs. This enables efficient gradient updates since
the algorithm only requires backpropagating through single-hop
neighbors.

Sampling Distribution: In practice, we use the current belief
of the neighboring node, p(xt), as the sampling distribution,
Wt, where p(xt) is represented by Stein particles for node
t with equal weights. This enables efficient computation of
the messages since it eliminates the need to run expensive
sampling algorithms like MCMC, as originally proposed.

Message Passing Schedule: We employ a synchronous
message passing scheme in which all messages are computed
prior to updating each node belief. This enables efficient batch
computations of factors and messages suitable for execution on
a GPU. However, our algorithm can be employed with other
message passing schedules.

Selecting an Estimate: In practice, multiple estimates exist
for drawing an estimate from the particle set. In practice,
we select the highest weighted estimate for the experiments
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(b) True Marginal Distributions(a) Robot Graphical Model

𝒙𝒙𝟒𝟒

𝒙𝒙𝟏𝟏

𝒙𝒙𝟑𝟑 𝒛𝒛𝟒𝟒
𝒛𝒛𝟓𝟓

𝒛𝒛𝟏𝟏

𝒛𝒛𝟑𝟑

𝒛𝒛𝟕𝟕

𝒛𝒛𝟐𝟐

𝒛𝒛𝟔𝟔

𝒛𝒛𝟖𝟖

𝒙𝒙𝟖𝟖
𝒙𝒙𝟔𝟔𝒙𝒙𝟐𝟐

𝒙𝒙𝟓𝟓

𝒙𝒙𝟕𝟕

Fig. 2. SVBP better represents the underlying distribution, avoiding mode
collapse. (a) Graphical model of the multi-robot perception problem. The
position of each node is denoted xi, and the corresponding observation is
denoted zi. (b) The approximate true marginals for the graph in (a) and the
observation shown in (c, d). Qualitative results for SVBP (c) and PBP (d) at the
final iteration (k). The red lines represent the true position of the nodes, and the
colored ‘x’ markers represent the maximum likelihood estimate for each node.
Lower-weighted particles are shown with lower transparency. The distributions
represent the noisy observations for each node of the corresponding color.
Best viewed in color.

described. The weights for the particles can be computed after
convergence using Eq. (2), w(i)

s = ϕ(x
(i)
s )
∏

t∈ρ(s)mt→s(x
(i)
s ),

where the messages are computed using Eq. (4).

V. SVBP FOR MULTI-ROBOT PERCEPTION

The first application on which we validate our algorithm is
a simulated multi-robot perception experiment. The objective
is to infer the belief, p(xs), over the robot’s 2D position,
denoted xs, for each robot s for a single timestep. We consider
the challenging case in which the observation for each agent
is multi-modal. Specifically, the observation consists of a
mixture of Gaussians which contains a component centered
around the true position of the robot and randomly sampled
noisy components. An example observation and the associated
graphical model are shown in Fig. 2. In addition to the
observations, robots observe the displacement to neighboring
robots within communication range, creating edges in the graph
(shown in red). The resulting marginal distributions for each
robot are multi-modal, as shown in Fig. 2(b). [10], [26], [28].

The MRF in Fig. 2 requires the definition of the potentials in
Eq. (1). We define the unary potential for each robot to be the
mixture of Gaussians corresponding to the robot observation.
The pairwise potential is defined as a function of the observed
translation Lst between neighboring robots:

ψts(xt, xs) = exp
(
− α

(
∥xs − xt∥ − Lst

)2)
. (10)

where xs and xt are the 2D positions of neighboring robots
and α is a user-selected coefficient.

Baseline: We implement Particle Belief Propagation as a
baseline approach. We employ iterative importance sampling
over the particles at each node, where each particle is weighted
according to Eq. (2) with the message definition of Eq. (4).

Fig. 3. Average error for each node estimate for multi-robot localization.
Results are shown for varying levels of noise, corresponding to the number of
noisy components added to the observation.

We use the current particle set at each neighboring node as
the candidate distribution for message computation, with equal
weights, as in SVBP. We apply random noise at the beginning
of each iteration. The same factor definitions and parameters
are used for PBP and SVBP.

A. Results
For each run, the position of each robot is randomly

selected such that the graph is connected for a radius of 2
meters. To form the observation, a component is added at the
true location of the robot. Noisy components with uniformly
sampled means are then randomly assigned across nodes and
added to the observation, making each observation a Gaussian
mixture. Particles are initialized uniformly. SVBP ran for 100
optimization iterations, and PBP ran for 50 iterations. To
generate an estimate for each node’s position, we select the
highest weighted particle.

