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From Propeller Damage Estimation and Adaptation
to Fault Tolerant Control: Enhancing Quadrotor Resilience

Jeffrey Mao*, Jennifer Yeom*, Suraj Nair, and Giuseppe Loianno

Abstract—Aerial robots are required to remain operational
even in the event of system disturbances, damages, or failures to
ensure resilient and robust task completion and safety. One com-
mon failure case is propeller damage, which presents a significant
challenge in both quantification and compensation. In this paper,
we propose a novel adaptive control scheme capable of detecting
and compensating for multi-rotor propeller damages, ensuring
safe and robust flight performances. Our solution combines an
L1 adaptive controller with an optimization routine for damage
inference and compensation of single or dual propellers, with
the capability to seamlessly transition to a fault-tolerant solution
in case the damage becomes severe. We experimentally identify
the conditions under which the L1 adaptive solution remains
preferable over a fault-tolerant alternative. Experimental results
validate the proposed approach demonstrating the ability of
our solution to adapt and compensate onboard in real time
on a quadrotor for damages even when multiple propellers are
damaged.

Index Terms—Aerial Systems: Mechanics and Control; Aerial
Systems: Applications

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/elVO0-tkPs0

I. INTRODUCTION

M ICRO Aerial Vehicles (MAVs) such as quadrotors are
becoming ubiquitous in applications such as search

and rescue and aerial photography [1]. However, MAV-related
accidents hinder the growth of the industry and erode public
confidence in drone safety. As a result, it is necessary to
develop inference and control approaches that can guarantee
safe and reliable flight in case of system damage. Propellers
on MAVs are susceptible to damage, especially in the event of
collisions or after prolonged use, primarily due to their size,
location, and lightweight construction. In addition, detecting
the occurrence and location of propeller failures is challenging.
Indirectly sensing individual motor thrusts is further compli-
cated due to the nonlinear dynamics of the quadrotor and the
difficulty of measuring higher order angular acceleration or
moment terms. Our work specifically introduces an adaptive
control scheme for quadrotors to autonomously infer and
adjust flight behavior in response to propeller damages or
failures.
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Figure 1: L1 adaptive and fault-tolerant control with one
damaged propeller (circled in red dash). The fault-tolerant
controlled quadrotor is forced to spin (over 1000 deg/sec).

This work makes the following contributions. First, we pro-
pose a propeller damage estimation technique by combining
an L1 Adaptive algorithm and an optimization routine with no
need for direct RPM (Rotations Per Minute) measurements or
estimation of angular accelerations, making it suitable for low-
cost systems. Second, we propose a holistic control scheme
coupling the L1 adaptive and fault-tolerant controller modules
for autonomous transition from L1 adaptation to the fault-
tolerant mode in situations where adaptation alone proves
to be insufficient for ensuring safe and effective flight. This
approach enhances the system’s capability to manage the
full range of propeller damage. Finally, we demonstrate the
performance of the damage estimation and controller design
in extensive real-world experiments and compare our estima-
tion method to using a standard PID (Proportional Integral
Derivative) controller. This is the first work to tackle precise
estimation and compensation of propeller damage rather than
considering a reduction of effectiveness of a motor-propeller
pair. Challenges include unequal loss between thrust and
torque coefficients along with additional noise on the system
from damaged propellers as well as the unavailability of direct
RPM measurements.

II. RELATED WORKS

Damage Estimation. Research in fault estimation covers
a variety of vehicles detailed in this survey [2] such as
fixed wings and rotary aerial robots. We can divide methods
handling propeller damage into two categories: empirical and
state estimation methods. Empirical works address propeller
damage estimation through parameter identification [3] or
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sensor noise analysis [4]. The approach proposed in [3] suc-
cessfully estimates the loss of effectiveness of a single motor
but is only tested in simulation, whereas [4] uses accelerometer
noise to estimate propeller damage, but is only tested on a
minuscule amount of propeller damage.

Other works rely on state estimation to accurately measure
the damage [5], [6]. These typically have a slower response
time than empirical methods, and are only able to handle
motor damage estimation rather than propeller damage as
in the proposed work. They typically assume the damage
from the propeller motor pair can be represented as a scaled
factor of each individual RPM. For the case of propeller
damage, this assumption is not accurate. The thrust and torque
coefficients scale with the propeller radius, r, as a function of
r4 and r5 respectively [7]. This increases the complexity of
our propeller damage compared to the problems in [5], [6],
[8]. Typically a reduced state Kalman Filter [5], [6], [9] is
used in either a single [5], [9] or cascaded [10], [11] form.
These studies test their systems by artificially injecting a fault
that decelerates the motor rather than testing true propeller
damages. State estimation through cascaded Kalman Filters
can infer and adapt up to 60% motor damage in [11]. However,
it is only tested in simulation for motor damage and does not
include the possibility to switch to the fault-tolerant mode. Our
work negates up to 40− 60% propeller damage in real-world
experiments as shown in Fig. 1. Uniquely, [8] implements a
Kalman filter method to detect a complete loss of a propeller
and is able to detect a fault within 0.1 s of occurrence.
However, this method requires accurate RPM measurements
and cannot adapt to propeller damage.

