
Star-Searcher: A Complete and Efficient Aerial System for
Autonomous Target Search in Complex Unknown Environments

Yiming Luo1, Zixuan Zhuang1, Neng Pan2, Chen Feng3,
Shaojie Shen3, Fei Gao2, Hui Cheng1, Boyu Zhou1,†

Abstract— This paper tackles the challenge of autonomous
target search using unmanned aerial vehicles (UAVs) in complex
unknown environments. To fill the gap in systematic approaches
for this task, we introduce Star-Searcher, an aerial system fea-
turing specialized sensor suites, mapping, and planning modules
to optimize searching. Path planning challenges due to increased
inspection requirements are addressed through a hierarchical
planner with a visibility-based viewpoint clustering method.
This simplifies planning by breaking it into global and local
sub-problems, ensuring efficient global and local path coverage
in real-time. Furthermore, our global path planning employs a
history-aware mechanism to reduce motion inconsistency from
frequent map changes, significantly enhancing search efficiency.
We conduct comparisons with state-of-the-art methods in both
simulation and the real world, demonstrating shorter flight
paths, reduced time, and higher target search completeness.
Our approach will be open-sourced for community benefit 1.

Index Terms— Aerial Systems: Perception and Autonomy,
Aerial Systems: Applications, Search and Rescue Robots

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are prized for their
compact size and exceptional maneuverability, making them
indispensable across various applications like disaster search
and rescue, resource exploration, and environment monitor-
ing. In these tasks, UAVs can effectively supplant humans in
the exploration of entirely unknown and hazardous environ-
ments while simultaneously conducting target search. This
paper focuses on the challenge of autonomous searching for
targets in complex unknown environments using UAVs.

The challenge of autonomous target search is closely
connected to the field of autonomous exploration, a fun-
damental domain in robotics that has garnered significant
attention [1]–[5]. While both areas share certain similarities,
they are fundamentally distinct. Autonomous exploration
primarily focuses on mapping unknown regions as either
occupied or free areas. In contrast, autonomous target search
demands the UAV to perform two related but different tasks
simultaneously, i.e., exploration and inspection. The former
task only requires coarsely mapping the unknown space,
while the latter demands meticulous visual inspections in
the occupied spaces where potential targets may be located,
with more rigorous constraints such as observation distance
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Fig. 1: (a) A test of autonomous target search conducted in a
complex scene with six apriltags. (b) The apriltag search results
and executed trajectory. Video of the experiments is available at:
https://youtu.be/08ll oo DtU.

and viewing angles. Thus, an efficient system capable of
handling the diverse perception requirements and generating
motions that switch seamlessly between the two tasks is
essential for fast target search. Currently, there is a gap in
the existence of a systematic approach specifically tailored
for autonomous target search—one that can ensure search
completeness without compromising task efficiency.

Notably, autonomous target search presents a significant
challenge in the context of path planning. The additional
requirement of careful inspection introduces a substantial
number of inspection viewpoints, leading to a considerably
increased computational load for determining the shortest
paths. Additionally, as the scene’s map and uninspected areas
are incrementally constructed during the search process, the
UAV must adapt its path when the map undergoes changes.
Such alterations in the map can cause the newly planned
path to noticeably deviate from the previous one, resulting in
back-and-forth movements that detrimentally impact search
efficiency. For a smooth and graceful flight, it is crucial to
plan paths in real-time and ensure that consecutive paths
remain consistent.

