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Abstract—Multiple object tracking is a critical task in au-
tonomous driving. Existing works primarily focus on the heuristic
design of neural networks to obtain high accuracy. As tracking
accuracy improves, however, neural networks become increas-
ingly complex, posing challenges for their practical application
in real driving scenarios due to the high level of latency. In this
paper, we explore the use of the neural architecture search (NAS)
methods to search for efficient architectures for tracking, aiming
for low real-time latency while maintaining relatively high accu-
racy. Another challenge for object tracking is the unreliability of
a single sensor, therefore, we propose a multi-modal framework
to improve the robustness. Experiments demonstrate that our
algorithm can run on edge devices within lower latency con-
straints, thus greatly reducing the computational requirements
for multi-modal object tracking while keeping lower latency.
Code is available at https://github.com/PholyPeng/PNAS-MOT.

Index Terms—Multiple Object Tracking, Neural Architecture
Search

I. INTRODUCTION

ULTIPLE object tracking (MOT) is a fundamental
task of consistently assigning a unique ID to each
observed object within a video sequence, which holds sig-
nificant importance across various domains, including motion
planning, safe robot navigation, and autonomous driving [20].
The primary challenge inherent to MOT lies in establishing
precise associations between tracklets from preceding frames
and the object detections within the current frame. To tackle
the complexities of multi-object tracking, two main-stream
paradigms have emerged: tracking-by-detection [35], [43] and
joint-tracking-and-detection [9], [33], [34]. The tracking-by-
detection paradigm follows a two-stage process. Initially, a
pre-trained detector is employed to procure object detections,
after which a tracker undertakes the data association task, as-
signing a distinct ID to each detected object across successive
frames. On the other hand, the joint-tracking-and-detection
paradigm endeavors to achieve detection and tracking concur-
rently, leveraging the benefits of joint optimization strategies.
In this paper, our focus lies specifically on the tracking aspect,
so we adopt the tracking-by-detection approach due to its its
inherent efficiency and proven effectiveness in addressing the
complexities of object tracking tasks.
In the task of Multiple Object Tracking, two primary
sensor modalities, namely images and LiDAR point clouds,
are extensively utilized. Various methodologies have been
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devised to address MOT challenges leveraging these sensor
modalities [2], [10], [35], [37], [42]. Recent studies have
revealed the limitations of relying solely on a single modality,
often resulting in mismatching issues. For example, cameras
offer the advantage of capturing rich texture details but are sus-
ceptible to variations in lighting conditions. On the other hand,
LiDAR sensors excel in capturing 3D geometry information
and maintaining robustness in adverse weather conditions, yet
with limitations on perceiving distant object detection owing
to the sparsity of points. As a result, methods [15], [29], [38]
utilizing the fusion features have been proposed. However,
the improvement of accuracy from multi-modal fusion often
comes at the cost of significant latency and high energy con-
sumption. These factors present significant challenges when
deploying such methods in practical scenarios, particularly
within autonomous driving systems.

To address these challenges, we propose the integration
of neural architecture search (NAS) techniques to search for
efficient deep neural networks (DNNs) [8]. Early NAS meth-
ods primarily focused on improving accuracy by searching
for network architectures within an expansive search space
containing numerous structures. For example, DARTs [1§]
propose to formulate the searching task in a differentiable
manner, focusing solely on the search for minimal network
blocks, which are subsequently utilized to construct complete
networks. Under the context of the challenging multi-modal
MOT, we focus on latency-constrained NAS to search for
architectures that exhibit superior performance while main-
taining minimal latency. Specifically, we propose a Pareto
optimization scheme to find the optimal Pareto frontier for
the best trade-off between latency and accuracy. Subsequently,
we select the network architectures that are capable of simul-
taneously achieving the desired levels of latency and accuracy.
Moreover, our proposed multi-modal framework integrates in-
formation from both sensors to enhance robustness in handling
challenging scenarios. Through a learned weighted feature
fusion mechanism, the framework assigns greater significance
to LiDAR point cloud features when cameras encounter diffi-
culties or fail, and vice versa.

To summarize, our contributions are as follows:

e We propose a constrained neural architecture search
(NAS) method that searches for network architectures
capable of completing the MOT task within a specified
time limit. This is solved by a Pareto frontier searching
algorithmic scheme, which finds a suitable latency accu-
racy trade-off.
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o We evaluate the proposed algorithmic framework on the
KITTI benchmark and achieve 89.59% accuracy close to
the SOTA methods while keeping the latency below 80
milliseconds on different edge devices.