Damage Compensation. Once propeller damage is esti-
mated, there are two options to incorporate damage compen-
sation into control. The first option is adaptation where the
damaged propeller is given a scaled up motor action [5], [6]
to compensate for the damage. This adaptation is effective for
small and medium damages but is unable to stabilize the robot
for severe damages. The second option is to employ a fault-
tolerant control strategy that completely disables the damaged
propeller [3], [12] but sacrifices yaw control.

A few adaptive techniques are Incremental Nonlinear Dy-
namic Inversion (INDI) [13], dual loop disturbance ob-
servers [14], and L1 [15]–[17]. These works provide additional
control actions that augment the capabilities of a baseline
controller to reject some actuator damages or disturbances.
However, none of the above works provides an estimate to
judge when propeller damage is too severe for adaption as
shown in the proposed work. Other methods exist for adapta-
tion [18]–[20], through model identification or automatic gain
tuning, but cannot adapt to rapid changes. In this work, we
design an L1 adaptive technique to compensate and accurately
estimate propeller damage. Unlike INDI [13] that requires
angular acceleration which is difficult to estimate, our method
only requires angular velocity which can be obtained from an
on board Inertial Measurement Unit (IMU).

Existing fault-tolerant control strategies are adept at ensur-
ing robust control even in the event of single or multiple
rotor failures [2], [13], [21], [22]. However, these solutions
require identifying the faulty propeller, and sacrificing yaw

Figure 2: MAV model with inertial and body frame definitions.

control which results in a rapid yaw spin as depicted in
Fig. 1 making them unsuitable for small to medium damages.
Our work introduces a holistic control scheme designed to
detect, infer, and compensate for propeller damage, with the
capability to smoothly transition to a fault-tolerant solution
when severe damage is detected allowing effective operations
for safe recovery and navigation.

III. METHODOLOGY

A. Preliminaries

We use two coordinate frames to represent the dynamics
of the system. As shown in Fig. 2, we choose the inertial
reference frame as

[
e1 e2 e3

]
and the body fixed frame as[

b1 b2 b3

]
. The origin of the body frame is aligned with

the center of mass of the MAV. The body frame follows the
East North Up (ENU) coordinate system. The first axis b1 is
aligned to the heading and the third axis, b3 aligns with the
thrust vector of the vehicle. The dynamics of the system can
be written as

ṗ = v,

mv̇ = mge3 + q⊗ fe3,

q̇ =
1

2
q⊗

[
0
Ω

]
,

M = JΩ̇+Ω× JΩ,

(1)

where p ∈ R3, and v ∈ R3 are the position and velocity in
the world frame. R ∈ SO(3) is a rotation matrix from the
body fixed frame to the inertial frame, q is the quaternion
representation of R, and ⊗ is quaternion multiplication. f ,
m, g are the thrust, mass and gravity respectively, Ω ∈ R3

is the angular velocity with respect to the body frame, M =[
M1 M2 M3

]⊤
are the moments around the three body

frame axes, and J ∈ R3×3 is the robot inertia matrix.

B. Control Design

We adapt the geometric controller derived in [23] for the
possibility of propeller damage, or fully losing one or two
opposing rotors in flight. An outer controller solves for the
desired attitude R, thrust f , and angular velocities Ω. The
inner controller solves for the moments required to control the
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Figure 3: The cascaded control scheme, shows the L1 Adapta-
tion Controller (blue), receives the partial state feedback from
the system. The Fault Tolerant Controller (pink) is activated
only once damage estimate exceeds 50%.

attitude of the MAV. The geometric controller tracks position
p and yaw ψ by generating force and moments control signals.
The L1 augmentation is inserted into the controller as seen in
Fig. 3. The L1 controller uses a state predictor to estimate
the partial state [v⊤ Ω⊤]⊤ with the unknown disturbances.
The adaptation law compares the prediction to the measured
state and generates the control output to compensate for
disturbances. If the adaptation law accurately estimates the
unknown disturbances then the tracking error will converge
to zero [24] assuming the augmented action is with in the
actuator limits.

1) Outer-loop Controller: As per the standard geometric
control algorithm, the thrust vector is normalized and chosen
as the third body axis, or thrust vector b3 as

b3 =
v̇ + ge3
∥v̇ + ge3∥

. (2)

Next, we formulate the rotation matrix based on ψ or the
yaw of the vehicle. We denote the individual elements of the
thrust vector as b3 =

[
b3x b3y b3z

]⊤
. We can formulate a

quaternion representing the desired tilt, qtilt, and yaw rotation
qψ such as in [25]. The below quaternion formulations are all
scalar first notation.

qtilt =
1√

2(1 + b3z)

[
1 + b3z −b3y b3x 0

]
,

qψ =
[
cos(0.5ψ) 0 0 sin(0.5ψ)

]
.