The average error for 8 nodes over 10 runs for our SVBP
algorithm against PBP is shown in Fig. 3. The x-axis represents
the total number of noisy Gaussian components added to
the node observations. A visualization of the final belief
distributions of SVBP and PBP for the highest noise observation
is shown in Fig. 2. SVBP performs comparatively to PBP for
low observation noise, but significantly outperforms PBP in
noisy cases. We observed that PBP tends to converge quickly
but was subjected to mode collapse which results in locally
optimal estimates. In contrast, SVBP maintains multiple modes,
making it more likely that the global solution is represented
in the candidate particle set.

1) Comparison to True Marginals: We hypothesize that
SVBP better represents the true marginal distributions. We
perform an analysis of the particle distribution of each method
compared to the true marginal beliefs. To obtain the true
marginal beliefs, we run a Gibbs simulation [38] to sample
from the marginal using the density from Eq. (2). To evaluate
the integral for the message in Eq. (3), we employ Monte-
Carlo integration over the full region of the observation with
a high number of samples (1000). The ground truth sampled
marginals are imperfect due to the sampling procedure but
provide a reasonable baseline approximation. The visualization
of the true marginal is shown in Fig. 2(b).

We compute the kernelized Maximum Mean Discrepancy
(MMD) [39] between the sampled particle set and the belief
particles for SVBP and PBP. The kernel bandwidth is chosen
using the median heuristic over the ground truth sample set [40].
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Fig. 4. The average Maximum Mean Discrepency (MMD) between the samples
from the true marginal distribution and the particle sets from SVBP and PBP.
Both methods use 50 particles.

Fig. 5. Average error for each node estimate for different numbers of particles.
The solid lines correspond to experiments runs with noise added to the
observation. The dashed lines correspond to experiments with no noise added
to the observation.

Results are shown in Fig. 4. SVBP obtains a lower MMD than
PBP consistently across noisy environments. We observe that
some particles in SVBP get caught in local minima in very
noisy cases in areas where the unary potential is high, as in
Fig. 2(c). These particles are easily detected as they have very
low overall weights and could be reset in practice. We therefore
do not include any particles with weights less than 1% of the
highest weight in the MMD computation.

2) Analysis of Number of Particles: We claim that SVBP
can represent the marginal beliefs with fewer particles due
to SVGD’s ability to maintain modes of the distribution.
We execute both SVBP and PBP with different particle set
sizes and measure the average error across each node for the
final estimate. The results are shown in Fig. 5. For noisy
environments, PBP benefits significantly when the size of the
particle set is increased from 25 to 100, whereas SVBP finds
a good estimate with only 25 particles.

VI. SVBP FOR MULTI-ROBOT PLANNING

Our second application involves decentralized Model Predic-
tive Control (MPC) of a multi-robot system. Each robot must
avoid obstacles and the other robots in its trajectory to the goal.
We run experiments both in a 2D planar navigation simulation
and on a decentralized real robot system with realistic sensor
and action noise.

A. Problem Formulation

We consider the problem of finding a collision-free trajectory
for each robot s, τs = {us,k | 1 ≤ k ≤ T}, where us,k
are control commands for time k over a fixed horizon T .

We take a planning as inference approach [3], [4] in which
the nodes in the graph represent the trajectory distribution,
p(τs) for each robot, and the edges in the graph represent
robots in communication, as in Fig. 1. We assume known
dynamics θs,k+1 = fs(θs,k, us,k), where θs,k is the state of
robot s at time k, and a known initial state θs,0. At each
timestep, we execute the first action in the trajectory and rerun
the optimization, as in model predictive control (MPC). This
approach is akin to a multi-robot version of Stein MPC [32].

For this experiment, we assume the graph is fully-connected.
We employ a loopy version of belief propagation, in which the
messages are initialized and iteratively updated. This approach
does not provide exact marginals but has proven to be effective
in practice [21].

Potential functions: The unary potential for each robot tra-
jectory is defined with respect to the running cost c(θs,k, us,k)
and terminal cost C(θs,T ) for a trajectory:

ϕs(τs, θs,0) = exp−

(
C(θs,T ) +

T−1∑
k=1

γk cs(θs,k, us,k)

)
(11)

where T is the time horizon and γk are constants, and the
initial state replaces the “observation,” zs, from Eq. (2). The
running cost consists of a quadratic cost and an obstacle
avoidance cost based on the signed-distance function for the
obstacles. Intermediate state values θs,k needed to compute the
costs are obtained by simulated rollouts using the dynamics,
fs(θs,k, us,k).

The pairwise potential between communicating robots
employs the following collision avoidance factor over the
trajectory:

log ψts(τt, τs) =

−
T∑

k=0

αk

(
1−

(
d(θs,k,θt,k)

r

)β)
d(θs,k, θt,k) ≤ r

0 d(θs,k, θt,k) > r
(12)

where d(θs,k, θt,k) is the distance between the robot positions
at timestep k, r is the desired collision radius, and αk and
0 < β ≤ 1 are constants. In our experiments, we use r = 0.5
and β = 0.3. We set αk to decrease linearly over the horizon.