II. RELATED WORK
A. Multiple Object Tracking

Recent MOT methods have made remarkable progress
largely due to powerful deep neural networks. Sun er al
[30] concentrate on object affinity between different frames
and propose an efficient online tracking network named Deep
Affinity Network (DAN). Wang et al. [35] introduce an
attention mechanism to fuse features from multiple modali-
ties. However, object occlusion and overlapping significantly
impair the accuracy of localizing and tracking objects. To
overcome this issue, Ren et al. [26] introduce the Recur-
rent Rolling Convolution (RRC) architecture. Tracklet-Plane
Matching (TPM), proposed by Peng et al. [24], is an approach
to reduce the influence of noisy or confusing object detection
and improve the performance of MOT.

Existing work [4], [36] propose methods for more efficient
use of point cloud information for better object tracking
performance, and [17] propose methods for improving the
robustness of tracking. Wu et al. [39] utilize prediction con-
fidence to guide data association and build a more robust
tracker for objects temporarily missed by detectors. Dunnhofer
et al. [7] propose a weakly-supervised adaptation strategy
and utilize knowledge distillation to overcome inadequate
tracking accuracy in many domains due to distribution shift
and overfitting. Jong et al. [5] introduce APPLE MOTS, a
dataset of homogeneous objects and propose TrackR-CNN
and PointTrack architecture for joint detection and tracking.
Fu et al. [11] propose a novel scale-aware domain adaptation
framework, ScaleAwareDA, to solve the gap issue on object
scale between the training and inference phases.

B. Multi-modal fusion

Multi-modal fusion remains a burgeoning area of explo-
ration within the domain of autonomous driving [23], [40].
By combining features derived from diverse modalities, it
offers a potent strategy to mitigate the limitations inherent
in single-modality approaches in Multiple Object Tracking
(MOT) tasks, including issues related to mismatching and
unreliability. Addressing the challenge of weak-pairing char-
acteristics in multi-modal fusion, Liu et al. [19] have made
notable strides in enhancing the fusion effectiveness. A va-
riety of modalities and sensors are employed for multimodal
fusion regarding the application scenarios. For instance, Qu
et al. [25] utilize visible, infrared, and hyperspectral sensors
simultaneously to increase accuracy and robustness for object
detection and tracking tasks. In a similar way, Zhang et al.
[44] leverage data extracted from paired images and velocities,
and then propose an efficient vehicle tracker, underscoring
the versatility of multi-modal fusion techniques. EagerMOT,
introduced by Kim et al. [15], exemplifies the integration of
information from depth sensors and cameras, facilitating the
identification and localization of distant incoming objects with

heightened precision and reliability. Moreover, Xu et al. [41]
delve into the semantic-level fusion of 2D RGB images and 3D
point clouds, aiming to enhance detection performance through
a nuanced integration strategy.

C. Neural Architecture Search

Neural Architecture Search (NAS) is a method for auto-
mated neural network search particularly in pursuit of high
accuracy. NAS is usually implemented with two categories of
approaches, i.e., reward-based methods (e.g., Reinforcement
Learning) and gradient-based methods. Zoph et al. [45] utilize
reinforcement learning to train an RNN network that generates
the model descriptions of neural networks. Liu er al. [18]
introduce a differential search space that allows the use of
gradient descent for architecture search. Constrained-NAS are
proposed to satisfy relatively insufficient computing resources
for limited computing platforms (e.g., Edge-GPU, FPGA).
Tan et al. [31] introduce latency constraints into the mobile
neural architecture search (MNAS) approach and achieve
high accuracy on mobile equipment. However, a trade-off
between resource consumption and accuracy deteriorates the
network accuracy and fails to meet the constraints strictly. To
address this, Nayman et al. [22] further strengthens the latency
constraints and proposes the HardCoRe-NAS method, which
satisfies the constraint tightly without sacrificing accuracy.

