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Abstract— A significant bottleneck in applying current re-
inforcement learning algorithms to real-world scenarios is the
need to reset the environment between every episode. This reset
process demands substantial human intervention, making it
difficult for the agent to learn continuously and autonomously.
Several recent works have introduced autonomous reinforce-
ment learning (ARL) algorithms that generate curricula for
jointly training reset and forward policies. While their curricula
can reduce the number of required manual resets by taking into
account the agent’s learning progress, they rely on task-specific
knowledge, such as predefined initial states or reset reward
functions. In this paper, we propose a novel ARL algorithm
that can generate a curriculum adaptive to the agent’s learn-
ing progress without task-specific knowledge. Our curriculum
empowers the agent to autonomously reset to diverse and
informative initial states. To achieve this, we introduce a success
discriminator that estimates the success probability from each
initial state when the agent follows the forward policy. The
success discriminator is trained with relabeled transitions in a
self-supervised manner. Our experimental results demonstrate
that our ARL algorithm can generate an adaptive curriculum
and enable the agent to efficiently bootstrap to solve sparse-
reward maze navigation and manipulation tasks, outperforming
baselines with significantly fewer manual resets.

Index Terms— Reinforcement learning, deep learning meth-
ods, autonomous agents.

I. INTRODUCTION

Humans have a remarkable ability to continually learn
and improve on their own. Reinforcement learning (RL)
provides an appealing framework to empower robots with
this ability. However, applying current RL algorithms to real-
world scenarios presents significant challenges. One of the
key challenges is the need to reset the environment after
each episode [1]–[4]. While resetting the environment is
straightforward in simulated settings, it requires substantial
human intervention and supervision in the real world. Fur-
thermore, during the manual reset process, the agent cannot
collect transitions through interaction with the environment,
resulting in poor sample efficiency. It is clear that minimizing
the manual resets required to train the agent is crucial for
scaling current RL algorithms to real-world environments.

Conventional approaches to automating RL algorithms
without manual resets leverage scripted reset behaviors or
additional instrumentation [5]–[9]. These tailored reset mech-
anisms have poor scalability as they utilize heuristic rules
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for particular scenarios. To overcome their limitation, several
recent works have introduced autonomous RL (ARL) algo-
rithms that jointly train a reset policy to reset the environment
and a forward policy to solve a task [10]–[12]. The key idea
behind these ARL algorithms is to generate a curriculum
that determines when to abort an episode or where to reset
the agent based on the agent’s learning progress. While
these algorithms can reduce the manual resets required to
train the agent, they depend on task-specific knowledge,
such as specific initial states, reset reward functions, or
demonstrations, to create their curricula. Constraining initial
states to specific state space can cause the agent to fail
to achieve robust performance [13]. Furthermore, designing
reset reward functions or demonstrations is often not straight-
forward and causes additional human intervention.

In this paper, we propose a new ARL algorithm that
can generate a curriculum adaptive to the learning progress
of the agent without task-specific knowledge. Our adaptive
curriculum provides the agent with diverse and informative
initial states based on its learning progress. To do so, we
introduce a success discriminator and jointly train it with
the reset policy: the reset policy is trained to continuously
explore unseen states, and the success discriminator is trained
to estimate the probability of solving a task from each initial
state when the agent follows the forward policy. With these
learnable models, our algorithm can identify which initial
state encourages the agent to obtain diverse and informative
transitions without extrinsic intervention.

The simplest approach to obtaining supervisory signals for
training the success discriminator is to empirically estimate
the success probabilities by collecting multiple rollouts of the
forward policy for each initial state. However, this approach
requires extrinsic resets between every rollout and access to
uniform initial state distribution, which are both obviously
impractical in the real world. To address this challenge, we
relabel rollouts obtained from the forward policy and use
them to train the success discriminator in a self-supervised
manner. This relabeling is based on our hypothesis that
we can regard every state within successful rollouts as an
initial state from which the agent can solve a task using the
forward policy, and vice versa. Our training procedure allows
the success discriminator to adapt to continuously changing
forward policy, leading to an adaptive curriculum. As the
performance of the forward policy improves, the success
discriminator allows the agent to reset with more diverse
and informative initial states over a broader state space.