To tackle the challenges outlined above, we present Star-
Searcher: A Complete and Efficient Aerial System for
Autonomous Target Search in Complex Unknown Envi-
ronments. Our aerial system incorporates specialized sensor
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suites, mapping, and planning modules, all geared toward
improving task efficiency and completeness. Our system
takes advantage of various sensors and seamlessly switches
between exploring unknown space and inspecting surface re-
gions. We address the path planning challenges from two key
angles. Firstly, we introduce a hierarchical planner supported
by a visibility-based viewpoint clustering method. This ap-
proach decomposes the complex large-scale planning task
into two more manageable sub-tasks: global path planning at
the level of viewpoint clusters and local path planning at the
level of individual viewpoints. Viewpoint clustering groups
viewpoints separated by obstacles into distinct clusters and
aggregates mutually visible ones into convex sets. This
strategy provides regional guidance for generating reasonable
global paths that sequentially visit different regions and
ensures straightforward local paths for covering each convex
set. Secondly, to mitigate motion inconsistency arising from
frequent map changes, our global path planning incorpo-
rates a history-aware mechanism, taking into account both
the historical movement tendency and visiting costs to all
viewpoints. This prevents the occurrence of indecisive global
paths across consecutive planning iterations, significantly
enhancing search efficiency.

We compared our approach to state-of-the-art fast explo-
ration and object-centric search methods in simulations. The
results demonstrated superior search performance, with the
shortest path length, flight time, and the highest completeness
in all experiments. We further validated our system in com-
plex real-world environments using entirely onboard devices.
We plan to release our code as open source. In summary, our
contributions are as follows:

• An aerial system with specialized sensor suites, map-
ping, and novel planning modules, which enables seam-
less exploration and inspection, achieving comprehen-
sive and fast autonomous target search in complex
unknown environments.

• A hierarchical planning method enhanced by visibility-
based viewpoint clustering, allows the real-time genera-
tion of the global path at the level of viewpoint clusters
and local path at the level of individual viewpoints with
fewer detours.

• A history-aware mechanism for global path planning,
which utilizes historical path information to prevent
inconsistency in consecutive planning processes, signif-
icantly improving task efficiency.

• Extensive simulations and real-world experiments for
validation. The source code will be made public.

II. RELATED WORKS

In autonomous target search, a critical step involves ex-
ploring unknown environments. Various methods for rapid
autonomous exploration have been extensively researched,
among which frontier-based approaches are among the most
popular methods [6]–[11]. The concept of the frontier is
initially introduced to delineate the boundaries between un-
known and known areas [6]. They employ a greedy approach

that selects the nearest frontier at each step. Many subsequent
methods have proposed more rational selection strategies to
enhance exploration efficiency. A next-best-view selection
strategy is introduced [12] and widely used. Each sampled
viewpoint is evaluated using a utility function, which assesses
the information gain achievable by visiting them and the
required path length. The design of the utility function has
also received more extensive consideration [13]–[16]. Recent
methods formulate the problem of traversing all viewpoints
as a traveling salesman problem [1, 2, 17], improving task
efficiency.

Building upon exploration planning methods, several ap-
proaches have introduced object search techniques during the
exploration process [3]–[5, 18]–[20]. Some of these methods
involve conducting informative sampling to facilitate re-
observations at higher resolutions when detecting objects [3].
Papatheodorou et al. [5] propose a utility function tailored
to object-centric exploration, ensuring sufficient proximity
for all background voxels. Kim et al. [4] apply a 2D
space segmentation method and integrate search into the
exploration. Meera et al. [21] employ a Gaussian Process-
based model for target occupancy. Besides, motivated by
the DARPA Subterranean Challenge, some systems have
been developed to combine multiple robots to cooperate
in searching objects [22]–[24]. A cooperative exploration
strategy is proposed to enable the robots to coordinate their
exploration while having the ability to explore individually
[22]. Roucek et al. [23] develop a heterogeneous exploration
robotic system and improve single-agent robustness. Other
methods [24] combine multiple sensors in the task to improve
the perception precision.

However, these methods trade-off between exploration and
target search, lacking a more detailed consideration of au-
tonomous target search and suffering from severe efficiency
issues. In contrast, we explicitly define the problem of au-
tonomous target search and design a suitable aerial platform.
Furthermore, our history-aware hierarchical planner achieves
fast search with a concise flight path.

