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Abstract— In this work, we propose a deep reinforcement
learning (DRL) based reactive planner to solve large-scale
Lidar-based autonomous robot exploration problems in 2D
action space. Our DRL-based planner allows the agent to reac-
tively plan its exploration path by making implicit predictions
about unknown areas, based on a learned estimation of the
underlying transition model of the environment. To this end,
our approach relies on learned attention mechanisms for their
powerful ability to capture long-term dependencies at different
spatial scales to reason about the robot’s entire belief over
known areas. Our approach relies on ground truth information
(i.e., privileged learning) to guide the environment estimation
during training, as well as on a graph rarefaction algorithm,
which allows models trained in small-scale environments to
scale to large-scale ones. Simulation results show that our model
exhibits better exploration efficiency (12% in path length, 6%
in makespan) and lower planning time (60%) than the state-of-
the-art planners in a 130m × 100m benchmark scenario. We
also validate our learned model on hardware.

I. INTRODUCTION

Autonomous exploration focuses on finding the shortest
total exploration path to map an unknown environment (i.e.,
classify it into free and occupied areas). In this work, we
consider autonomous exploration based on omnidirectional
3D Lidar with 2D action space (i.e., for a ground robot).
There, recent developments of Lidar-based simultaneous
localization and mapping (SLAM) can now near-perfectly
mitigate state estimation error and yield high-quality maps
on hundreds-meter scenarios [1]. Leveraging these advanced
SLAM approaches, current autonomous exploration plan-
ners [2]–[6] are able to assume the localization and mapping
are perfect and start tackling complex larger-scale environ-
ments towards real-life deployments. However, optimizing
trajectories in large-scale environments is non-trivial, since
the exploration task requires real-time replanning as the robot
discovers unknown areas and updates its map, with planning
horizons in the hundreds of meters.

Advanced large-scale planners often leverage hierarchical
planning to decrease computational complexity while main-
taining the fineness of local paths [2]–[4], [6], as a result,
the state-of-the-art planner, TARE [4], is able to explore
environments at the hundred-meters scale while keeping
computing times under a second at each planning step.
Nevertheless, these conventional planners share the same
limitation: they try to optimize paths solely based on the
partial belief (map) over the environment. However, even
optimal long-term paths on the partial map can lead to
suboptimal longer-term behaviors as the map is updated with

1 Author is with Department of Mechanical Engineering, Col-
lege of Design and Engineering, National University of Singapore.
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Fig. 1. A mobile ground robot exploring an indoor lab environment
using our DRL-based planner. Top-left: view from the robot’s onboard
camera (not used for mapping). Top-right: agent’s current belief (map) of
the environment, and view of our neural network’s inputs. Bottom: 3D point
cloud (map) of the environment constructed by the robot. The axes system
represents the current position and orientation of the robot, the purple ball
the next waypoint output by our planner,

new measurements that may contradict the current plan. At
its core, the exploration problem is a partially observable
Markov decision process (POMDP), where the transition
model between true states (ground truth of the environment)
and the robot belief (map) is hard to predict. For example, a
robot cannot confirm that two close-by, incomplete corridors
in its partial map are connected before fully exploring this
portion of the environment. However, we note that humans
in the same situations will often try to infer the complete
structure of an environment from a partial map (i.e., guess
and reconstruct that full corridor) to improve efficiency.
Learning-based approaches such as supervised learning or
model-based reinforcement learning may be an option to
explicitly predict unknown areas from the agent’s partial
map, allowing conventional planners to then plan paths over
the predicted belief. However, since the underlying transition
model in autonomous exploration is highly stochastic and
thus very hard to estimate/learn, directly relying on such a
learned prediction may not be a wise choice in practice.