The main contribution of our work is to propose a new
ARL algorithm that can generate an adaptive curriculum
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without task-specific knowledge. It is in contrast to previous
ARL algorithms that require task-specific knowledge to gen-
erate adaptive curricula. We evaluate our algorithm against
baselines on diverse maze navigation and manipulation tasks
with sparse rewards. These sparse-reward tasks require the
agent to do efficient exploration for long-term gains, which
poses a challenge even for standard RL algorithms with
manual reset access. The experimental results demonstrate
that our algorithm can generate an adaptive curriculum
without task-specific knowledge, enabling the agent to tackle
these challenging tasks with efficient bootstrapping. Further-
more, our algorithm achieves better performance and sample
efficiency than the baselines, including state-of-the-art ARL
algorithms, with fewer manual resets.

II. RELATED WORKS

Conventional approaches to resetting environments with-
out extrinsic intervention involve leveraging additional in-
strumentation or scripted reset behaviors [5]–[8]. Levine et
al. [5] used metal bins with sloped sides to reduce manual
resets due to objects wedged into corners when collect-
ing grasping data. Their data collection process enabled
14 robotic manipulators to gather around 800,000 grasp
trials, with human intervention required only for replacing
objects in the bins. Nagabandi et al. [6] implemented a
reset mechanism using a ramp and a pre-scripted 7-DoF
Franka-Emika arm. The ramp had funnels that guided balls
to a specific position, which the manipulator then picked up
and returned to their initial state. Zeng et al. [8] introduced
TossingBot that can pick up and throw various objects into
selected boxes in the real world. Their robot was trained with
minimal intervention by utilizing scripted reset behaviors
that involved lifting tilted and bottomless boxes to return
objects to a bin. While these works have shown the promising
performance of real-world applications of RL algorithms,
their tailored reset mechanisms were designed for specific
scenarios, limiting the scalability of their algorithms.

ARL, which simultaneously learns both how to solve
a task and how to reset the environment, has received
significant attention in recent years. Eysenbach et al. [10]
proposed LNT that utilizes the forward and reset agents to
induce a curriculum by early aborting a trial based on the
reset value function, which is trained with a predefined reset
reward function. Their experimental results showed that LNT
solved continuous control tasks with fewer manual resets
than standard RL algorithms. Kim et al. [11] introduced an
extension of LNT that generates a curriculum by training
the reset value function with examples of initial states. Their
exampled-based ARL algorithm adopts RCE to train the reset
policy and the reset value function without hand-crafted reset
reward functions. While these previous works demonstrated
that training the reset policy allows the agent to learn diverse
tasks with fewer manual resets, they assumed that the initial
state distribution is unimodal and has narrow support to
prevent conflicting objectives. Restricting initial states to a
narrow state space may constrain the visited states close to

the initial and goal states. This can cause an agent to fail to
ensure robust performance.

To provide the forward policy with a broad set of initial
states, Xu et al. [14] proposed LSR that utilizes skills to
discover diverse initial states. The key insight behind LSR is
that the need to reset the agent with diverse initial states
provides a natural setting to discover distinct skills. Zhu
et al. [15] introduced R3L that uses a random perturbation
controller as the reset policy, ensuring that the support of
the initial state distribution grows sufficiently. R3L is the
most closely related to our algorithm presented in this work.
However, R3L determines initial states without taking into
account the learning progress of the forward policy, which
can cause the agent to reset to initial states that are either
too easy or too difficult. To address this problem, our ARL
algorithm introduces the success discriminator to generate a
curriculum adaptive to the learning progress of the forward
policy. We would like to note that the success discriminator
is trained in a self-supervised manner.