Given differentiable dynamics, the above potential definitions
allow the gradients from Eq. (7) to be computed with respect
to the trajectories τs. We use a Gaussian kernel which employs
a distance function computed as the sum of the Euclidean
distance between states in two trajectories at corresponding
times. Eq. (6) is applied iteratively to obtain a set of trajectories
comprising the belief for each robot, {τ (i)s }i=1:N .

B. Baselines

Two baselines are employed for this scenario: the well-
established Optimal Reciprocal Collision Avoidance (ORCA)
algorithm [2], and Gaussian Belief Propagation (GaBP), as
in [7]. ORCA assumes that neighboring agent’s velocity are
known and calculates optimal reciprocally collision-avoiding
velocities that are closest to the original preferred velocity. The
scenario was implemented using the RVO2 library [41]. We
assume full connectivity.
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(a) (b) (c) (d) (e)

10
 m

Fig. 6. Testing environments for the multi-robot control experiments with randomly selected trajectories from SVBP. The goal positions for each robot are
marked with an ‘x’. Each environment is 10 meters by 10 meters.

For GaBP, potentials are expressed as a linearized Gaussian
factor [24] with a bias term that encodes the expected joint
Gaussian to be observed. In contrast to the formulation by
Patwardhan et al. [7], we represent the trajectory consisting
of 2D acceleration commands for one robot as a single node,
rather than inferring the state at individual timesteps. We use
similar potential functions to our SVBP implementation for fair
comparison. The factors in GaBP are restricted to the form:

Es(τs) =
1

2
(hs(τs)− bs)⊤Σ−1

s (hs(τs)− bs) (13)

where hs(τs) is an “observation function” over the trajectory
τs, bs is a bias term, and Σs is the covariance [24].

In order to use our non-linear, non-Gaussian costs, we set
hs(τs) to be the cost for each of our factors, with bs = 0.
Since our costs are non-linear, hs(τs) must be linearized about
an estimate via a first-order Taylor series expansion. As in
SVBP, the linearization requires backpropagation through the
dynamics fs(θs,k, us,k). Since the quadratic cost is already
linear, we use hs(τs) =

[
Θs τs

]
, where Θs is the state

vector from simulated trajectory rollouts using the dynamics
model. Our GaBP implementation is able to infer optimal
trajectories without the need of a trajectory planner by making
use of the dynamics function, in contrast to the formulation
by Patwardhan et al. [7].

C. Simulated Robot Experiments

We perform the simulated experiments in acceleration space,
where the state θs,k consists of 2D position and velocity, and
the control commands us,k are 2D accelerations. We use a time
horizon of 20 discrete steps of 0.1 seconds each, making τs 40
dimensional for each robot. The first control command from
the lowest cost trajectory, equivalent to the heighest weight
particle, is executed at each timestep. The optimization is then
rerun in MPC-style.

Results: We present the pass rate for ORCA, GaBP, and
SVBP in Fig. 7a. The pass rate represents the percentage of
trajectories (y-axis) which reached the goal within a given error
threshold (x-axis) across all robots for each run. Any robots
that collided with another robot are not counted as passed for
any threshold. Since ORCA is sensitive to the robot radius
parameter, we show results for both a radius of 20 cm and
40 cm. We perform 10 runs on each of the environments in
Fig. 6. The total path time for each method is shown in Fig. 7b.
Path time is only computed for trajectories which terminated
within 30 cm of the goal without collisions. While all methods
result in similar path lengths, the robots move much more

(a)

(b)

Fig. 7. Pass rate (a) and path time (b) for each method considered for the multi-
robot control example. The pass rate represents the percentage of trajectories
which finished within a given error threshold. Only successful results are
included for path time analysis. A trajectory is successful if it reaches the
goal within 30 cm without collisions.

conservatively in the ORCA baseline, which results in higher
path times.

We observe that the failure modes in SVBP can occur due to
local minima, for example around large obstacles such as in the
environments in Fig. 6(c, e). GaBP is especially susceptible to
getting caught in local minima in the presence of challenging
obstacles. A subset of robots fail to reach their goals for every
run in one environment, as illustrated in Fig. 8(b). ORCA is
particularly prone to deadlock scenarios when it must obey a
collision tolerance (i.e. 40 cm collision radius case), failing
for all runs in the environment shown in Fig. 8(a).