III. PROBLEM FORMULATION

The problem of autonomous target search involves the
search for an unknown number of targets detectable by
visual sensors within a bounded 3D space V ⊂ R3. This
space is represented as a set of cubic voxels. Continuous
updates of the occupancy probability Po(v) for each voxel v
incrementally map the initially unknown space Vunk = V
into two parts: Vfree ⊂ V (free space) and Vocc ⊂ V
(occupied space). Since the visible surfaces of the targets,
denoted as Vtar, fall within the volume of Vocc, the UAV
must conduct a thorough observation of all the voxels within
Vocc to guarantee complete search. Voxels within Vocc that
have not yet been observed with the desired precision by
the visual sensor are labeled as Vuni. As most sensors’
perception stops at surfaces, some hollow or corner spaces
can not be mapped. These spaces are denoted by Vres. The
task is considered fully completed when the entire area has



Fig. 2: An overview of our star-searcher system. (a) The hardware platform of our aerial system. (b) The UAV utilizes LIDAR point
clouds and camera projection to update map information, cluster frontiers and uninspected areas. (c) For each cluster of frontiers and
uninspected areas, a set of viewpoints is generated and scored based on information gain and viewing angle. The higher the score, the
larger the size of the viewpoint. The one with the highest score is selected. (d) Visibility-based viewpoint clustering is performed, and
history-aware global path planning is conducted based on this. (e) Local path planning.

been searched, i.e., whenVfree ∪ Vocc = V \ Vres, and
Vuni = ∅.

IV. SYSTEM DESIGN

As explained in Sect. III, autonomous target search in-
volves the simultaneous identification of occupied and free
spaces while carefully observing uninspected areas Vuni.
Improving task efficiency can be accomplished by employ-
ing various sensors to identify Vocc and update Vuni. We
configure a UAV equipped with a 360-degree LIDAR and a
wide-angle RGB camera, as shown in Fig. 2(a). Despite its
conventional appearance, this platform consists of minimal
sensor components carefully tailored to our specific problem.
The wide sensing range of the 360-degree LIDAR facilitates
the rapid acquisition of geometric information about the sur-
rounding environment, enabling the UAV to quickly identify
occupied areas for detailed inspection using the RGB camera.
By utilizing the wide-angle camera, the UAV can cover more
spaces and detect targets more rapidly.

The algorithm framework in Fig. 2(b)-(e) comprises map-
ping and planning modules. The mapping module represents
the environment volumetrically, fusing LIDAR and camera
data continuously for each voxel to update its occupancy and
the closest observation distance from the camera (Sect. V-
A). Frontiers and uninspected areas are then extracted and
clustered, generating and selecting corresponding viewpoints
with high information gain and suitable viewing angle (Sect.
V-B). The history-aware hierarchical planner (Sect. VI) then
utilizes the viewpoints and previous path planning results to
plan global paths and local paths, achieving simultaneous
identification of free and occupied spaces and thorough
inspection of uninspected areas. A visibility-based viewpoint
clustering method is employed during global path planning
(Sect. VI-A) to create a more reasonable visiting order and
reduce the computation burden.

V. INSPECTION-AWARE LIDAR-CAMERA MAPPING AND
VIEWPOINT GENERATION

Traditional occupancy mapping used in exploration lacks
information about the observation distances of voxels. This
limitation hinders the ability to plan inspection paths to

ensure a thorough target search. Moreover, existing methods
overlook the consideration of viewing angles towards unin-
spected surfaces, potentially leading to missed targets due
to the detrimental effects of large viewing angles on target
detection. Our mapping module addresses the first issue by
integrating measurements from both LIDAR and the camera,
providing the closest observation distance for each occupied
voxel and enabling more precise path planning for thorough
inspections. Additionally, we introduce a scoring mechanism
for viewpoint selection, which prevents large viewing angles
in uninspected areas.