III. AUTONOMOUS REINFORCEMENT LEARNING
VIA SELF-SUPERVISED CURRICULUM

Here we introduce our ARL algorithm that can generate
an adaptive curriculum without task-specific knowledge. Our
algorithm aims to enable the agent to continuously learn and
improve on its own. Figure 1 presents an overview of our
algorithm. The training procedure with our adaptive curricu-
lum consists of three phases: 1) Resetting the environment
with diverse and informative initial states, 2) solving a task
from initial states, and 3) updating learnable models with
relabeled transitions. In the remainder of this section, we
describe how our algorithm manages each phase in detail.

A. Problem Formulation

We model an environment using a Markov decision pro-
cess (MDP), defined as the tuple (S,A, P,R, ρ0, γ, T ). S
represents the set of states, A represents the set of actions,
and P : S × A × S → [0, 1] represents the state transition
model. The function R : S × A × S → R is the reward
function that outputs a scalar feedback called a reward, r.
ρ0 : S → [0, 1] is the initial state distribution, γ is the
discount factor, and T is the time horizon. In this MDP, the
agent selects actions based on a forward policy denoted as
πf : S × A → [0, 1], which maps states to a probability
distribution over actions. The goal of RL is to find the
optimal policy π∗

f that maximizes the expected cumulative
rewards when the state transition model is unknown.

To formulate the problem of minimizing extrinsic interven-
tion, we introduce several distinct settings that differ from
standard RL algorithms [16]–[18]. First, while standard RL
algorithms assume that the agent has access to extrinsic resets
after every episode, we define the reset policy πr(a|s) and
train it to reset the agent to initial states for subsequent
episodes. Note that initial states guide the transitions the
agent encounters during episodes. Second, standard RL al-
gorithms assume that the agent has access to sophisticated



Fig. 1. Overview of our ARL algorithm. Our algorithm generates a curriculum adaptive to the learning progress of the forward policy without task-specific
knowledge. To identify the initial states that enable the agent to acquire diverse and informative transitions, we introduce the success discriminator C(s, a)
trained with relabeled transitions in a self-supervised manner. The subset of initial states with an estimated success probability below λ1 is represented as
the red-shaded area, while the subset of initial states with an estimated success probability over λ2 is represented as the green-shaded area. The goal is
represented as the purple star. The rollouts from the forward policy are colored to indicate whether the agent reaches the goal or not.

reward functions, which may not be easily defined in com-
plex tasks. In contrast, we use a sparse indicator as a reward
function, denoted as r(s, a, s′) = 1(s′ ∈ SG), where it equals
1 when the agent achieves a goal and 0 otherwise. Finally,
we introduce an additional learnable model called the success
discriminator C(s, a). This model is designed to allow our
curriculum to adapt to the learning progress of the forward
policy. The success discriminator takes a state-action pair as
input and is trained to estimate the probability of solving a
task when the agent follows the forward policy.

B. Training Forward and Reset Policies for Minimizing
Extrinsic Intervention

Our algorithm alternates between activating the reset pol-
icy to reset the agent to an initial state and the forward
policy to solve a task from the initial state. A critical
challenge in minimizing extrinsic intervention during this
training procedure is to ensure that the reset policy deter-
mines initial states that are neither too challenging nor too
easy for the forward policy being trained. If the initial states
are too challenging, the forward policy may fail to solve
the task even with sufficient time, leading to unnecessary
extrinsic intervention. Conversely, if the initial states are
too easy, the forward policy may struggle to gather useful
information from rollouts, resulting in poor sample efficiency
and suboptimal performance.

Our key idea to address the above challenge is utilizing
the success discriminator proposed in this work to identify
the initial states where the forward policy can not only solve
a task without causing extrinsic intervention but also obtain
informative transitions. To implement this idea, we activate
the reset policy until the agent reaches the subset of states
S∗ ∈ S as follows:

S∗ ≜ {s ∈ S | λ1 ≤ C(s, a) ≤ λ2 for a ∼ πr(a|s)} (1)

where λ1 and λ2 are the minimum and maximum success
probabilities that initial states should have to be allowed by

our algorithm. This can prevent the agent from resetting with
overly dangerous or non-informative initial states.

To continuously discover novel initial states belonging to
the subset S∗, we use an off-the-shelf exploration algorithm
to train the reset policy in equation 1. While our algorithm is
compatible with any exploration algorithm, we use the ran-
dom network distillation (RND) [19] to train the reset policy
as it is scalable and easy to implement. RND defines a target
network f(s) : S → Rk that is randomly initialized and then
fixed, and a trainable predictor network f̂θ(s) : S → Rk.
RND updates the predictor network to minimize the expected
prediction error ∥f̂θ(s)−f(s)∥2. The prediction error can be
interpreted as the novelty of a state s. This is based on the
observation that networks typically exhibit higher prediction
errors on unseen data. We use the prediction error as an
intrinsic reward r̂(s, a, s′) = ∥f̂θ(s′)− f(s′)∥2 to encourage
our reset policy to explore novel states. Consequently, our
success discriminator and reset policy can reset the agent
with diverse and informative initial states in a continuous
and autonomous manner. Note that any RL algorithm can be
used to train the forward policy of our algorithm.

C. Training Success Discriminator for Adaptive
Curriculum Generation

The success discriminator is the key component that en-
ables our curriculum to adapt to the learning progress of the
forward policy. The straightforward approach to obtaining
supervisory signals for training the success discriminator is
to empirically estimate the success probabilities by collecting
multiple rollouts from each initial state. Each rollout consists
of sequential transitions (st, at, rt, st+1, ct), where ct ∈
{0, 1} indicates whether the agent solves a task at this tran-
sition. Note that standard RL algorithms use this indicator,
which we refer to as the success label in our work, to update
the state-action value function Qπf (s, a). Unfortunately, the
empirical estimation approach is practically infeasible in the
real world, as it requires access to a uniform initial state



Algorithm 1 Overall Training Procedure of ARL via
Self-supervised Curriculum Learning

1: Initialize reset and forward policies πr(a|s), πf (a|s)
2: Initialize reset and forward buffers Dr, Df

3: Initialize target and predictor networks f(s), f̂θ(s)
4: Initialize success discriminator C(s, a)
5: for each iteration do
6: for t← 1 . . . Treset do
7: Select reset action at ∼ πr(at|st)
8: if λ1 ≤ C(st, at) ≤ λ2 then
9: Abort and switch to forward policy

10: end if
11: Obtain reset transition (st, at, rt, st+1)
12: Compute intrinsic reset reward

r̂t(st, at, st+1) = ∥f̂θ(st+1)− f(st+1)∥2
13: Add transition to reset buffer

Dr ← Dr ∪ {(st, at, r̂t, st+1)}
14: Sample batch Br from reset buffer Dr

15: Update reset policy πr(a|s) and predictor f̂θ(s)
16: end for
17: for t← 1 . . . Tforward do
18: Select forward action at ∼ πf (at|st)
19: Obtain forward transition (st, at, rt, st+1, ct)
20: Add transition to forward buffer

Df ← Df ∪ {(st, at, rt, st+1, ct)}
21: Sample batch Bf from forward buffer Df

22: Update forward policy πf (a|s)
23: Relabel success label c1:T−1 with cT in batch Bf

24: Update success discriminator C(s, a)
25: end for
26: if sTforward /∈ G then
27: Reset environment with extrinsic intervention
28: end if
29: end for

distribution over valid states and involves repetitive manual
resets between rollouts from each initial state.

To address this challenge, we relabel the success labels of
all transitions c1:T with the success label of the last transition
cT for each rollout, and then utilize these relabeled transi-
tions as supervisory signals to train the success discriminator
in a self-supervised manner. This relabeling strategy is based
on our hypothesis that we can interpret all states within
successful rollouts as initial states from which the forward
policy can solve a task, and vice versa. In other words, a
relabeled success label ct indicates whether the agent can
solve a task in a trial when the agent takes an action at in a
state st and follows the forward policy. The objective of our
success discriminator can then be written as follows:

min
C
−E(st,at,ct)∼Df

[ct log(C(st, at))

+ (1− ct) log(1− C(st, at))]
(2)

where Df is the forward buffer and the success label ct is 1
when a trial is successful and 0 otherwise.

As the performance of the forward policy improves, the
success discriminator allows the reset policy to discover
diverse and informative initial states in a broader state
space. Interestingly, this, in turn, leads to the performance
improvement of the forward policy. In conclusion, our ARL
algorithm can create a curriculum adaptive to the learning
progress of the forward policy, allowing the agent to obtain
diverse and informative transitions. This adaptive curriculum
enables the forward policy to efficiently bootstrap on the
earlier success of easier tasks to learn harder tasks. Further-
more, we would like to emphasize that, unlike previous ARL
algorithms, our algorithm can generate the adaptive curricu-
lum without task-specific knowledge such as demonstrations
or sophisticated reward functions. Algorithm 1 describes the
overall training procedure of our algorithm.

IV. EXPERIMENTS

Our experiments are designed to answer the following
questions: 1) Can our algorithm achieve more robust per-
formance and better sample efficiency than state-of-the-art
ARL algorithms?, 2) Can our algorithm reduce the number
of manual resets required to solve a task?, 3) Can our
algorithm generate a curriculum adaptive to the learning
progress of the forward policy?, and 4) How does the success
probability range of the initial states being sampled affect the
performance of our algorithm? To answer these questions,
we evaluate our algorithm against baselines on several maze
navigation and manipulation tasks with sparse rewards.

A. Baselines

The baselines used in our experiments are as follows: 1)
an RL agent that has access to manual reset with specific
initial states (Reset RL), 2) an RL agent that has access to
manual reset with uniform initial states (Oracle RL), and two
state-of-the-art ARL algorithms, 3) LNT [10], and 4) R3L
[15]. LNT requires a predefined reset reward function and
a unimodal initial state distribution with narrow support to
generate a curriculum. In contrast, R3L and our algorithm
do not assume these requirements and provide the agent
with diverse initial states. The main difference between R3L
and our algorithm is whether or not the learning progress
of the forward policy is considered: while R3L activates the
reset policy to detect diverse initial states without considering
the learning progress of the forward policy, our algorithm
activates the reset policy and the success discriminator to
detect diverse and informative initial states based on the
learning progress of the forward policy. To focus on eval-
uating curriculum efficiency, we did not implement state
embedding using VAE in R3L. Oracle RL has an impractical
assumption that the agent has access to uniform initial state
distribution over the valid states, but it can be interpreted as
an upper bound on the performance of our algorithm.

B. Environments

Figure 2 illustrates four navigation tasks used in our
experiments: maze2d-1way-v1, maze2d-2way-v1, maze2d-
4way-v1, and antmaze-4way-v2. All these navigation tasks



Fig. 2. Maze navigation tasks introduced in our work. The locations of the goals correspond to the positions of the agents in these snapshots. The routes
for each goal are represented as red lines. These tasks require the agent to reach the goals from diverse initial states without access to extrinsic reset.

Fig. 3. Manipulation tasks used in our work. These snapshots represent
the target pose of a three-fingered hand robot and the target orientation of
a three-pronged valve in each task.

are provided by D4RL [20]. Although these tasks may seem
straightforward, they pose two significant challenges even for
standard RL algorithms with access to manual resets. First,
the forward reward function for these tasks is designed to
output a sparse reward, with a value of 1 only when the agent
reaches a goal and 0 otherwise. This requires the agent to do
efficient exploration for long-term gains and bootstrapping
to solve these tasks. Second, these tasks, except for maze2d-
1way-v1, have multiple paths to their goals from valid states.
This makes it challenging for the agent to achieve robust
performance on these tasks, which requires the agent to solve
them from diverse initial states. We expect that Reset RL
and LNT will struggle with this challenge as they assume
predefined initial states are restricted. Note that, for these
baselines, we used one of the farthest states from a goal as
the initial state for each task.

Figure 3 describes two dexterous manipulation tasks
used in our experiments: DClawPoseFixed-v0 and
DClawTurnFixed-v0. These two tasks are provided by
ROBEL [21]. The goal of DClawPoseFixed-v0 is to
reposition a three-fingered hand robot to a target pose from
randomly initialized poses, and the goal of DClawTurnFixed-
v0 is to turn an unactuated valve from randomly initialized
orientations to a target orientation by using the hand robot.
DClawTurnFixed-v0 requires more structured behaviors
than DClawPoseFixed-v0 because turning the unactuated
valve demands a sequence of actions. Similar to the maze
navigation tasks, we used a sparse indicator as the forward
reward function for these tasks.

C. Implementation Details

The key learnable models in our ARL algorithm are the
forward policy, the reset policy, and the success discrimina-

TABLE I
HYPERPARAMETERS

HYPERPARAMETER VALUE

Maximum Episode Step (Maze2d) 500
Maximum Episode Step (Antmaze) 2000

Batch Size 256
Replay Buffer Size 5000000

Discount Factor 0.99
Adam β1 0.9
Adam β2 0.999

Learning Rate (Reset) 0.00003
Learning Rate (Others) 0.0001

Temperature 0.4
Gradient Step 1

Target Update Interval 1
Target Smoothing Coefficient 0.005

Success Probability Range λ1/λ2 0.3 / 0.7

tor. All these models are implemented with neural networks
having two hidden layers of 512 units with ReLU activations.
The forward and the reset policies output the parameters of
Gaussian distribution over continuous actions. The success
discriminator has an additional sigmoid layer to output
the probability of solving a task. We utilized Soft Actor-
Critic (SAC) [18], which is a state-of-the-art off-policy RL
algorithm, to train the policies. We use the Adam optimizer
to update the policies and the RMSprop optimizer to update
the success discriminator. To make a fair comparison, our
algorithm and R3L used the same exploration algorithm
called RND [19] as the reset policy. Table I describes the
key hyperparameters used in our experiments. We ran all
experiments on a PC with a 3.20 GHz Intel i9-12900KF
Processor, a GeForce RTX 2080 Ti GPU, and 64GB of RAM.

D. Experimental Results and Analysis

We use the following evaluation metrics: average episode
step (AS), success rate (SR), and the average number of
manual resets (MR). To compute the average episode step
and the success rate, we sample initial states from a uniform
distribution over the valid states. The average number of
manual resets is recorded throughout the entire training pro-
cedure until performance converges. Note that we manually
reset the environment when the agent fails to solve a task.
The average episode step encodes how efficiently the agent
solves a task and the success rate encodes the robustness
of the agent’s performance. The average number of manual
resets captures how many manual resets are required to train
the agent to solve a task.



Fig. 4. Learning curves for maze navigation tasks. The x-axis represents the number of training steps and the y-axis represents one of the metrics used
in our experiments. The darker-colored lines and shaded areas denote the means and standard deviations over 10 random seeds, respectively. These results
imply that our algorithm consistently achieves more robust performance and better sample efficiency than state-of-the-art ARL algorithms on all tasks.