(3)

Multiplying the quaternion qtilt and qψ we formulate the full
vehicle’s rotation with qd being the quaternion representation
of desired orientation, Rd. A rotation matrices representation
of eq. (3) is in [21]

qd = qtilt ⊗ qψ. (4)

The first control input, thrust, is solved for with

f = m (kp(p− pd) + kv(v − vd) + v̇d + ge3) · b3, (5)

where pd and vd are desired position and velocity of the
vehicle and kp,kv ∈ R3 are the gains for the respective errors.
Lastly, the desired angular velocity Ωd, is[

0
Ωd

]
= 2q−1

d ⊗ q̇d, (6)

as a function of the desired ḃ3 and ψ̇ such as in [25] .
2) Inner-loop Controller: The inner controller solves for

the second control input, moment, from the error in attitude
and error in angular velocity. In a traditional geometric con-
troller [23], the attitude tracking error, eR is calculated by
using the rotation matrices as

eR =
1

2
(R⊤

d R−R⊤Rd)
∨, (7)

where the ∨ term converts a skew-symmetric matrix to
vector form. For the fault-tolerant controller, we use a re-
duced attitude error metric to decouple the yaw control that
shows improved performances as demonstrated in our recenter
work [21] for the fault-tolerant control case

eRreduced = b3d × b3, (8)

where b3d is the normalized desired thrust vector and b3 is
the current z axis of the body fixed frame we get from the
localization. The cross product of b3d and b3 measures how
much the actual direction deviates from the desired direction.
The angular velocity error, eΩ is calculated by

eΩ = Ω−R⊤RdΩd. (9)

The moments are calculated using

M = −kReR − kΩeΩ +Ω× JΩ, (10)

where kR and kΩ are rotation and angular velocity gains.

C. Adaptive Control

We supplement our controller with an L1 adaptive controller
by including two elements: 1) an adaption law to solve for
an action to counteract the un-modeled disturbances on the
system, and 2) a state predictor to estimate a predicted state,
linear vp and angular Ωp velocities given the L1 action and
un-modeled disturbances.

1) L1 Adaptation Law: First, we characterize the distur-
bances σ =

[
f⊤ext M⊤

ext
]⊤

which represents the un-modeled
force and moments on the vehicle both expressed in the body
frame. These disturbances are obtained using the error between
the predicted state velocity

[
v⊤
p Ω⊤

p

]
generated from the

state predictor in Section III.C.2 and measured velocities,

Algorithm 1 L1 Adaptation Control Step [k] → [k + 1]

Input: Measured velocities vm[k],Ωm[k]
Output: L1 Force and Moment fL1[k],ML1[k]
State: Predicted velocities vp[k],Ωp[k]
L1 Adaption control law Section III.C.1

1: Calculate the Disturbances, σ[k] (eq. (11))
2: fL1[k] = LPF(−σ3[k])
3: ML1[k] = LPF(−σ4:6[k])

State Predictor (Update) Section III.C.2
4: Solve for v̇p[k] (eq. (12)) and Ω̇p[k] (eq. (13))
5: Solve for vp[k + 1] and Ωp[k + 1] (eq. (14))
6: Update the Current [k] with the Next State [k + 1]
7: Add fL1[k] the base thrust control eq. (5)
8: Add ML1[k] to the base moment control eq. (10)
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(vm,Ωm). Let k denote the discrete time step of the system.
We set a diagonal gain defined by the user K ∈ R6×6 to
generate a specific gain, A, based on the time step, dt, between
k and k + 1 time instants with

A = (exp(K · dt− I)−1K) exp(K · dt),

σ[k] =

[
mR⊤ 0
0 J

]
A

([
vm[k]
Ωm[k]

]
−
[
vp[k]
Ωp[k]

])
.

(11)

We solve the additional action µL1 =
[
fL1 M⊤

L1

]⊤
from

our disturbance σ. The moment disturbance estimates σ4:6

and disturbance along the thrust axis σ3 can be negated by
providing an equal but negative compensation to cancel the
disturbance µL1 = −σ3:6. We implement an exponential Low
Pass Filter (LPF) to mitigate the noise present in the state
estimation, achieving smoother results: µL1 = −LPF(σ3:6).
fL1 and ML1 are added to eq. (5) and eq. (10) respectively
and reflected in Fig. (3).

2) State Predictor: Separately, once we solve for the action
µL1 and external disturbances σ, we solve for the next
predicted velocities of our system, (vp[k],Ωp[k]) → (vp[k +
1],Ωp[k + 1]). First, we solve for the linear and angular
acceleration v̇p[k] and Ω̇p[k] as

v̇p[k] =
(f [k] + fL1[k])

m
Re3︸ ︷︷ ︸

actuation

+
1

m
Rσ1:3[k]︸ ︷︷ ