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Modular Multi-Level Replanning TAMP Framework
for Dynamic Environment

Tao Lin, Chengfei Yue, Ziran Liu, and Xibin Cao

Abstract—Task and Motion Planning (TAMP) algorithms can
generate plans that combine logic and motion aspects for robots.
However, these plans are sensitive to interference and control
errors. To make TAMP algorithms more applicable and robust
in the real world, we propose the modular multi-level replanning
TAMP framework(MMRF), expanded existing TAMP algorithms
by combining real-time replanning components. MMRF gener-
ates an nominal plan from the initial state and then reconstructs
this nominal plan in real-time to reorder manipulations. Fol-
lowing the logic-level adjustment, MMRF attempts to replan a
new motion path, ensuring that the updated plan is feasible
at the motion level. Finally, we conducted several real-world
experiments. The result demonstrated MMRF swiftly completing
tasks in scenarios with moveing obstacles and varying degrees of
interference.

Index Terms—Task and motion Planning, Task Planning,
Manipulation Planning.

I. INTRODUCTION

IN order to solve complex tasks autonomously, robots need
to plan discrete subtask plans at the logic level, and also

find corresponding continuous motion paths for each subtask
to ensure their feasibility at the motion level. Task and motion
planning (TAMP) [1], [2] algorithms combining high-level
task planning and bottom-level motion planning can effec-
tively solve this class of problems. Among them, sampling-
based TAMP algorithms [1], [3]–[6] have been widely studied
because of their probabilistic completeness.

However, the plans generated by sampling-based TAMP
algorithms are only valid in static environment and under
highly accurate control. Any errors may make plans unexe-
cutable and, in serious cases, may even damage the robot.
For the sake of further discussion, we collectively refer to
environmental variations and control errors as interference,
which is categorized as slight, middle and heavy according
to its effects on the plans. Taking the stack task domain as
an example, the robot needs to stack the red, green and blue
blocks in sequence.
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(a) (b) (c)
Fig. 1. Three levels of interference. (a) Slight interference does not affect
the execution order of the plan, but requires motion replan for placing. (b)
Middle interference disrupts the sequence of plan. Robot needs to re-pick and
re-place the green block. (c) Heavy interference make the plan invalid ,and
can only be resolved by TAMP replanning

Slight interference, which does not affect the execution
order of the original plan, but requires motion replanning. This
interference is typically a slight displacement of the objects,
which is usually caused by control errors and is prevalent in
contact-rich operations. In Fig.1(a), the green block was not
placed in the desire position. This interfere make robot fail to
move along the original motion path to place the blue block.

Middle interference, disrupts the sequence of the original
plan, but the plan is still feasible. The robot needs to adjust the
execution order of the plan and then replan the motion path.
In Fig.1(b), when the robot is about to pick the blue block,
the green block is moved down. At this point, the robot needs
to backtrack to the previous subtask to re-pick and re-place
the green block.

Heavy interference, will make the original plan completely
invalid. The robot needs to perform TAMP full planning again.
In Fig.1(c), when the robot is about to place the blue block, the
yellow block is placed to obstruct its path. Since the original
plan only includes the picking and placing of the blue and
green blocks, it does not include the operations of the other
blocks. So robot needs perform TAMP replanning to generate
a new plan for the current state.

Theoretically, TAMP replanning can solve the all above
interference. However, TAMP planning is time-consuming. If
the environment changes during the planning process, the new
plan may be invalidated again, leading to endless replanning.
Therefore, during execution, the robot needs to have reactive
planning capabilities to cope with the first two levels of inter-
ference. Additionally, some work extends the TAMP algorithm
so that it can be used in practice, but it can only cope with a

ar
X

iv
:2

31
0.

14
81

6v
3 

 [
cs

.R
O

] 
 1

0 
M

ar
 2

02
4



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2024.

fraction of the interference.
We propose a modular multi-level replanning TMAP frame-

work(MMRF) that incorporates the TAMP Solver, Subtask
Scheduler and Subtask Planner, Robot Controller, and State
Evaluator. After the TAMP Solver generates a nominal subtask
plan, the Subtask Scheduler rebuilds the nominal subtask plan
online based on the logic state. Then, the Subtask Planner
is notified to perform motion planning for the subtasks in
the actual plan to verify their feasibility at the motion level.
Finally, the Robot Controller performs higher frequency re-
active control based on the results generated by the Subtask
Planner. The TAMP Solver will only replan when the Subtask
Scheduler or Subtask Planner fails, minimizing the number
of time-consuming TAMP planning and improving the rapid
response ability to interference.