III. METHODS
A. Problem Statement

In this paper, we follow the widely adopted tracking-
by-detection paradigm, where a set of object detections is
first obtained from a pre-trained detector. Let the detection
results in 7T consecutive frames of a video sequence be
O ={0',---0t,---0T}, where O! = {0?},]' =0,1,--- Nt
and of = (b%,t). Ny is the total number of detections of the
t-th frame, and b§- is usually a 2D bounding box on image
plane for 2D detection results, while a 3D bounding box for
3D detection results, and ¢ is the time stamp. The goal of
multiple object tracking is to assign an ID for each instance
detection 0§. A tracklet is defined as a set of object detections
in different frames, 7 = {ofcl1 , 0’,;22,023; ,- -+ }. The objective of
consistent ID assignment can be interpreted as finding a set
of tracklets 7 = {7;},7 = 0,1,---n, that can best explain
the object detections. The problem is defined as predicting the
correct tracklets 7 by maximizing the conditional probabilities
given the set of object detections O.

T* =argmaxP (7 | O). (1)
T

For a successful tracking process, the ID assignment must
be consistent and unique for the same instance in a video
sequence. As shown in Figure 2, the three tracked objects
whose IDs are 0, 227, and 229 respectively, are a successful
tracking procedure, because the assigned IDs are consistent
in two consecutive frames ¢ — 1 and ¢. However, for the car
whose ID is 220 in frame ¢ — 1, the ID is assigned to the
blue vehicle at the left bottom of the image, but it’s wrongly
assigned to the black vehicle in frame ¢.
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Fig. 1. The structure overview of the tracking framework. We take image patches and LiDAR point clouds as input, which are processed respectively by
a corresponding encoder. A fusion module is then used to fuse the multi-modal features. The fused features are split into tracklet features and detection
features, from which the correlation features can be calculated. These features are input to the following adjacent estimator to infer confidence and affinity
scores. At last, linear programming is used to update the new tracklets from the inferred scores.

B. Tracking Network Structure

For the tracking network, we take the image and point
clouds as input. Through a detector, we obtain the object
detections in frame ¢. To reduce the amount of data, we crop
the instance detections from the full image and then resize
them to image patches whose size is 256 x 256. In 3D spaces,
we remove the point clouds outside the bounding box and
convert the remaining points to Birds Eye View (BEV) images
whose resolution is 256 x 256.

Next, as shown in Figure 1, in an online setting, tracklets
Ti—1 = {01}, where n = 1,2,--- | N, with N being the
number of tracklets in frame ¢ — 1 and object detections
O! = {ol,}, where m = 1,2,--- M, with M being the
number of detections in frame ¢, are fed to the feature
extraction network, which consists of two branches, an image
encoder, and a LiDAR encoder, each comprised of a normal
cell and a reduction cell searched from the latency constraint
NAS method. We can get the feature encoding from each
modality and then add them together to obtain the fused
feature, whose size is (N + M) x D.

During the following correlation process, the fused feature
is split to a IV x D vector and a M x D vector. Then the two
vectors are used to calculate the correlation features between
existing tracklets and current detections. In this work, the
difference calculation is defined as Dy, ., =| fi=' — fi |,
where fi=1 and f!, are the features of the n-th object in
frame ¢t — 1 and the m-th in frame ¢ respectively.

Following previous works [10], [16], [28], [43], MOT can
be solved as a min-cost flow problem. Together with the fused
features, correlation features are then fed to the adjacency
estimator adapted from [43], which infers the corresponding
new, end, confidence, and affinity scores. The predicted scores
are used to construct a graph with each edge representing
the cost. Then, we use the mixed integer programming (MIP)
solver provided by Google OR-Tools ! to find the optimal
solution in the min-cost graph, generating the updated tracklets

Ihttps://developers.google.com/optimization

by adding the connected detections to their corresponding
tracklets or initiating a new tracklet.

During the data association process, for the matched track-
lets and detections, the tracklet will be updated by appending
the detection to the tracklet. The object detection will obtain
the ID from the corresponding tracklet through the ID prop-
agation process. For the unmatched detection, it will not be
instantly initialized as a new tracklet, instead, a birth check
procedure is used to check whether it’s a wrong detection or
not. Only when the detection appeared in tp;.+;, consecutive
frames, the detection will be initialized. Similarly, for the un-
matched tracklets, we won’t delete them immediately, instead,
we check if they disappeared in ¢g.q:, frames.

C. Hardware latency function

To enable efficient NAS, we need to estimate the latency of
the network architecture on specific hardware platforms. We
test the latency of different operations. We first list all the
possible in_channels, out_channels, resolutions, and other
parameters used in our architectures. Every set of parameters
is defined as a configuration. We set a random input with the
corresponding input size of every configuration and pass it to
the operation. The time spent is recorded by a preset timer.
After hundreds of repetitions of such processes and an aver-
aging procedure, we obtain a dictionary of the average latency
per iteration for every operation with different configurations.