VII. REAL ROBOT EXPERIMENTS

We run our controller on a real multi-robot system comprised
of omni-directional MBots [42]. We perform a collision
avoidance experiment with three robots where the robots must
cross paths to reach their goal locations. The goal of this
experiment is to determine the performance of our controller
under 1) noisy perception and dynamics, 2) limited computing
resources, 3) realistic asynchronous message passing schedules.
The robots are equipped with a single-board computer with
limited processing power (a Raspberry Pi) and pass messages
through a custom websocket interface over a WiFi connection.
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(a) ORCA (40 cm) (b) GaBP

Fig. 8. Failure modes for the baselines considered for the planar navigation
experiment. (a) ORCA is prone to deadlock, especially in the presence of
obstacles. All run for this environment fail with a 40 cm radius (shown with
red circles). (b) Gaussian Belief Propagation is prone to falling into local
minima, especially around large objects. The four robots circled in red cannot
get around the obstacles.

Each robot performs SLAM using a 2D Lidar for state
estimation. The swarm is assumed to be fully-connected.

Decentralized Message Passing: Each robot independently
maintains a representation of the graph and updates messages
within their local graph based on neighbor belief. At the
beginning of each optimization iteration, the robots request the
current trajectory distribution from their neighbors which is
used to update the local messages in each robot’s representation
of the graph. The robots pass messages using a custom
API which passes messages through websockets, inspired by
rosbridge [43], which allows them to synchronously query data
from robots on a shared network.

Baseline: ORCA is implemented on the robots as a baseline.
The algorithm is run in a centralized manner on a single
robot which broadcasts velocity commands to the whole fleet.
ORCA outputs a velocity command for each robot rather than
a trajectory, therefore we do not use an external trajectory
tracker and execute the velocity command directly.

Implementation Details: We perform the simulated experi-
ments in velocity space, where the state θs,k consists of 2D
position and the control commands us,k are 2D velocities. We
plan over 10 discrete timesteps, with a 0.25 second timestep. We
first perform 15 initialization iterations over random trajectory
particles before beginning execution. The lowest cost trajectory
is chosen and executed by a closed-loop velocity controller. The
optimization is repeated until the goal is reached in MPC-style,
initializing using particles from the previous timestep.

Results: We perform 5 runs on a scene with and without
obstacles (10 runs total) for SVBP and ORCA. The time-to-goal
results are shown in Fig. 10 for each of the robots shown in
Fig. 9. On the scene with no obstacles, SVBP reaches the goal
in all runs with no collisions except for in one run, in which
one robot has a localization failure resulting in a collision.
ORCA deadlocks at the start of the trajectory for all runs.
To obtain meaningful comparisons, we manually perturb the
robots from their start positions to escape deadlock. ORCA’s
built-in random perturb for deadlock prevention fails in practice
as ORCA tends to select low speeds which are insufficient
to displace the physical robots unless large clearances are
available. Modification of the perturbation functionality for
this application could mitigate this issue. After the deadlock
is resolved, ORCA and SVBP achieve similar time-to-goal in

Fig. 9. An example of a trajectory for the SVBP algorithm on a real robot.
The circles highlight the final goal position for each robot.

Fig. 10. Distance to the goal over time for each robot for runs with no
obstacles (left) and with obstacles (right).

scenarios without obstacles.
For the case with obstacles, ORCA deadlocks at the

beginning of the run in two cases. The algorithm gets stuck in
deadlock for 2 of 5 runs near the obstacle, and the deadlock
results in a collision in one of the cases (robots #2 and #3
do not reach the goal in 2 cases in Fig. 10, right). We only
apply manual perturbation for deadlocks for ORCA at the
beginning of the run. SVBP reaches the goals in all the cases
with smoother paths. A visualization of an execution of SVBP
with obstacles is shown in Fig. 9.

VIII. DISCUSSION & CONCLUSION

We present Stein Variational Belief Propagation (SVBP),
an algorithm for inferring nonparametric marginal beliefs in
graphs using Stein Variational Gradient Descent. We demon-
strate the applicability of our algorithm on two applications:
simulated multi-robot perception, and multi-robot planning
both in simulation and on real robots. Through simulated
perception experiments, we show that SVBP approximates the
true marginal distributions better and is more particle efficient
than sampling-based baselines. The planning experiments show
that the algorithm is more effective at escaping local-minima
and deadlock scenarios than baselines. The real-world planning
experiments show that the method is robust to realistic noise.
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A limitation of the proposed algorithm is that the compu-
tation time scales with the number of neighbors. We limited
the robot experiments to three robots in order to achieve fast
enough execution to run MPC on the single-board computers
on the robots. Improving the efficiency of the implementation
would allow the size of the swarm to be increased. Another
limitation is the need to time-synchronize incoming messages
from other robots. We observe that the robots are prone to
starting and stopping behavior when near other robots which
we posit occurs due to lack of time synchronization. This
could be mitigated by accounting for the time delays between
messages. Further study is needed on the impact of message
delays and packet loss.

Our robot experiments show that SVBP is robust to realistic
perception and action noise, despite the fact that we do not
explicitly model this noise. Integrating explicit perception
and action noise models into the framework in order to deal
with more challenging scenarios is an interesting avenue of
investigation.
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