Our contributions are:
1) We present a Modular Multi-level Replanning TAMP

Framework(MMRF). MMRF can perform real-time low-level
replanning based on existing plans at the logic and motion.
This framework enables robots to quickly respond to inter-
ference and reduce the number of time-consuming TAMP
planning.

2) MMRF provides a stable paradigm for the application
of current TAMP algorithms in the real world. The decoupled
modular design makes the framework can combine different
TAMP algorithms and motion planning algorithms.

3)We apply MMRF to the real-world stack and rearrange
task domains and validate its effectiveness on the Franka
Emika Panda1. The results show that MMRF can accomplish
tasks quickly under moving objects and various interference
with a shorter completion time compared to previous frame-
works.

II. RELATED WORK
A. Task and Motion Planning

The concept of Task and Motion Planning (TAMP) has
evolved and enriched over the years of research. Sampling-
based algorithms [1], [3]–[6], also known as TAMP algorithms
in a narrow sense, are mostly based on the Planning Domain
Definition Language (PDDL) [7] that defines state and skill
primitives as discrete abstract symbols. The algorithms sample
discrete symbols at the logic level and find feasible plans by
traditional symbolic planners such as FastDownward [8], and
then sample feasible motion paths in a continuous space for
validation. The algorithms iterative sample between both levels
until they find a plan that is both logic and motion feasible.
They have the advantage of probabilistic completeness, but
their plans rely on static environments and precise controls.
There is also a lot of work extending sample-based algorithms.
In [9], [10], neural networks were introduced to accelerate
planning. Learning skills can help the TAMP system adapt to
various scenarios [11], [12]. In [13], the integration of neural
networks in state evaluation enhances the system to operate
unknown objects and complete long-term tasks.

There are also optimization-based methods, among which
logic-geometric programming(LGP) [14]–[16] is the most

1https://sites.google.com/view/mmrf/project

representative. In LGP, subtasks are transformed into geomet-
ric constraints. The entire motion path is optimally planned
under these discrete constraints, while sampling-based TAMP
methods independently sample motion paths for each subtask.
When LGP is used for TAMP, it requires manually specifying
the subtask sequence or combining it with other task planning
method. Therefore, LGP can serve as the Subtask Planner in
our framework. After planning the actual plan, the Subtask
Scheduler converts it into discrete geometric constraints for
LGP to perform motion planning.

With the development of large language models(LLM), sev-
eral LLM-based frameworks [17]–[20] have emerged in recent
years. Among these, RT-2 [20] demonstrates significant gen-
erality across various scenes and tasks. RT-2 is an end-to-end
architecture that takes input in the form of images and natural
language, directly outputting end-effector actions. However,
these LLM-based methods require significant computational
power and are generally not suitable for local computations.
The planning frequency is relatively low, usually between 1-5
Hz, leading to noticeable end-effector jitters.

Our framework aims to extend sampling-based TAMP
algorithms, enabling rapid replanning of the original plan
based on the newest state. This allows for quick responses to
interference, minimizing the need for time-consuming TAMP
replanning. The modular and decoupled design also provides
the framework with the potential to be compatible with the
methods mentioned above.

B. Online replanning

Reactive control can effectively address slight interference.
Migimatsu and Bohg [21] propose object-centered reactive
control, which allows the original plan to remain valid after
the objects have been displaced. However, reactive control can
only resist interference at the motion level and will fail if the
sequence of nominal plan is disrupted.

There is also much work on maintaining the execution flow
of the plan at the logic level, such as state machines [22]
and behavior trees [23], but they are complex and difficult
to define and expand. Paxton et al. [24] proposes a robust
logical dynamic system (RLDS) that can flexibly transform the
nominal plan into a chain of logical dynamics. The order of
task execution is quickly adjusted according to the logic state
, which can effectively solve slight and middle interference.
This serves as inspiration for the Subtask Scheduler in our
framework. However, these algorithms only maintain the plan
at the logic level and do not verify the motion feasibility of
the whole plan.

Garrett et al. [5] propose an online replanning approach
to cope with real-world uncertainty. After executing a non-
precise action or after the state of an object has been updated,
the framework quickly performs TAMP replanning using the
original plan. This approach is able to effectively cope with
all three kinds of interference, but even slight interference can
cause time-consuming replanning. Our framework adopts the
idea of using the original plan to accelerate TAMP replanning.

https://sites.google.com/view/mmrf/project
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Fig. 2. Structure of the modular multi-Level replanning TAMP framework. (a) TAMP Solver:generates nominal plans. (b) Subtask Scheduler:Reconstructs
the nominal plan into the actual plan to ensure the feasibility at the logic level. (c) Subtask Planner: performs motion planning for the subtasks in the actual
plan to ensure the feasibility of the plan at the motion level. (d) Robot Controller: generates control sequences based on the first task in the plan and the
current state. (e) State Evaluator: Evaluates numerical parameters based on sensor information and applies predicate resolution rules to evaluate logic state.

III. MODULAR MULTI-LEVEL REPLANNING FRAMEWORK

Our core idea is that the validity of a plan presupposes
its validity at both the logic and motion levels. Therefore,
to ensure the feasibility of the plan, real-time replanning is
essential at both the logic and motion levels during execution.
We construct an modular multi-Level replanning framework,
as shown in Fig. 2, which consists of five components. The
TAMP Solver plans a nominal subtask plan based on the logic
and numerical states. The Subtask Scheduler reconstructs
a actual plan based on the nominal plan in real time. The
Subtask Planner iteratively plans motion paths for each
subtask based on the latest state. The Robot Controller
executes the first subtask in the actual plan based on the
planning results of the Subtask Planner and the latest state.
The State Evaluator refines the numerical state of each object
based on the sensor information and parses the logic state
according to the predicate parsing rules.

The workflow and principles of these five components are
described in detail below.

A. TAMP Solver

The function of the TAMP Solver is to generate a nominal
subtask plan Pn = (τ1, τ2, τ3, · · · , τn) based on the domain
description file, user goals and current state.

We choose PDDLStream [6] as our TAMP Solver,
which can generate plans with action as elements.
Each action contains parameters, precondition
and effect that correspond to a segment of a motion
path. To enable the framework to perform low-level
replanning quickly, we propose the concept of subtask
τ(type, params, LP , LE , ftarget, πn, un, χend) based on

action. As an example, the place subtask in Fig. 1(c) has
the following form.

{type: place
params: (bG, bR,RTG)
LP : {(Holding bG),(GripperOn bR)}
LE : {(On bG bR)}
ftarget: ftarget(χstart, params)
πn: πn(χstart, χtarget)
un: (q(t), q̇(t), q̈(t))
πa: πa(χcurr, un)
χend: {bG:((0.3,0,0.075),(0,0,0,1)),bR:· · · }}

type describes the operation of the subtask. params con-
tains the manipulation object and numerical parameters, pri-
marily object-centric parameters. For example, GTB denotes
the placement of the blue block relative to the green block,
enabling the robot to calculate the corresponding placement
after moving the green block. LP and LE are the logic state
sets of preconditions and effects, which will be used for logic
replanning in the Subtask Scheduler. ftarget will generate
target state χtarget of this subtask based on the start state
χstart and params, πn is the motion planning algorithm
that will generate a nominal motion path un and end state
χend according to χstart and χtarget. These processes will
be further explained in the Subtask Planner.

B. Subtask Scheduler

Ideally, after the execution of the previous subtasks, the
preconditions of the next task will be satisfied. However,
in the presence of interference, the logic state may change,
leading to the subsequent subtasks not being executed. In
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such cases, the Subtask Scheduler can instruct the robot to
backtrack to the previous subtasks, skip some subtasks, or
notify the TAMP Solver for replanning. The Subtask Scheduler
rearranges subtasks from the nominal plan Pn in real-time
to construct an actual plan Pa = (t1, t2, t3, · · · , tm) that
can reach the goal logic state Lgoal from the current logic
state Lcurr. The actual plan Pa needs to satisfy the following
constraints.