A. LIDAR-camera Mapping with Inspection Information

Our volumetric environment representation is based on
[25]. In addition to occupancy probability, we update the
closest observation distance to the camera for each occupied
voxel. When a new frame of LIDAR point clouds is acquired,
all point clouds are employed to update the occupancy
probability using the ray-casting method. Simultaneously,
we can project the voxels already mapped as occupied into
the camera coordinate frame, updating the closest observa-
tion distances for those within the camera’s field of view
(FOV) and not occluded by any occupied areas. Voxels with
a closest observation distance greater than the maximum
observation distance dmax are labeled as uninspected areas
Vuni. They are subsequently removed from the uninspected
areas when they are scanned within dmax. Continuous tar-
get detection is performed in RGB images, and when a
target is detected, the corresponding voxels are mapped to
Vtar through transformation from pixel coordinates to world
coordinates. It’s worth noting that additional information
pertaining to observation accuracy can be integrated into
the map using a similar approach. However, conducting a
comprehensive study of these related factors falls beyond
the scope of our research.

B. Viewpoint Generation

Given the information on occupancy and observation dis-
tance, both frontiers [6] and uninspected areas are extracted,
as defined in Sect. III. Uninspected areas and frontiers imply



Fig. 3: Illustration of the visibility-based viewpoint clustering. If
a viewpoint has collision-free rays to all viewpoints in the current
cluster, it is assigned to that cluster.

the potential presence of targets or areas that can be expanded
upon in the map. Hence, we perform viewpoint sampling
in proximity to these areas. Similar to [1], we employ a
PCA-based method to split excessively large clusters along
axes. Several viewpoint positions and their corresponding
yaw angles are sampled in the spherical space around the
center of each cluster. Then we score all viewpoints of each
cluster based on two criteria: information gain and viewing
angle.

• Information Gain: The information obtained by the
UAV at each viewpoint is determined by a weighted
combination of the number of observable frontiers to
the lidar Nunknown and the number of observable
uninspected voxels to the camera Nuninspected within
dmax, i.e.

Sinfo = ωuni · Nuninspected + ωunk · Nunknown (1)

where ωuni and ωunk denote the weights for unin-
spected voxels and frontiers, respectively. We assign a
larger value to ωuni in experiments.

• Viewing Angle: To ensure accurate target detection
and mitigate errors caused by extreme viewing angles,
our method scores viewpoints based on the proximity
between the vector from the center of the cluster to the
viewpoint and the average normal vector of each cluster
navg , i.e.

Snor =
pc,v · navg

||pc,v|| ||navg|| (2)

The average normal of each cluster is computed as the
average normal of the center points of each voxel within the
cluster by PCL package. The final score for each viewpoint
is calculated as follows:

SV P = Snor · Sinfo (3)

Finally, we pick the highest-scoring viewpoint of each cluster
as illustrated in Fig. 2(c).

VI. HISTORY-AWARE HIERARCHICAL PLANNER

In order to plan paths with fewer detours and revisits
in real-time, simultaneously exploring unknown regions and
covering uninspected areas, we adopt a hierarchical planning
strategy. We first perform visibility-based viewpoint cluster-
ing (Sect. VI-A) and conduct global path planning (Sect. VI-
B) to determine the visiting order of the viewpoint clusters.

Fig. 4: A comparison between the planned trajectories with (fig. a)
and without (fig. b) visibility-based viewpoint clustering (VBVC).
Without viewpoint clustering, the UAV calculates the shortest path
to visit all viewpoints and selects the viewpoint behind the obstacle
as the next target. Once it reaches this viewpoint, it discovers a new
area and generates additional viewpoints. As a result, it replans a
trajectory as indicated by the red dashed line, leading to revisits
later, as shown in fig. c.

Subsequently, local path planning is conducted within the
first viewpoint cluster, efficiently covering the frontiers and
uninspected areas (Sect. VI-C). Our global planner incorpo-
rates historical path information, maintaining the consistency
between the replanned path and the previous ones (Sect. VI-
B).