The architecture encoding «; for each operation op;, where
i = 1,2,---n with n being the number of operations, can
be obtained through a Softmax function, then the estimated
latency can be obtained from a weighted sum:

Lat(a) = Z a; - Lat(opi),
i=1

where the Lat(op;) can be easily acquired through a table-
lookup process.
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Fig. 2. Successful and failed examples of multi-object tracking. Green
bounding box: The assigned IDs 0, 227, and 229 are consistent in two
consecutive frames t—1 and ¢, which are successful trackings. Red bounding
box: The ID 220 is wrongly assigned to the black vehicle in frame ¢, which
is a failure tracking. Under the tracking-by-detection setting, Multi-object
tracking can be regarded as a downstream detection task. It is hard to track
dynamic objects under occlusion, which is common in real driving scenarios
and significant for safe autonomous driving.

D. Pareto Optimization

Fig. 3 shows the structure overview of the MOT framework.
We aim to find an optimal DNN that suits the latency accuracy
trade-off. To achieve this trade-off, we design a two-stage
Pareto optimization scheme.

For the first stage, we search for efficient network structures
with the proposed constrained-NAS method. The backbone
architecture to be searched is parameterized as «, and the
search space is denoted as S. Therefore, the complete network
parameters are ( = («, 6), consisting of the architecture «v and
the corresponding weights 6. Thus, the optimization problem
is formulated as follows with tracking accuracy and latency
objectives,

afg}g}e{Eo,%DW [£(O,T|0,a)]} )

where D,,,; denotes the distribution of the validation dataset,
and £ = Lirgek + Ajatency denotes the overall loss function
which consists of the performance loss Lyqck, the latency
function Lig¢ency and the weight coefficient A. To solve this
multi-objective optimization problem, we implement a Pareto
optimization procedure, consisting of two alternating stages.

Our goal for the first stage is to find the best architecture
a* of the backbone on the training dataset Dyy.qip, -

o = argmin Eo 7p,,... [C(O, T | 6,a)] 3)

Note that we set A > 1 since we mainly focus on reducing
the latency in the first stage. We avoid solely using the
latency loss function because « can influence both latency
and performance.

For the second stage, we attempt to find the best model (*
with the highest accuracy using the searched architecture o*
from stage I. The optimization problem can be formulated as,

val [‘Ctmck ((’)7 T | 0, 04*)] 4)
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Fig. 3. The searching and training process is divided into two stages. We
obtain the optimal network structures in the first stage through constrained
NAS and get the optimal network parameters in the second training stage.

Algorithm 1 Stage 1: search for feature extraction backbone
Input: Object detections O, Ground truth tracklets T
Qutput: Optimal network structure encoding a*
Initialize architecture o = ay
for each epoch ¢ do
if converged then
Generate the optimal architecture encoding a*;
else
Update the architecture encoding o
Calculate the estimated latency from «
for each iteration t do training
backpropagation with loss function
£track + A‘C'latency
Update the network parameters 6
end for
Evaluation on the validation dataset
end if
end for

After several iterations of the two-stage searching on the
Pareto front of latency and accuracy, we can obtain the optimal
parameters (*.

0* = argmin Ep 7p,,... [L(O,T | 6,a")]
)

("= (%, 07)
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E. Two-stage Neural Architecture Search

We divide the training process into two stages. In the first
stage named train search, we first update the architecture
parameters o« = «g. Then for each epoch, we use the
architecture from the last epoch to build our tracking network.
We train the tracking network for 7' iterations, after which
the model will be evaluated on a validation dataset to test
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Fig. 4. Comparison with other methods on the KITTI testing dataset. The
x-axis represents the reciprocal of the latency. As shown in the figure, our
method minimally sacrifices the MOTA metrics and achieves outstanding
performance on latency, with less than half the latency of mmMOT.

its performance. If the result does not converge, we continue
to update the architecture parameters « for the next training
epoch. In order to search for an efficient network structure
with a low inference time, we add a latency constraint to the
loss function for the first stage.