Li+1
P ⊆

i∑
k=0

Lk
E ,∀i ∈ [0,m], ti ∈ {τ1, τ2, τ3, · · · , τn} (1)

The superscript of L represents that the parameter belongs
to the subtask ti. L0

E stands for the current logic state Lcurr,
and Lm+1

P stands for the goal logic state Lgoal. To ensure the
feasibility of Pa at the logic level, the preconditions of the
i + 1 th subtask Li+1

P need to be valid after the execution
of the first i subtasks, and the goal state Lgoal needs to be
satisfied after the execution of the whole plan Pa. Ideally, the
actual plan Pa is equal to the nominal plan Pn initially and
becomes shorter as the subtasks continue to be completed.

We propose an algorithm to efficiently refine an actual plan
from the nominal plan, and its pseudo-code is shown in Alg. 1.
The Subtask Scheduler cyclically traverses the nominal plan
in reverse order, finds the first subtask whose precondition
is satisfied, adds it to the actual plan Pa, and then removes it
from the nominal plan Pn. The Subtask Scheduler modifies the
cumulative logic state Lcumu according to its effect and returns
if Lcumu reaches the goal state Lgoal; otherwise it restarts the
traversal. There may be multiple subtasks that can be executed
in a traversal, but only the last one is added because it is closest
to the goal. This is why the algorithm traverses in reverse
order.

Algorithm 1 Refine an actual subtask plan
Input: Lcurr, Lgoal, Pn

Output: Pa

1: procedure REFINE(Lcurr, Lgoal, Pn)
2: Ptemp ← reverse(Pn) // (τn, τn−1, · · · , τ1)
3: Lcumu ← Lcurr

4: Pa ← ∅
5: while not Lgoal ⊆ Lcumu do
6: flag = TRUE
7: for τ ∈ Ptemp do
8: if τ.LP ⊆ Lcumu then
9: Ptemp.pop(τ)

10: Pa.push(τ)
11: Lcumu = Lcumu ∪ τ.LE

12: flag = FALSE
13: break
14: if flag then
15: return None
16: return Pa

If no feasible subtasks are found in a traversal, or if all
subtasks are selected but still do not reach the goal, it indicates
that the nominal plan Pn has failed at the logic level. In such

cases, the Subtask Scheduler will notify the TAMP Solver to
start replanning. If a feasible actual plan is found, the Subtask
Scheduler will send the plan Pa to the Subtask Planner to
verify the motion feasibility of the plan.

C. Subtask Planner

The Subtask Planner iterates over the actual plan Pa and
sequentially plans the motion of the subtasks. The Subtask
Planner not only attempts to find a feasible motion online to
verify whether the actual plan Pa is valid at the motion level
but also continuously optimizes the result.

The planning process of each subtask is divided into two
steps. First, the target state χtarget is obtained by ftarget based
on the start state χstart and params. Second, according to
the planning algorithm πn, the nominal motion path un from
the start state χstart to reach the target state χtarget ,the
environment state χend at the end moment of the planning
will be recorded.

(a)

(b)
Fig. 3. The workflow of the Subtask Planner. First generate the target state
and then plan the robot motion path and obtain the end state. (a) place
subtask. (b) push subtasks

Take place as an example, as shown in Fig. 3(a), the target
of this subtask is to place green block on top of red block. So
ftarget represents the relative placement position RTG sample
function in place subtask. The target state χtarget is the
absolute position of the green block calculated based on RTG.

Subtasks are replanned multiple times during execution.
Before planning, Subtask Planner will verify RTG according
to the start state χstart. If target position of the green block
causes a collision, the Subtask Planner will resample a new
relative placement pose RTG, otherwise, the previous param-
eters will be retained.

The motion planning algorithm πn of place is divided into
two steps. Firsty, the inverse kinematics is used to obtain the
robot placement configuration, and then a collision-free joint
angle sequence un is planned from the current configuration
to the placement configuration. In the planning process, if the
previous result un remains feasible, planner Subtask Planner
full re-planning and instead attempts to smooth and optimize
the existing path.

In execution, the robot returns along the original path after
placing the block, so only the position of the green block
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changes in the end state χend compared to the start state
χstart.

For other subtasks, not only the state of the target object
may be changed, but also the states of some unrelated objects.
As shown in Fig. 3(b), robot need to push its gripper to the
target. First ftarget samples a feasible relative position. Then,
πn plans the velocity trajectory of the joints so that the gripper
can reach the target. When the subtask is completed, not only
the gripper, but also the target and unrelated objects have been
changed.

Algorithm 2 Subtask Planner Workflow
1: procedure PLAN
2: while True do
3: for τ ∈ Pa do
4: χstart = τlast.χend

5: χtarget = τ.ftarget(τ.params, χstart)
6: if χtarget is None then
7: return False
8: τ.χend, τ.un = τ.πn(χtarget, χstart, τ.un)
9: if τ.u is None then

10: return False

The workflow of the Subtask Planner is outlined in Alg. 2.
To ensure continuity at the motion level, the start state χstart

of each subtask τ is set as the end state χend of its previous
subtask τlast. For the first subtask, the start state is the current
environment state χcurr. During motion planning, the previous
result un can serve as the initial solution, accelerating the
planning process and continuously optimizing the result in the
absence of interference.

If any subtask experiences motion planning failure, it im-
plies that the actual plan Pa is infeasible at the motion
level. The Subtask Planner then notifies the TAMP Solver
for replanning. If all subtasks pass planning successfully, the
Subtask Planner sends the planning result of the first subtask
to the Robot Controller for execution.

For some deterministic subtasks, such as place, the end
state χend can be obtained based on ftarget. Then, motion
planning of the next subtask can commence, and the frame-
work can utilize the multi-core capabilities of the CPU to plan
multiple subtasks in parallel thereby increasing the planning
frequency.

D. Robot Controller

The Robot Controller will generate the actual inputs ua of
the robot based on the planning result of the first subtask un

and current state χcurr. The Robot Controller can use different
control strategies, e.g., for pick and place subtask, the
Robot Controller can use the Cartesian impedance method to
reduce unexpected contact forces. For move subtask, Robot
Controller can use RMP [25] for reactive control.

ua = πa(χcurr, un) (2)

The robot adapts to the dynamic environment by executing
the first subtask in the actual plan Pa. Execution Failure

prompts the robot to exit the current subtask, and such a failure
does not trigger TAMP replanning, as it does not represent a
motion level failure of the entire plan. For example, as shown
in Fig. 4, in the pick subtask, at the moment when the
arm attempts to grab, the experimenter blocks the red block
with his hand, causing the execution of this subtask to fail.
However, this subtask remains feasible at the motion level,
and the Robot Controller will attempt to execute this subtask
again in the next execution.

Fig. 4. The execution of the pick subtask failed due to the sudden obstruction
of the target block. However, this subtask is still feasible at the motion level.
After repeated execution, the yellow block was successfully grabbed.

Furthermore, the first subtask in the actual plan Pa may
change while the robot is in operation. To prevent oscillations
caused by abrupt switches between subtasks, the robot does
not switch the current subtask once execution has commenced.

E. State Evaluator

Fig. 5. The workflow of the State Evaluator. The State Evaluator first extracts
the numerical state based on the sensors and then applies predicate parsing
rules to parse out the logic state.

The workflow of the State Evaluator is divided into two
phases, as shown in Fig. 5. In the first phase, the State
Evaluator extracts the numerical state of the current envi-
ronment using the information from various sensors. This
involves reading parameters from encoders, torque sensors,
or estimating object positions based on RGBD images. In
the second stage, the State Evaluator refines the logic state
based on the numerical state and predicate parsing rules. The
logic state consists of a series of predicates, describing the
semantic state of objects and are mathematically represented
as a set of inequalities. For example, the predicate (Holding
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?block), which represents whether the robot is holding a
certain block, corresponds to the following set of inequalities:

| widthgripper − widthblock |< ε1 (3)
∥pgripper − pblock∥ < ε2 (4)

During parsing, the State Evaluator traverses all possible
object combinations for each predicate and adds the predi-
cates that satisfy the set of inequalities to the current logic
state Lcurr. For (Holding ?block), the State Evalua-
tor iterates through the numerical states of all (Gripper,
block) combinations. If a combination such as (Gripper,
blocki) satisfies the aforementioned set of inequalities, then
(Holding blocki) is appended to the current logic state
Lcurr.