TABLE II
QUANTITATIVE RESULTS ON MAZE NAVIGATION TASKS

MAZE2D-1WAY-V1 MAZE2D-2WAY-V1 MAZE2D-4WAY-V1 ANTMAZE-4WAY-V2

AS ↓ SR ↑ MR ↓ AS ↓ SR ↑ MR ↓ AS ↓ SR ↑ MR ↓ AS ↓ SR ↑ MR ↓

ResetRL 113.3 0.98 6000.0 71.5 0.99 10000.0 175.9 0.53 10000.0 1417.7 0.48 5000.0
OracleRL 81.5 1.00 6000.0 41.2 1.00 10000.0 30.9 1.00 10000.0 198.3 0.95 5000.0

LNT 86.6 0.99 1887.6 80.1 0.97 63.5 180.0 0.52 195.8 2032.8 0.17 976.9
R3L 121.9 0.91 1410.6 48.9 0.98 810.3 31.8 1.00 715.7 801.5 0.72 541.7

OURS 82.4 0.99 593.0 46.4 0.98 642.7 32.1 1.00 605.7 368.0 0.89 499.1

Figure 4 shows the learning curves computed over 10
random seeds for sparse-reward maze navigation tasks, and
table II describes their numerical training results computed
over 100 episodes. Reset RL obtains good performance in
maze2d-1way-v1 and maze2d-2way-v1, but it fails to ensure
robust performance in maze2d-4way-v1 and antmaze-4way-
v2, where there are four paths to the goal. Oracle RL achieves
higher success rates and lower average episode steps than
Reset RL, as it has access to uniform initial state distribu-
tions. These results suggest that, even with access to extrinsic
reset, resetting to diverse initial states is critical to achieving
robust performance. Both Reset RL and Oracle RL rely
on repetitive extrinsic resets after every episode, demanding
substantial human intervention in the real world. In contrast,
our algorithm consistently achieves robust performance in all
tasks with significantly fewer manual resets than Reset RL
and Oracle RL.

It is unsurprising that LNT requires fewer manual re-
sets than R3L and our algorithm, as LNT uses privileged

information about the predefined initial state distribution.
We also observed that the agent trained with LNT did not
deviate from the initial states and failed to obtain informative
transitions on maze2d-4way-v1 and antmaze-4way-v2. While
this failure makes it easier for the agent to return to the
initial state without manual resets, it also contributes to
poor performance on these tasks. These results suggest that
efficient bootstrapping is critical for ARL to ensure robust
performance. Our algorithm achieves performance closest to
Oracle RL, with a higher success rate and fewer manual
resets than R3L on all navigation tasks. Furthermore, our
algorithm is more stable and converges faster than R3L.
These results imply that the capability of our curriculum
to adapt to the learning progress of the forward policy can
improve reset-free performance and sample efficiency. We
would like to note that there is still room for improvement
on antmaze-4way-v2. We leave further analysis of this room
to future work, but we discuss several interesting directions
to attain better performance in the next section.



Fig. 5. Initial states allowed by our adaptive curriculum on maze2d-2way-v1. We normalize each dimension of states to [0,1] and their colors denote the
success probabilities estimated by the success discriminator. Our adaptive curriculum allows initial states to be generated only near the goal at (0.1, 0.1)
during the early stages of training. As training progresses, it also allows initial states to be generated from locations increasingly distant from the goal.

Fig. 6. Initial states allowed by our adaptive curriculum on antmaze-4way-v2. We normalize each dimension of states to [0,1] and their colors represent the
success probabilities estimated by the success discriminator. Our adaptive curriculum generates diverse and informative initial states based on the learning
progress of the forward policy, enabling the agent to perform efficient bootstrapping.

Fig. 7. Learning curves for manipulation tasks. The darker-colored lines
and shaded areas denote the means and standard deviations over 10 random
seeds, respectively.

Figure 7 describes the learning curves computed over
10 random seeds for sparse-reward manipulation tasks. We
observed that LNT achieves lower success rates and requires
more manual resets than R3L. This implies that in sparse
reward tasks, where an agent can easily deviate from an
initial state, LNT struggles to return the agent to the initial
state, leading to unnecessary manual resets. Both R3L and
our algorithm perform well on DClawPoseFixed-v0, requir-
ing far fewer manual resets than LNT. However, unlike our
algorithm, R3L suffers a significant performance decrease in
DClawTurnFixed-v0. This suggests that the efficient boot-
strapping enabled by our adaptive curriculum is crucial for
tackling challenging tasks. We also would like to emphasize
that our algorithm is task-agnostic so that it can be easily

applied to a wide range of tasks beyond maze navigation
and manipulation tasks.

We analyze how our algorithm creates an adaptive curricu-
lum by visualizing the temporal changes in the initial states
allowed by our algorithm. To do so, we sample states from
rollout trajectories of the random policy that has access to
uniform initial state distribution and use the success discrim-
inator being trained to estimate the probability of solving a
task for each sampled state, C(s, a) where a ∼ πr(a|s). Note
that based on equation 1 and the hyperparameter table I, the
initial states allowed by our adaptive curriculum correspond
to states with a success probability above 0.3 and below 0.7
when the agent follows the forward policy.

Figure 5 shows how the allowed initial states are changed
over time on maze2d-2way-v1. We observed that our curricu-
lum allows the agent to reset to initial states near the goal
at the beginning of training and farther states away from the
goal at the end of training. This suggests that our curriculum
provides initial states adaptive to the learning progress of the
forward policy and allows the agent to efficiently bootstrap
on the success from easier initial states to solve a task from
harder initial states. Figure 6 describes how the allowed
initial states are changed over time on antmaze-4way-v2.
We observed that the initial states allowed by our curriculum
exist only near the goal in the early stages of training but
gradually spread out into different directions as the training
progresses. This implies that our curriculum provides the
agent with diverse and informative initial states, which enable
it to achieve robust performance.

Lastly, we conducted an ablation study to examine the
effects of the success probability range of the initial states
being sampled. The success probability range is determined
by the two key hyperparameters, λ1 and λ2, and this range
is the most critical design choice to generate our adaptive



Fig. 8. Ablation study on the success probability range of initial states.
The darker-colored lines and shaded areas denote the means and standard
deviations over 10 random seeds, respectively.

curriculum. Figure 8 describes the performance according
to the success probability range of the initial states on
DClawTurnFixed-v0. We observed that excessively danger-
ous initial states (λ1 = 0.0 and λ2 = 0.1) cause more
manual resets compared to random initial states (None).
Initial states sampled with λ1 = 0.3 and λ1 = 0.6, or
λ1 = 0.6 and λ1 = 0.9, allow an agent to obtain higher
success rates and fewer manual resets than other initial states.
This confirms the benefits of identifying diverse initial states
that are informative and do not cause human intervention. It
also indicates that our adaptive curriculum can identify such
initial states without task-specific knowledge. Note that too
safe initial states (λ1 = 0.9 and λ2 = 1.0) do not obtain the
fewest manual resets, as an agent often fails to discover such
initial states at the beginning of training.

V. CONCLUSION

We introduce a new ARL algorithm that generates an
adaptive curriculum without task-specific knowledge. Our
adaptive curriculum provides the agent with diverse and
informative initial states, facilitating efficient bootstrapping
and reducing manual resets. Experimental results demon-
strate that our ARL algorithm enables the agent to solve
sparse-reward maze navigation and manipulation tasks, out-
performing baselines with much fewer manual resets. We
will explore the following research directions in future work.
First, we will investigate how to best integrate the benefits of
goal-conditioned RL into our algorithm. We expect that this
integration can scale our algorithm to contextual tasks. Sec-
ond, we will explore optimization difficulties due to the non-
stationary problem. We believe this research can improve
the training stability of our success discriminator. Third, we
will extend our algorithm to detect and avoid irreversible
states, which are common in most real-world scenarios.
This extension can allow our algorithm to be applied to
more diverse real-world tasks. Finally, we will investigate
whether training the reset policy to represent consistent and
structured exploration behaviors can allow our algorithm to
provide the agent with more diverse and informative initial
states. We expect that leveraging unsupervised skill discovery
algorithms, which discover diverse and distinct behaviors, is
a promising approach for this research direction.
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