The second stage is the further training stage. In stage one,
the operations between each node are mixed operations, each
with a different weight ranging in (0, 1), which causes the
model will be extremely heavy. Therefore, we will remove the
operations with low weight to reduce the size of the model.
Pruning the low-weight operation will lead to a gap between
the model from the first stage and the second stage. As a
result, we continue to train the pruned model to get the best
tracking network. In the second stage, the latency constraint is
removed because the architecture will not be updated anymore.
We focus on the improvement of accuracy in this stage.

Algorithm 2 Stage 2: Training with the searched architecture
Input: Object detections O, Ground truth tracklets T
Output: Optimal network weights 6*
Initialize architecture o = o*
for each iteration ¢ do
if not converged then
Backpropagation using loss function Ly,.qck
Update the weights 6 for the tracking network
else

Save the model ¢* with best performance
end if
Evaluation on validation dataset at a fixed interval
end for

IV. EXPERIMENTS
A. Accuracy on KITTI Benchmark

Our model is trained and evaluated on the KITTI Bench-
mark [12], which consists of 29 testing sequences and 21

training sequences. Since KITTI does not provide an official
validation dataset, we choose sequences 00, 02, 05, 07, 10,
11, 14, 16, 17, 18, and 19 as the validation dataset and the
rest as the training dataset.

We submit the tracking results obtained from our model
with the best performance on the validation dataset to the
KITTI server, to evaluate our performance on the testing
dataset. The comparison of runtime and accuracy can be
observed in Figure 4. We compared our performance with
other methods [ 1], [3], [6], [14], [15], [21], [29], [43]. Though
our method may not come state of the art in accuracy (MOTA),
our model can maintain relatively high accuracy with a short
inference time. The quantitative results are demonstrated in
Table I, and the qualitative results are illustrated in Figure 5.

B. Latency measured on different devices

We randomly chose sequence 19 from the KITTI dataset
as a validation set for our evaluation, containing 1059 data,
images, and point cloud files. We use the validation data to
calculate the average inference time.

As Table II shows, we evaluated our algorithm on differ-
ent GPUs, including Jetson Nano, Jetson Orin Nano, GTX,
Quadro, and TITAN. We conduct experiments on both edge
devices and effective GPUs. The results show that our algo-
rithm can run on Jetson Nano, whose memory size is only
2GB, and the inference time is under 80ms. When running
on other high-performance GPUs, the inference time can be
reduced to less than 8ms at most.

During the search process, we made a trade-off between
accuracy and latency. As can be observed from Table III, we
can relax the latency constraint by reducing the parameter A
in the loss function of the first stage, resulting in a higher
accuracy with higher latency.

C. Ablation studies

To evaluate the effectiveness of the latency constraint neural
architecture search method. We conduct an ablation study on
the KITTI dataset [12]. We compare the performance of three
different search modes. For search mode 0, we only search for
the image branch of the feature extraction backbone, and we
use ResNet18 as the LiDAR branch. Similar to search mode
1, we use ResNet34 as the image branch and solely search
for the LiDAR branch. Besides, we search for both image and
LiDAR branches simultaneously under the setting of search
mode 2. The experiments are conducted on Quadro RTX 6000.
We choose sequence 0,2,5,7,10,11,14,16,18,19 of the KITTI
dataset to evaluate the MOTA and sequence 19 to evaluate the
latency of our searched network architectures.

As shown in Table IV, compared with search mode 0 and
1, at search mode 2, the latency can be reduced significantly,
and the MOTA can be improved, especially the memory
size during inference can be reduced by 22.3% and 14.8%,
respectively. The model trained from search mode 2 can run
on Jetson Nano, while the other two cannot since the Jetson
Nano only has a 2GB memory size.



Sequence 0002 Sequence 0011 Sequence 0012

Frame 006 (8 " s - Frame 002 5 ™ Frame 048

= o =
Frame 003 - \ Frame 049 “
3 T RS
= 117 1986 il }29 28301 14

Frame 050

B 5 \ 5 / 1 AW,

22

Frame 045 § 4 =i : 5 Frame 065

Frame 066
A

a4 a

A

Frame 067
P &t " L/
F 1

3714 S 1301433

Fig. 5. Tracking results of our multi-object tracking model. We illustrate the tracking results of different sequences from the testing dataset of the KITTI
benchmark. These are some of the extreme conditions under highly complex environmental challenges. Yet our model accurately keeps track of every object
despite the interference of illumination, shadows, and occlusions. This suggests our multi-object tracking model has high accuracy and robustness concerning
complex background environments.

TABLE 1
COMPARISON ON THE TESTING DATASETS OF KITTI.

Method \ MOTAT MOTPfT IDSW| HOTAT DetA 1 AssA1T FNJ| FP| Frag] MT{ ML|
DSM [10] 73.94 83.5 939 60.05 64.09 57.18 637 7388 737 59.38  8.46
extraCK [13] 79.29 82.06 520 59.76 65.18 55.47 675 5929 750 62.31 5.85
FANTrack [1] 75.84 82.46 743 60.85 64.36 58.69 1305 6262 701 62.77 877
MOTBeyondPixels [29] 82.68 85.50 934 63.75 72.87 56.4 741 4283 581 72.61 292
PMBM [27] 79.23 81.58 485 59.12 65.43 54.28 1024 5634 554 62.77 6.46
JCSTD [32] 80.24 81.85 173 65.94 65.37 67.03 405 6217 700 57.08  7.85
mmMOT [43] 83.23 85.03 733 62.05 72.29 54.02 752 4284 570 7292 292
Ours | 89.59 85.44 751 67.32 77.69 58.99 568 2261 276 86.59 2.46
TABLE II

LATENCY ON DIFFERENT DEVICES. THE PERFORMANCES OF OUR ALGORITHM ON DIFFERENT DEVICES STRICTLY SATISFY LATENCY REQUIREMENTS
AND ARE FAR BETTER THAN THE MINIMUM LIMIT.

Devices Latency (milliseconds)  Floating-point performance (GFLOPS)  compute capability =~ Memory Size (GB)
Jetson Nano 78 235.8 53 2
Jetson Orin Nano 58 1280 8.7 8
GTX 1050 Ti 18 2138 6.1 4
GTX 2080 Ti 10 13450 7.5 11
Quadro RTX 6000 8 16310 7.5 24
Quadro RTX 8000 8 16310 7.5 48
TITAN RTX 9 16310 7.5 24
TITAN V 8 14900 7.0 12




TABLE III
MOTA-LATENCY TRADE-OFF ON THE VALIDATION DATASET

A Latency (ms) MOTA (%) HOTA (%) IDSW
10.0 6.2 89.42 71.02 334
1.0 8.3 90.48 73.85 235
0.1 10.1 90.91 75.84 188
0.01 21.0 91.01 76.82 183

TABLE IV

COMPARISON BETWEEN DIFFERENT SEARCH MODE

Search Mode  Latency (ms) MOTA %  Memory Size (MB)
0 12 90.3 2462
1 10 90.6 2246
2 8 90.9 1913

D. Implementation Details

We test the latency of our model on different devices. The
best model is trained on an RTX 8000, and the batch size we
use is 1. We use ADAM as our optimizer with a learning rate
of 3e~6. The search space is adapted from DARTSs [ 18] while
modified to fit the MOT tasks. The candidate operations are
as follows: none, identity, 3 x 3, 5 x 5, 7 x 7 separable
convolutions, 3 x 3, 5 x 5 dilated convolution, 3 X 3 max
pooling, and 3 x 3 average pooling.

In our designed architecture, there are two branches in
the feature extraction backbone, one is image modality, and
the other one is LiDAR modality. For each branch, the
network consists of two different kinds of cell, normal cell
and reduction cell, where the former one does not change the
feature channels while the latter one does. Each cell consists
of N nodes, where each edge between two nodes represents an
operation in a pre-defined search space. Our goal is to find the
best architecture of normal and reduction cells, including the
connection between each node and the operation of each edge.
Notably, the searched architecture parameters « are shared by
cells of both branches.

V. LIMITATION

We employ DARTS [18] as the backbone for Neural Archi-
tecture Search, where the network structure is parameterized
by weights assigned to edges between nodes. The searched
structure is obtained by discarding edges with weights falling
below a certain threshold. Consequently, the structure of Stage
IT deviates slightly from that of Stage I. This discrepancy
introduces a minor deviation in the searched structure from
the optimal configuration.

VI. CONCLUSION

In this paper, we introduce a latency-constrained multiple
modalities fusion neural architecture search method for MOT
tasks. Numerical experiments have demonstrated the supe-
riority of our proposed scheme. We have achieved 89.59%
accuracy close to the SOTA methods while keeping the latency
below 80 milliseconds. This methodology may serve as a
foothold for future efficient autonomous driving research.
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