IV. EXPERIMENT AND RESULTS

A. Experiment Domain

The experiment contains two scenarios, the rearrange and
stack domains. In the rearrange domain, the robot needs to
place four of the five blocks into each of the two regions.
In the stack domain, the robot needs to stack three of the
four blocks in a specific order, which is more challenging.
This is because in rearrange domain the blocks are usually
independent of each other, while in stack domain, the blocks
are placed in a strict order and are more likely to be disturbed
in the logic level. These two domains share a common set of
primitives and contain the following four types of subtasks.

• move_free(b)
• pick(b)
• move_hold(b1, b2, 2T1)
• place(b1, b2, 2T1)

The target of move_free and move_hold is to move
the gripper over the target object; the difference is that
the move_free presupposes an empty gripper, whereas
move_hold clamps object. pick is to pick up the object,
and place is to place the object in a specific relative position
to the target.

We have also designed three levels of interference:
• light interference: Push the block away from its original

position before grabbing, causing the pick subtask to
fail.

• Mid interference: After placing the block, when the
robot is ready to grab the next block, the block is placed
back in its original position.

• heavy interference: Place unrelated objects on a target
block at the beginning of the task.

B. Experiment Setting

We choose PDDLStream [6] as the TAMP Solver. Since it is
based on Pybullet [26], the framework synchronizes the simu-
lation environment according to the state of the real world. The
motion planning algorithm for these four types of subtasks in
the Subtask Planner is RRTconnect [27]. The Robot Controller
performs fifth-degree polynomial interpolation on the nominal
path based on the robot state, and utilizes joint impedance
control to track the trajectory.

We select Franka Emika Panda for these experiments. RGB
images are collected using a D435i camera located outside
the robot, and the positions of blocks are estimated by ArUco
markers on them. ROS is utilized for the communication of
the framework with the Panda and the D435i. The framework
runs on a laptop with Intel Core i5 10210U 1.6GHz CPU and
16GB of RAM.

To avoid failures caused by sensor noises, the TAMP Solver
only replans if the Subtask Scheduler does not find a feasible
plan within twenty seconds or if the Subtask Planner does not
find a motion path of each subtask within ten seconds.

C. Real-world Experiment

Three frameworks have been designed to reflect the impor-
tance of real-time planning at the level of operational logic
and motion.

Reactive Control(RC): RC contains only the Robot Con-
troller and the State Evaluator. The Robot Controller linearly
executes the nominal plan. It starts executing the next subtask
when its preconditions are satisfied. Otherwise it repeats the
planning and execution of the current subtask.

Robust Logical Dynamic System(RLDS): The original
RLDS [24] is approximately a combination of Task Scheduler,
Robot Controller, and State Evaluator. Therefore, the task
plan of RLDS is defined manually and cannot be generated
autonomously. In order to demonstrate the importance of the
Subtask Planner, a TAMP solver is added to RLDS.

Modular Multi-Level Replanning Framework(MMRF):
the framework proposed in this paper, allows online replanning
at both logic and motion levels.

These three frameworks are executed five times each in
two task domains and three interference conditions. Each task
domain has the same start and end conditions, and the initial
layout of the objects is essentially the same. The success
rate and completion time of each framework under different
interference were then recorded. The completion time does not
include the initial TAMP planning time.

D. Result Analysis

Table I shows results from experiments. RC can cope
with slight interference with the help of repeated execution.
However, RC can only determine whether it can proceed to
the next subtask or not. This limitation results in the inability
of RC to complete the task under middle interference. In the
rearrange domain, where the operations on different blocks
are logically independent, the robot can execute the plan
sequentially, but it does not replace the moved objects. In the
stack domain, the placement of the top block is invalidated
when the second block is moved out of the way. As a result,
RC has a 0% completion rate with the middle and heavy
interference.

RDLS can adjust the execution order to complete the task
quickly under middle interference and can regenerate the plan
using the TAMP Solver under heavy interference, resulting in
a 100% success rate across all scenarios. However, due to the
absence of the Subtask Planner, RLDS needs to replan the
motion path at the beginning of each subtask, leading to short
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Fig. 6. Screenshots of the execution sequence of the RLDS and MMRF performing the stack task under heavy interference. After placing the yellow block ,
the Subtask Planner in MMRF verified that the current plan was infeasible at the motion level and triggered TAMP replanning. In contrast, RLDS determined
that the plan was infeasible only when attempting to place the green block. This led to RLDS executing four more subtasks than MMRF.