We believe that a simple model-free deep reinforcement
learning (DRL) approach can elegantly handle all these
challenges, by implicitly estimating the transition model and
learning an adaptive policy. We build upon recent attention-
based policy neural network [7], [8], which have shown
outstanding abilities at allowing the agent to reason about
its entire belief at multiple spatial scales. In this work, we
further propose to train an attention-based policy with the as-
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sistance of ground truth knowledge (i.e., privileged learning).
It enables the model to draw out more potential of attention
mechanism at implicitly predicting unknown areas from the
partial robot belief, leading to a more stable training process
and better performance after training. In particular, we train
our model under the soft actor-critic (SAC) algorithm [9],
[10], and let the critic network have access to the ground
truth of the environment to get precise long-term evaluations.
We further propose a graph rarefaction algorithm, which
enhances the model’s capacity to capture longer-term tem-
poral dependencies between areas, thus extending the use of
trained policy from small- to large-scale environments. We
compare our DRL-based planner with conventional planners
in simplified small-scale environments, where it achieves
11% better exploration efficiency in terms of path length.
We then test our planner in a high-fidelity 3D Gazebo
simulation benchmark of a 130m × 100m indoor office,
where it achieves better exploration efficiency (12% in path
length, 6% in makespan) and significantly lower computing
times (60%) compared to the state-of-the-art exploration
planner: TARE [4], [6]. Finally, we experimentally validate
our planner on a ground robot in an 80m×10m indoor sce-
nario involving cluttered furniture, highlighting its real-life
applicability without any additional training (demonstrated
in Figure 1). To the best of our knowledge, our work is the
first DRL planner that can effectively explore such large-
scale environments.

II. RELATED WORKS

In this work, we focus on methods applicable to the
problem setup where the information in the robot belief is
evaluated through frontiers (i.e., boundary between known,
free area and unknown area). There are another group
of other methods based on the problem setup where the
information is evaluated through information theory (e.g.,
mutual information) [11]–[13]. However, information theory-
based methods require the robot belief to be a probabilistic
occupancy map, making them not applicable in the setup of
this work and related works discussed below.
Small-scale exploration planner Frontier-based exploration
planners have been shown to be very efficient in small-scale
environments. Yamauchi et al. [14] first proposed to utilize
frontiers to drive exploration, where the cost (i.e., the path
length from the current position to a frontier) is usually
used to rank frontiers, with the lowest-costed frontier being
chosen as the next one to be visited by the robot. More recent
works [15], [16] further considered utility (i.e., the size of
a frontier, quantifying the amount of information expected
to be collected at that frontier) to improve exploration effi-
ciency. Although the resulting paths are often short-sighted
(i.e., optimize for shorter-term objectives, often at the cost
of longer-term exploration ones), the above planners remain
near-optimal in simple scenarios, where the number of fron-
tiers is relatively low. In general, as the number of frontiers
increases in larger and more cluttered environments, frontier-
based planners suffer from such myopic decisions. Instead
of evaluating a single frontier, [17] relied on a sampling-

based strategy in a receding-horizon manner to optimize a
long-term trajectory, thus achieving non-myopic decisions
and significantly outperforming frontier-based planners in
relatively complex (but still small-scale) environments while
remaining executable in real-time.
Large-scale exploration planner Optimizing long-term tra-
jectories online in large-scale exploration problems is chal-
lenging since trajectories might be over 100m in length,
while the gap between individual waypoints should remain
below 1m to allow for fine detail mapping. Some advanced
sampling strategies have been proposed to tackle larger-scale
exploration [18], [19]. Selin et al. [2] found that, in large-
scale environments, frontiers are sparse at the global scale
but dense at the local level, and proposed a hierarchical
framework that combined a global frontier-based planner
and a local planner based on [17]. Following works [3],
[4], [6], [20] drew on the experience of such hierarchical
frameworks to perform path planning at multiple resolutions
and further improve the exploration efficiency of planned
paths, which significantly outperformed naive frontier- and
sampling-based planners [3], [4], [6]. Notably, Cao et al. [4],
[6] proposed to use a TSP-based global planner and a
sampling-based local planner with a coverage constraint
to trade off the planning fineness of nearby and distant
areas, which currently exhibits state-of-the-art performance
with 80% better exploration efficiency over other benchmark
planners [3], [17], [21].
DRL-based exploration planner While some works [22],
[23] have relied on deep learning to explicitly predict the
layout of the unknown (but only structured indoor) environ-
ments to assist conventional approaches, most learning-based
approaches leverage deep reinforcement learning (DRL) to
directly and reactively make decisions on movements. DRL-
based planners are expected to achieve long-term exploration
objectives by training a policy to maximize long-term re-
turns. Most current DRL-based exploration planners [24]–
[27] rely on convolutional neural networks (CNNs) to select
a waypoint from a set of locations, based on a visual rep-
resentation of the agent’s belief (e.g., map). Although DRL
intuitively looks like a well-suited method for autonomous
exploration, the performance of these DRL-based planners is
only on par with naive frontier-based planners in small-scale
environments. On the other hand, Chen et al. [28] proposed
to utilize graph neural network to handle the localization
error during exploration, however their approach can only
work in environments without obstacles. Notably, relying
on learned attention over a graph representation of the
agent’s belief, our previous work ARiADNE [8] achieved
remarkable improvements over frontier-based planners and
one of these CNN-based DRL planners [25]. However,
ARiADNE’s advantage over TARE is marginal, and like
other previous DRL methods, this DRL planner cannot scale
to large environments.