A. Visibility-based Viewpoint Clustering

By leveraging a broad sensing range, the UAV can identify
occupied surfaces for thorough visual inspection rapidly.
However, this results in a significant increase in the number
of required viewpoints, also for those used to cover the
frontier. Planning a single shortest path to visit each of
these viewpoints would result in excessive computation time,
making it impossible to respond promptly to environmental
changes. To address this challenge, we introduce a viewpoint
clustering method to intelligently divide the entire set of
viewpoints into multiple subsets. We then generate global
routes passing through these subsets and local paths that
visit the viewpoints within the subset sequentially, creating
an efficient path within a manageable computation time.

The details of the proposed visibility-based viewpoint
clustering are illustrated in Fig. 3. We initiate the process
by designating the current UAV position as the starting
point for the first cluster. During each clustering iteration,
viewpoints within a specified radius Rvp around the current
cluster’s center engage in ray-casting, prioritized based on
their distances from the cluster’s center. If a viewpoint’s
rays do not intersect with obstacles from any viewpoints
in an existing cluster, that viewpoint is incorporated into
the cluster, and the cluster’s center is recalculated as the
average position of all the viewpoints within that cluster.
Once a cluster is finalized, we select the nearest unclustered
viewpoint to its center to serve as the starting point for a
new round of clustering. This process continues iteratively,
gradually forming distinct clusters of viewpoints based on
their mutual visibility and proximity until no viewpoints
remain unclustered, guiding the path planning for efficient
target search.

The proposed clustering method ensures mutual visibility
of viewpoints within each cluster, offering several advan-



Fig. 5: Illustration of the history-aware global path planning. After
finding the anchor centers, multiple collision-free shortest paths are
calculated using the A* algorithm between pairs of anchor centers
and concatenated to update the history-aware global path. Without
the history-aware path, an indecisive trajectory occurs, as indicated
by the red curve in (d).
tages. Firstly, visibility allows viewpoints in the same cluster
to be encompassed by a collision-free convex set. This means
the UAV can efficiently visit all viewpoints in the same
cluster without the need to detour to avoid collisions. Sec-
ondly, viewpoints that are occluded by obstacles are naturally
grouped into different clusters, providing implicit regional
guidance for planning a sensible global path that subse-
quently visits separate regions. Additionally, this method
effectively reduces severe revisits. For instance, Fig. 4(b)-(c)
illustrates a scenario where the UAV prioritizes a viewpoint
behind an obstacle, discovers another unexplored area, and
diverts to it, leading to severe revisits later. In contrast, by
thoroughly exploring one convex cluster before moving to the
next, the UAV eliminates the need to circumvent obstacles
and revisit previously inspected areas.

B. History-aware Global Path Planning

After the viewpoint clustering, our planner computes a
short global path starting from the UAV’s current position,
traversing the centers of all viewpoint clusters. This can be
formulated as an Asymmetric Traveling Salesman Problem
(ATSP) [1]. The planner replans every time the map is
updated. However, a complete refresh of the global path
after replanning can lead to drastic variations in the visiting
order of different regions due to the similar path costs,
causing indecisive flight as shown in Fig. 5(d). Actually,
only a few regions are updated at a time, while other regions
remain unchanged. For these unchanged regions, maintaining
the visiting order from the previously planned path can
ensure consistency in planning and flight. The newly updated
regions should be reasonably integrated into the visitation
planning for the unchanged regions. Our proposed method

leverages the relative visiting order from the previous global
path to generate a new global path.