TABLE I
COMPLETION TIMES OF EXPERIMENTS

Domain Framework Completion Time(s)
slight middle heavy

rearrange
RC 112.1 ± 12.3 n/a n/a
RDLS 115.4 ± 12.6 119.3 ± 15.6 159.5 ± 21.8
MMRF 103.1 ± 9.6 105.5 ± 10.8 136.8 ± 15.3

stack
RC 69.3 ± 9.8 n/a n/a
RDLS 65.4 ± 9.1 81.2 ± 11.8 138.1 ± 17.8
MMRF 57.4 ± 7.3 70.7 ± 8.4 95.2 ± 12.5

pauses between subtasks. As a result, the completion times of
RLDS are all longer than those of MMRF. It is worth noting
that under heavy interference, the difference between the two
completion times is significantly larger in the stack domain
than in the rearrange domain.

This is due to the absence of a Subtask Planner, which
prevents RLDS from detecting that some subtasks cannot be
completed at the motion level until RLDS is about to execute
them. This delay in detection has little impact in rearrange
because the subtasks are relatively independent. However, in
stack domain, this can make the manipulation after heavy
interference all for naught. As shown in Fig. 6, we place a
yellow block on red block during the first planning process of
the TAMP Solver, making the subtask of placing green block
infeasible at the motion level. The RLDS still picks the green
block up and does not detect the subtasks as infeasible until it
is about to place. In contrast, the Subtask Planner in MMRF

parallelly plans the motion paths of all subtasks, detects that
the subtask with green blocks placed is infeasible at the motion
level, then notifies TAMP Solver to conduct a replanning to
generate a new plan. This delay results in RLDS executing
four more subtasks than MMRF.

(a) (b)
Fig. 7. Trajectories of (a) RLDS and (b) MMRF in a stack task without
interference. The trajectory of MMRF is better than that of RLDS under
online optimization by the Subtask Planner.

MMRF has a 100% completion rate for all three interference
and has shorter completion times than the other groups for all
scenarios. Two reasons contribute to this success. First, the
online motion planning of the Subtask Planner increases the
likelihood that the initial path obtained by the Robot Controller
is a feasible path, thereby significantly reducing the planning
time for the Robot Controller. Second, after finding the feasible
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paths, the Subtask Planner continuously optimizes the paths,
which is similar to AnyTimeRRT [28] in terms of effect.

As shown in Fig. 7, the yellow dashed lines represent the
end motion trajectories of the robot in the stack domain. Fig.
7(a) shows the trajectory of RLDS, resembling a typical path
planned by RRT—long and winding. And Fig. 7(b) shows the
trajectory of MMRF, markedly improved compared to RLDS
after online optimization.

V. CONCLUSION AND FUTURE WORK

In this paper, we first summarize three kinds of interference
that the TAMP algorithm suffers from in practical applications.
In order to cope with these interference quickly, we propose a
modular multi-level replanning TAMP framework. The frame-
work generates a nominal plan by the TAMP Solver. During
execution, it conducts real-time replanning at both the logic
and motion levels based on the current state. The low-level
online replanning significantly reduces the number of time-
consuming TAMP replanning.

We experimentally demonstrate that our framework reduces
completion time by an average of 13% compared to the
traditional replanning framework under slight and middle
interference due to the online optimization of the Subtask
Planner. In scenarios with heavy interference, the reduction in
completion time reaches 28%. This advantage becomes more
pronounced with longer task sequences and less independent
subtasks.

The future directions of work are as follows:
Use visual-language-model(VLM) as a way to parse logic

states. First, handwritten rules are very cumbersome and
difficult to cover all states; second, the computation time to
refine logic states now grows exponentially as the number of
objects and predicates increases.

Optimize the scheduling algorithm to generate the shortest
task path. Alg. 1 is only a feasible method, but it does not
guarantee the generation of the shortest plan. The algorithm
should be improved to pursue the fastest completion of tasks
under interference.
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