III. PROBLEM STATEMENT

Let E be a bounded environment, classified into free
areas Ef and occupied areas Eo, where Ef ∪ Eo = E



Fig. 2. Our proposed DRL-based planner. The robot first transforms its current map (point cloud) data to an occupancy grid, and then extracts and
rarefies an informative graph from it. After that, this graph (node features and an adjacency edge mask) is fed to our attention-based network (consisting
of an encoder and a decoder), which finally outputs a policy over which neighboring node should be the next waypoint.

and Ef ∩ Eo = ∅. The robot maintains a map M (i.e.,
robot belief) about E , which is classified into free areas
Mf , occupied areas Mo, and unknown areas Mu, where
Mf ∪ Mo ∪ Mu = M. Starting from an empty belief
over the environment (i.e., M = Mu), the robot executes
an exploration path ψ and updates its map/belief about the
environment using measurements taken along the path from
an onboard sensor (here, a LiDAR). The exploration task
completes whenMo is closed with respect toMf

1, and the
objective is to minimize the cost C(ψ) (e.g., the path length
L(ψ) or makespan T (ψ)) of the exploration path.

Considering the completed exploration path as a finite
sequence of robot-visited positions ψ = [p1, p2, ..., pn],
where pi ∈ Ef is the robot position at decision step i,
the exploration problem is a partially observable Markov
decision process (POMDP). This problem can be formulated
as a tuple (S,A, T,R,Ω, O), where S is a set of states, A is a
set of actions, T is a set of conditional probabilities between
states, R is a set of reward, Ω is a set of observations,
O is a set of conditional probabilities between states and
observations The true state si = (Ei,Mi, ψ1:i), si ∈ S is
not available to the agent during exploration; instead, the
robot only has access to observation (i.e., its map/belief)
oi = (Mi, ψ1:i), oi ∈ Ω, depending on O(oi|si). At each
decision step, the robot selects and takes action ai ∼ π(·|oi),
which indicates the next waypoint to visit. Upon reaching
that next state si+1 with T (si+1|si, ai), the agent receives a
reward ri = −C(ψt−1:t). The objective is to find an optimal
policy π∗, which selects an action at each decision step that
maximizes the long-term discounted return E(Σn

t=irt).

IV. METHODOLOGY

Solving a highly stochastic POMDP such as autonomous
exploration is non-trivial, and thus we propose to rely on
model-free DRL for its powerful ability to make implicit
predictions based on past experiences. In this work, we
rely on an attention-based neural network similar to [7],
[8] for its proven ability to model multi-scale dependencies
between areas. We further improve the model’s performance

1In practice, the map is often considered complete when all frontiers have
been removed, which also ensures the set of occupied areas is closed.

by allowing the critic to train based on ground truth informa-
tion, to help it precisely estimate returns and the underlying
transition model. Guided by these improved predictions, our
policy network can finally improve its ability to achieve long-
term efficiency under partial observations.