During each global path planning, we compute a tempo-
rary shortest path constructed by considering all viewpoint
cluster centers and maintain a history-aware path. Although
it requires additional computation, the update of the history-
aware path incurs a minimal increase in computation time.
The history-aware path is initialized using the temporary
shortest path. Fig. 5 illustrates the updating process. To
ensure the order of new viewpoint clusters aligns with
the previous history-aware path, we first identify the near-
est old viewpoint cluster for each new one and calculate
the distances between their centers. Subsequently, the new
viewpoint clusters are sorted based on the order of their
nearest centers in the last history-aware path. In regions with
minimal updates, where the new viewpoint clusters exhibit
slight variations, centers with a distance change less than
the threshold, danchor, are designated as anchor centers, and
their associated viewpoint clusters are labeled as unchanged.
The UAV’s position is also considered an anchor center. For
the non-anchor viewpoint clusters, integration with anchor
clusters is required to form a coherent new path. To achieve
this, we select pairs of neighboring anchor clusters as start
and end points, retrieve non-anchor clusters between them,
and compute the shortest path. The associated problem is
formulated as a TSP with fixed start and end nodes, which
can be transformed into an ATSP [17]. Multiple such shortest
paths between pairs of anchor clusters are concatenated to
obtain the new history-aware path. Finally, the cost of the
history-aware path is compared to the cost of the temporary
shortest path. If the difference Dcost between them is small,
the history-aware path is adopted. Conversely, the temporary
shortest path is adopted, and the history-aware path is reset
to the temporary shortest path.

C. Local Path Planning

The global path provides a rational order for visiting
different regions. We perform more detailed local path plan-
ning based on the guidance of the global path. Specifically,
we select all viewpoints in the first viewpoint cluster to
visit for local path planning. We construct an ATSP with
the UAV’s current position as the starting point and the
center of the second viewpoint cluster in the global path
as the endpoint. To enhance the smoothness of UAV motion,
we take into account the variations in the UAV’s velocity
when calculating the visiting cost. We determine the cost
associated with moving the UAV from its current position
to each viewpoint by breaking down the UAV’s velocity
into components aligned with and perpendicular to the line
connecting the UAV to the viewpoint, modeling the motion
in both directions as constant acceleration motion with an
initial position at the UAV’s current position, final position
at each viewpoint, initial velocity as vali and vper, final
displacement as the distance from the current position to
the viewpoint l and 0, and calculate the corresponding cost
by computing the time required for the motion in both
directions. Consequently, the cost function from the UAV



position p to the viewpoint vpi can be defined as follows:

tali =


√

v2
ali+2aalil−vali

aali
, if

v2
max−v2

ali

2aali
< l

vmax−vali

aali
+

l− v2
max−v2

ali
2aali

vmax
, else

(4)

C(p, vpi) = max

{
tali,

2vper
aper

,
|ϕ− ϕj|
ωmax

}
(5)

ϕ and ωmax denote the yaw angle and the max angular
velocity of the UAV respectively. The cost between two
points vpi and vpj is defined as follows:

C(vpi, vpj) = max

{
L(vpi, vpj)

vmax
,
|ϕi − ϕj |
ωmax

}
(6)

where L(vpi, vpj) denotes the distance between two view-
points. Once we obtain the local path, we follow the
framework proposed in [26] to generate a smooth and safe
trajectory, which is then sent to the controller for execution.
D. Computation Complexity Analysis

Due to the large number of generated viewpoints, attempt-
ing to use all of them for path planning would impose a
significant computation burden. Within these extensive com-
putation needs, the computation of the visiting cost between
different viewpoints predominantly consumes a significant
portion of resources. The farther apart two viewpoints are,
the longer it takes to search for a path and calculate the
visiting cost between them. However, the planned path
often avoids consecutively visiting two points with a high
visiting cost, making the computation unnecessary yet time-
consuming. Our hierarchical planner only requires computing
costs between the centers of viewpoint clusters during the
global path planning and between the viewpoints within the
first cluster to visit during the local path planning. Therefore,
our method transforms the computation complexity from
O(N2) to O(n2

1) for global path planning and O(n2
2) for

local path planning. Here, N represents the total number of
all viewpoints, n1 is the number of viewpoint clusters, and n2

is the number of viewpoints within the first cluster. Typically,
N >> n1, n2. Furthermore, the viewpoints in local path
planning are typically in proximity, avoiding the need to
calculate costs between distant viewpoints. Consequently, our
planner, which can run at a frequency of 10 Hz in both
simulation and real-world experiments, achieves good real-
time capability.

VII. RESULTS

A. Implementation Details

We set ωuni = 0.8 and ωunk = 0.2 in Equ.1. In viewpoint
clustering, we set Rvp to 3m. The ATSPs are solved using the
Lin-Kernighan-Helsgaun heuristic solver [27]. For real-world
experiments, we utilize the Mid360 LIDAR and an efficient
LIDAR-inertial localization system [28]. A geometric con-
troller [29] is employed to track the (x, y, z, ϕ) trajectory.
All modules run on the Jetson Orin NX 16GB platform.

TABLE I: Simulation experiments.

Scene Method Flight time(s) Path
length(m)

Complet-
eness(%)

Avg Std Avg Std Avg

SubT

FUEL-3m [1] 195.19 11.66 265.75 16.12 100
FUEL-4m [1] 177.09 4.17 245.63 6.92 95.0%
Semantic [5] 266.19 23.04 309.70 29.76 100

Ours 153.36 3.46 191.65 5.31 100

Maze I

FUEL-3m [1] 256.48 5.62 344.14 4.60 100
FUEL-4m [1] 236.99 7.58 328.37 16.33 77.5%
Semantic [5] 387.75 27.39 426.40 35.93 100

Ours 216.94 6.04 281.69 14.12 100

Maze II

FUEL-3m [1] 394.58 31.30 559.96 36.26 100
FUEL-4m [1] 308.01 40.36 468.71 35.89 68.8%
Semantic [5] 502.7 29.09 678.50 54.73 100

Ours 303.15 21.78 458.83 26.62 100

Relic

FUEL-3m [1] 261.68 6.42 371.41 15.70 100
FUEL-4m [1] 178.87 13.61 283.57 17.51 81.3%
Semantic [5] 368.77 19.66 563.66 30.18 100

Ours 179.33 9.67 269.64 9.59 100

B. Benchmark Comparisons

We conduct simulation experiments in Gazebo, evaluating
our method in four scenes: SubT [24] (68 m x 18 m x 2 m),
maze I (33 m x 27 m x 2 m), maze II (60 m x 50 m x 2 m)
and relic (10 m x 10 m x 7 m). We place 8 apriltags [30]
in each scene, with an effective recognition distance set to
3.0 m. Our proposed method is compared to FUEL [1] (a
fast exploration method) and Semantic [5] (a NBVP-based
object search method). Since Semantic [5] has not been fully
open-source, we use our implementation (excluding object
mapping). The proposed method and Semantic [5] employ
a UAV equipped with a LIDAR with a range of 8m and
an RGB camera with a fov of [68, 51] degrees. The sensor
used for FUEL [1] is a depth camera and we conduct two
experiments with different sensing ranges for FUEL [1] to
show the limitations of applying exploration methods directly
to target search. In one experiment, the sensing range is
equivalent to the effective recognition distance to ensure
completeness while the other one is set to 4 m. Additionally,
we configure FUEL [1] with the same sensor setting and
observation distance constraint as the proposed method in
the ablation study. The side length of each voxel is set to
0.1 m, and the maximum observation distance dmax is set to
3.0 m. We set the dynamics limits as υmax = 2.0 m/s, amax =
1.5 m/s2 and ωmax = 1.2 rad/s. All methods are run with the
same configuration for 5 times in each scene. We evaluate the
efficiency (flight length and time) and search completeness
(number of recognized apriltags) of each method. Table.I
presents the results for each scene, while Fig. 6 displays the
executed trajectories in different scenes.

The results show that many revisits and detours occur in
the FUEL [1] and Semantic [5] due to the lack of effective
planning methods for target search. In contrast, our method
achieves high search completeness due to ensuring sufficient
observation of each occupied voxel. Also, the proposed
method demonstrates the shortest path length and flight time
in this task. This is attributed to the viewpoint clustering
method, which prevents detours and revisits. The history-
aware global path planning also produces a more consistent
path, enhancing efficiency.



Fig. 6: Trajectories generated by the proposed method (green), FUEL-3m [1](yellow), FUEL-4m [1](blue) and Semantic [5](red) in
simulation experiments.

Fig. 7: Executed trajectories in the ablation study. We test our
method without viewpoint clustering (module VC) or history-aware
global planning (module HAGP).

C. Ablation Study
Table.II and Fig. 7 illustrate our tests regarding viewpoint

clustering (Module VC) and history-aware global planning
(Module HAGP) in the small maze (24 m x 12 m x 2 m).
When neither of the two modules is engaged, it is equivalent
to FUEL [1] with the LIDAR-camera mapping module,
solving the path by considering all viewpoints. Fig. 7(b) and
the corresponding table data show that our viewpoint clus-
tering module considers the visibility between viewpoints,
reducing the detours across obstacles. Without the viewpoint
clustering module, the computation time sharply increases
as the number of viewpoints accumulates, causing lag in
algorithm execution. The comparison between Exp 2 and
Exp 4 demonstrates the effectiveness of history-aware global
planning for improving planning consistency and efficiency.
In conclusion, with all modules combined, our algorithm
generates a concise and consistent path with fewer revisits,

TABLE II: Results in the ablation study.

Setting Flight time(s) Path
length(m)

Avg Std Avg Std

Exp 1 ( Without
module VC & HAGP) 126.25 9.89 146.15 4.46

Exp 2 (Only VC) 109.04 8.24 116.68 10.81

Exp 3 ( Only HAGP) 129.47 16.65 143.17 9.21

Exp 4 ( With all
modules) 97.8 4.90 109.4 7.77

and it also exhibits good real-time capability.
D. Real-world Experiments

We further validate our method in real-world experiments.
Considering camera motion blur, we set the dynamics limits
as υmax = 1.6 m/s, amax = 0.8 m/s2 and ωmax = 0.9 rad/s.
The maximum observation distance dmax is set to 2.0 m,
within which the apriltag can be stably recognized. All of
our modules run onboard without relying on external devices.

The first scene consists of a cluttered indoor environment
(14 m x 7 m x 2 m ) with 6 apriltags. The second scene is a
maze (15 m x 8.5 m x 2 m) with 10 apriltags. Each apriltag
has dimensions of 0.12 m x 0.12 m. The three-dimensional
coordinates of each apriltag in the world frame are pre-
measured and calibrated using laser ranging. Utilizing the
UAV’s pose obtained by the SLAM module [28] and the
pose of the apriltags recognized in the camera frame, we
could compute the apriltags’ positions in the world frame.
In each experiment, all apriltags are successfully recognized,
with a coordinate error ranging from 0.2 m to 0.4 m. The time
taken for the two scenes are 110 s and 180 s respectively,
more details can be seen in the video. The online generated
map and trajectory are shown in Fig. 1 and Fig. 8. These
experiments validate the capability of our system in complex
real-world scenarios.



Fig. 8: Experiments conducted in a maze with 10 apriltags to be
found.

VIII. CONCLUSION

In this paper, we propose a systematic solution designed
to autonomous target search in complex unknown envi-
ronments. An aerial system with specialized sensor suites,
mapping, and planning modules is developed to enhance
task efficiency and completeness. A hierarchical planner
generates global and local paths with regional guidance
provided by a visibility-based viewpoint clustering method
in real-time. A history-aware mechanism is introduced to
prevent motion inconsistency in consecutive global planning
processes. Extensive simulation and real-world experiments
validate the effectiveness of our proposed method.

We have identified several directions for future work:
extending the current method to a multi-UAV swarm, con-
sidering conducting autonomous target search in complex
dynamic environments, and for dynamic targets.
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