We first decrease the complexity of the problem by ex-
tracting a dense collision-free graph from the map. With
this collision-free graph as input, we train an attention-based
policy network offline, using the soft actor-critic (SAC) with
discrete actions [9], [10]. Note that under the actor-critic
framework, the critic network is only used during training to
assist the policy network in estimating the state-action value.
Therefore, we allow the critic network to access true states
s, instead of partial observations o, to estimate the long-term
impact of current actions more precisely, which in turn leads
to improved overall performances. Moreover, benefiting from
the nature of attention layers [29], [30], our policy network
is able to generalize to arbitrary graphs and arbitrary scale
environments. We further propose an algorithm to rarefy the
dense collision-free graph, allowing our DRL-based planner
to naturally scale to larger-scale environments without any
additional training.

A. Sequential Decision-making on a Graph
Consider the collision-free graph G = (V,E) extracted

from the map M, where V = (v1, v2, .., vm),∀vi =
(xi, yi) ∈ Mf is a set of nodes (one of the nodes
is located at the robot current position pt) and E =
((v1, v2), ..., (vm−1, vm)) is a set of collision-free edges. In
this work, nodes in V uniformly cover free areas Mf . We
find the k nearest neighbors of each node and check for
collisions to construct the set of admissible edges E (i.e.,
edges between nodes that do not cross Mo or Mu). Dur-
ing exploration, this collision graph extends incrementally
along with the update of free areas. Our DRL planner only
makes decisions on which neighboring node will be the next
waypoint (i.e, π(ai|ot) = p(vi|ot), (pt, vi) ∈ E), toward
which the robot then navigates. Note that, during training, the
planner only makes decisions upon arriving at the previously
selected waypoint, while at execution time, the planner can
make decisions at a fixed frequency to be more reactive to
map updates.



B. Policy Network

We first extract an informative graph G∗, extending the
collision graph G, as the input of our policy network to
allow for more efficient learning. The informative graph
G∗ = (V ∗, E) shares the same collision-free edge set as
G, and each node v∗i = (vi, ui, gi) ∈ V ∗ has two more
properties than nodes in V : 1) the node’s utility (denoted
as ui, quantifying observable frontiers within line of sight
from location vi) and 2) the guidepost (denoted as gi, a
binary value defining whether vi has already been visited
previously). The utility extracts information from the map to
avoid the need for unnecessary learning of low-level pattern
recognition, allowing the network to focus on modeling long-
term dependencies between areas. The guidepost represent-
ing the path ψ1:t executed so far, which we empirically found
to help speed up training by encouraging the robot to select
unvisited nodes. The informative graph is normalized and
used as input of our policy network, composed of an encoder
and a decoder, as shown in Figure 2, where the encoder learns
to model the dependencies among nodes V ∗ and the decoder
uses these dependencies to finally output the policy π over
neighboring nodes.
Encoder A graph structure is naturally aligned with the input
format of an attention layer:

qi =WQhqi , ki =WKhk,vi , vi =WV hk,vi , uij =
qTi · kj√

d
,

wij =

{
euij∑n

j=1 euij , Mij = 0

0, Mij = 1
, h′i =

n∑
j=1

wijvj , 1 ≤ i ≤ m

(1)
where each hi ∈ Rd×1 is a d-dimension feature vector pro-

jected from node v∗i , superscripts q and k, v denote the source
of the query, key, and value respectively, WQ,WK ,WV ∈
Rd×d are learnable matrices, and M , which serves as an edge
mask, is a m×m adjacency matrix built from E (Mij = 0, if
(i, j) ∈ E, else Mij = 1). Note that in each attention layer,
each node in the informative graph is only allowed to access
the features of its neighboring nodes. To allow the model
to learn dependencies between non-neighboring nodes, we
stack six attention layers in the encoder, each taking the
output of its previous attention layer as input. The output of
the encoder is a group of node features, each h′i modeling
dependencies between node v∗i and all other nodes.
Decoder Denoting the node feature corresponding to the
robot’s current position pt as hc, we first add a feature vector
representing the global graph to it, by passing hc as the query
source and all node features h′i as the key and value source
to an attention layer, concatenating its output with hc and
projecting its back to a d-dimension feature h∗c. We then
select its neighboring node features hni ,∀(pt, vi) ∈ E and
input them as the key source and h∗c as the query source to
a pointer layer [7], [8], [31], which directly outputs attention
weights w as the policy π(ai|ot) = p(vi|ot), (pt, vi) ∈ E.
By using this pointer network at the end of the decoder,
the final policy’s dimensions naturally match the number of
neighboring nodes.

Fig. 3. Informative graph (left) and Ground-truth graph (right). The
informative graph is the input of our policy network. The ground truth graph
is the input of our critic network, which is only used during training to assist
the learning of the policy. Nodes are color-coded based on their utility (dark
purple to yellow, low to high). The blue trajectory is the path executed so
far by the robot (light purple node).

C. Training with Ground Truth

SAC We train our attention-based policy network using the
soft actor-critic (SAC) algorithm with discrete actions [9],
[10], in the set of small-scale exploration environments
provided by [25]. The goal of SAC is to balance the trade-off
between maximizing returns and policy entropy:

π∗ = argmaxE[
T∑

t=0

γt(rt + αH(π(.|ot)))], (2)

where H denotes the entropy and α is a temperature
parameter that tunes the importance of the entropy term
versus the return. We use reward shaping to help tune the
training: for each action at, in addition to the cost reward
rc = −C(ψt−1:t), we give an exploration reward re that
quantifies the number of observed frontiers associated with
at. Upon finishing exploration (i.e., once the utility of all
nodes is zero), we also give the agent a fixed finishing reward
rf . Thus the reward used for training is ri = a·rc+b·re+rf ,
where a and b are scaling parameters (in practice a = 1/64,
b = 1/50, rf = 20). SAC trains a critic network ϕ to estimate
the soft action-state values Qϕ(ot, ai), using the critic loss:
JQ(ϕ) = Eot [

1
2 (Qϕ(ot, at) − (rt + γEot+1

[V (ot+1)]))
2],

where V (ot) = Eai [Q(ot, ai)] − αlog(π(·|ot)). The policy
network θ is trained to output a policy that maximizes the
expected state-action value, where the policy loss reads:
Jπ(θ) = E(ot,ai)[αlog(πθ(ai|ot))−Qϕ(ot, ai)]. The temper-
ature parameter is auto-tuned during training and the temper-
ature loss is calculated as: J(α) = Eat

[−α(logπt(at|ot) +
H)], where H denotes the target entropy [9], [10].
Critic Network The training of a model-free DRL agent
on a POMDP involves the need to estimate state/state-action
values from partial observations of the environment, where
the model needs to implicitly learn to predict the transition
model T and O, which is non-trivial in a stochastic problem
such as autonomous exploration. In SAC, the learning of
the policy network depends on accurate state-action value
estimations from the critic network, where such coupling
might further hamper the learning of optimal policies (e.g.,
from oscillations in thye critic’s training from high-variance
gradients). In this context, recent works [8] tried to use
standard SAC (i.e., identical observation inputs and nearly



TABLE I
COMPARISONS WITH BASELINE PLANNERS IN SMALL-SCALE ENVIRONMENTS (IDENTICAL 100 SCENARIOS FOR EACH METHOD).

Nearest Utility NBVP TARE Local CNN ARiANDE Ours

Distance (pixel) 1354(±410) 1268(±396) 1323(±371) 1266(±388) 1323(±428) 1204(±378) 1118(±321)

the same network structure for both actor and critic with
just a different final layer to differentiate their output) but
found that the critic network remained rather noisy due to the
high randomness of the underlying transition model (shown
as the gradient variance). During training, the critic loss
remains high (∼ 10% of Q(ot, at)), showing that the critic
is struggling at learning the underlying long-term effects of
actions/states, and thus providing less accurate estimations
to train the actor.

To address this issue, in this work, we leverage the struc-
ture of the actor-critic framework, where the critic network is
only used to assist policy network training and is not required
after being trained, allowing us to take true states as the
observations for the critic network (i.e., privileged learning).
Figure 3 shows a visual comparison between the inputs of
the policy network and the critic network. Specifically, we
keep the structure of the vanilla critic network but construct
a ground truth graph G′ = (V ′, E′), from st and ot. G′ is
similar to the informative graph used as input of the policy
network, but the node set V ′ covers the whole (ground truth)
free area in E , the property of each node v′i = (xi, yi, ui, ei)
is slightly different: the unexplored feature ei is a binary
value indicating whether v′i is in the already explored area
by the robot. If a node v′i lies in unexplored areas, we set its
utility ui = −1. By doing so, the critic network now only
needs to tackle a more traditional MDP problem, i.e., esti-
mating paths to cover an environment with fully known prior,
allowing for more accurate estimations of state-action values
(around 10 times lower state-action value loss and gradient
variance). In practice, this translates into ∼ 10% increased
average per-step rewards compared to standard SAC (more
details can be found in the supplemental material).

Training details Our model is trained on the dungeon
environments provided by [25], where each environment E
is a 640 × 480 grid world. The sensor range of our robot
is set to 80 cells. We uniformly place 30× 30 points in the
environment and select all points in the explored free area
Mf to form the node set V and construct the information
graph G∗ = (V ∗, E∗), where the number of neighboring
nodes k = 20. The exploration task is completed once
there is no non-zero utility node in V ∗ (using a threshold
to ignore nodes with ui ≤ 5 in practice). During training,
we set the max episode length to 128 decision steps, the
discount factor to γ = 1, the batch size to 64, and the
episode buffer size to 2500. Training starts after the episode
buffer collects more than 1000 step data. The target entropy
is set to 0.01 · log(k). Training happens at the end of
each episode, and is composed of 8 iterations. We use the
Adam optimizer with a learning rate of 10−5 for both policy
and critic networks and 10−4 for the temperature auto-

tuning. The target critic network updates every 64 training
step. Our model is trained on a desktop equipped with an
AMD Ryzen7 5700X CPU and an NVIDIA GeForce RTX
4080 GPU. We train our model utilizing Ray, a distributed
framework for machine learning [32], and run 16 training
environments simultaneously to accelerate data collection.
The training needs approximately 3 days to fully converge.
Our full code can be found at https://github.com/
marmotlab/large-scale-DRL-exploration.

D. Graph Rarefaction for Large-scale Exploration

Although our policy network is trained in small-scale
environments only, our networks can naturally handle ar-
bitrary graphs. However, the number of nodes needed to
let G∗ uniformly cover larger-scale environments will be
significantly higher, even though while the graph structure
would be dense, information would remain sparse (i.e., many
frontiers are very far from each other, and separated by
a large number of 0-utility nodes). To extend the use of
our trained model to larger-scale environments, we propose
a method to rarefy our informative graph, which lets the
model capture longer-term dependencies more efficiently
(i.e., frontiers far away can connect with each other through
fewer edges). In short, we first classify all nodes with
non-zero utility into multi groups according to neighboring
relationship, and then find the shortest paths on G from the
robot’s position to each group through A* and check for line
of sight at each waypoint in these paths, to find a minimal set
of nodes V s ⊂ V ∗ that represents all information in the map
(the pseudo-code can be found in the supplemental material).
The result is a sparser information graph Gs = (V s, Es),
which is used as the policy network’s input.

V. EXPERIMENT

A. Validation in Small-scale Environments

We first test our trained model on a benchmark set of
100 small-scale simplified simulation environments (never
seen during training). We compare our planner with baseline
planners including (1) nearest: the robot always moves to the
nearest frontier, (2) utility: the robot moves to the frontier
which balances cost and utility, (3) NBVP: a sampling-based
planner based on rapid random trees [17], and (4) TARE
Local: the local level planner of TARE [4], [6]. (5) CNN:
a DRL planner based on CNNs [25]. (6) ARiADNE: an
ablation variant of our model trained without ground truth
as in [8]).

In our tests, we consider exploring more than 99%
(meaning minor error is tolerable) of the free area in the
environment as completing the exploration. As shown in
Table I, our DRL planner outperforms all baseline planners

https://github.com/marmotlab/large-scale-DRL-exploration
https://github.com/marmotlab/large-scale-DRL-exploration


(a) DSVP, distance 1351m, time 796s (b) TARE, distance 1177m, time 644s (c) Ours, distance 985m, time 582s

Fig. 4. Exploration paths comparisons in a large-scale 130m× 100m indoor office simulation.

(a) TARE, 1505m, 803s (b) Ours, 1104m, 659s

Fig. 5. Exploration paths comparisons in a large-scale 150m×150m
outdoor forest simulation.

(11% better than TARE Local and Utility, 15% better than
CNN and NBVP) in terms of average travel distance to
complete the exploration. We first note that the vanilla
model trained without ground truth already achieves shorter
exploration paths than all other baseline planners, showing
the efficiency of our attention-based policy network to reason
about dependencies of areas at multiple scales and thus
making decisions that balance exploration and refining the
map. We then note that our model trained with ground
truth further improves over this vanilla ARiADNE model
(7% better), verifying that training the critic network with
ground truth can assist the policy network to estimate the
transition model and long-term returns more precisely. Our
results suggest that our planner can effectively predict the
structure of unexplored areas, to make further non-myopic
decisions and avoid redundant movements, by relying on past
experiences in similarly structured indoor environments seen
at training. We visualize attention weights of our attention
layer to observe the insight learned mechanism (see our
supplemental material), and we find that in some heads the
planner focuses its attention over areas where connections
might be missing, implying that the planner is predicting the
structure of unknown areas from the belief of known areas.

B. Validation in Large-scale Environments

We then test our large-scale exploration planner in a
Gazebo simulation of a 130m× 100m office with cluttered
obstacles provided by [6]. Compared to our small-scale test
environments where the sensor model and robot kinetic are
highly simplified, in this large-scale test environment, the

TABLE II
COMPARISONS WITH BASELINE PLANNERS IN THE LARGE-SCALE

INDOOR BENCHMARK [6] (10 RUNS EACH).

DSVP TARE Ours Human

Distance (m) 1462 1158 1020 879
Time (s) 870 634 590 520

Computing (s) 0.90 0.24 0.15 /
Efficiency (m3/m) 3.91 4.82 5.42 6.27
Efficiency (m3/s) 6.57 8.81 9.36 10.60

TABLE III
COMPARISONS WITH BASELINE PLANNERS IN THE LARGE-SCALE

OUTDOOR BENCHMARK [6] (5 RUNS EACH).

DSVP TARE Ours Human

Distance (m) 2002 1347 1174 1071
Time (s) 1053 707 686 549

Computing (s) 1.31 0.70 0.44 /
Efficiency (m3/m) 21.13 29.37 32.63 36.05
Efficiency (m3/s) 40.17 55.96 55.85 70.33

simulation considers real-world sensor model (a Velodyne
16-line 3D LiDAR) and real robot constraint (a four-wheel
differential drive robot with max speed 2m/s). Note that the
model used for our large-scale tests is the same as the one
for our small-scale tests, but using our graph rarefaction al-
gorithm. We use Octomap [33] to classify free and occupied
areas (i.e., define ”explored” area). We set the resolution of
Octomap to 0.4m, the max map update range to 20m, the
gap of nodes to 2m, the number of neighboring nodes in the
dense collision-free graph to 5, the number of neighboring
nodes in the sparse information graph to 10, the sparse radius
to 12m, and replan the robot’s path every 0.8s. Although we
construct a 3D Octomap, the planner only considers frontiers
at the ground level (i.e., planning is based on a 2D belief).
All computations are conducted on a Intel i7-1270p CPU.

We compare our large-exploration planner with: (1)
TARE [4], [6] (also the provider of this test environment),
the state-of-the-art large-scale exploration planner which in
general produces 80% increased exploration efficiency over
benchmark planners such as [3], [17]; in TARE, a global
planner is designed to find a global TSP path to visit all
unexplored areas, and the start of the global path is taken
as the destination for the local path planner discussed in
the last subsection, (2) DSVP [34], which uses a rapid
random tree-based local planner and a graph-based global



Fig. 6. Comparisons with baseline planners in the large-scale indoor benchmark [6] (10 runs each), including ARiADNE despite its inability
to complete exploration.

(a) Turtlebot3 (b) Teaching room (c) Final Octomap

(d) Office room (e) Another office room (f) Final point cloud map

Fig. 7. Real world experiment in a 80m× 10m laboratory with cluttered furniture and moving pedestrians.

planner, (3) Best human practice with full prior knowledge
about the environment provided by [6] as the reference for
optimal exploration path. The hyperparameters of TARE
and DSVP were tuned by the original authors directly on
benchmark environments. Note that TARE further considers
3D frontiers but still does path planning in 2D action space.
We evaluate the performance of all planners from multiple
metrics: (1) Distance: total exploration path length, (2) Time:
total duration of the exploration task, (3) Computing: per-step
planning time, and (4) Efficiency: explored volume divided
by the travel distance or makespan. Results are shown in
Table II, Figure 4, and Figure 6.

We note that our DRL-based planner outperforms TARE
in terms of exploration efficiency (12% in terms of distance
efficiency and 6% in terms of time efficiency) and algorithm
computing time (including frontier detection, informative
graph update, and network inference time, 60% faster even
though our planner is implemented in Python and TARE in
C++). As shown in Figure 4, the exploration path planned
by our DRL planner exhibits fewer redundant movements
than benchmark planners. Although TARE theoretically guar-
antees near-optimal paths to cover frontiers in its current
belief, we believe the advanced performance of our DRL
planners shows the key importance of predicting the potential
structure of unknown areas, which can yield decisions that
benefit longer-term exploration. Note that paths planned
by TARE allow the robot to move at the fastest speed,
as TARE explicitly considers the motion constraint of the
robot. Therefore, our advantage in terms of time efficiency
is smaller than on distance efficiency.

Although our model was trained in indoor environments,
we also test it in a 150m × 150m cluttered outdoor forest

Gazebo environment without further training (results are
shown in Table III and Figure 5). In this outdoor environ-
ment, the structure learned by our model (e.g., junctions and
corridors) in indoor environments does not exist anymore,
and we expect our planner not to be able to perform implicit
predictions as well as in indoor environments. As expected,
we observe our planner sometimes randomly chooses way-
points, implying that it cannot decide which action is optimal.
However, in this cluttered outdoor environment, our DRL
planner still achieves time efficiency on par with TARE and
better distance efficiency.
C. Validation in Real World

We finally validate our large-scale planner in the real
world, using a wheeled robot equipped with a 3D LiDAR
to explore an 80m × 10m indoor laboratory with cluttered
furniture and moving pedestrians (see Figure 7). The robot
platform is a customized four-wheel Turtlebot3 with a max
speed of 0.2m/s. We use a Leishen C16 LiDAR with
LOAM [1] to both get LiDAR odometry and mapping. For
our DRL planner, compared to the parameters used in simu-
lation, we set the resolution of Octomap to 0.2m, and the gap
of nodes to 0.8m to better handle such a cluttered real-world
indoor environment. We believe the robot successfully and
efficiently explores the lab in 12 minutes, highlighting the
robust applicability of our planner in the real world. It should
be noted that most previous DRL-based planners [24]–[28]
are not validated on hardware in such a cluttered and large-
scale environment. Compared to these planners that directly
take the map as network input, where images from the real
world may be very noisy and different from those used
during training, we believe that extracting an informative
graph helps the learned model avoid failure on never-seen



real-world scenarios.

VI. CONCLUSION

In this work, we propose a DRL-based exploration frame-
work, which relies on ground truth information to assist
the training of an attention-based policy network. We show
that our trained model can more precisely estimate the
unexplored areas, which helps the planner better reason about
its map/belief and make decisions that benefit long-term
objectives. With a graph-rarefaction algorithm, our planner
becomes the first DRL-based method applicable to large
environments and significantly outperforms state-of-the-art
conventional planners in a benchmark indoor simulation
environment. We also validate our planner in the real world,
highlighting its potential for real-life deployments on robot.

Future works will focus on extending our planner from
single to multi-robot exploration, where the planner needs
to further help robots achieve efficient cooperation. We are
also interested in letting the robot take account of the robot’s
motion constraint in training.
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Fig. 8. Ablation results, with and without ground truth when training
the critic network. By simplifying the POMDP to a MDP, our privileged
learning approach reduces the state-action value loss and gradient variance
by 10 times over the original critic network.
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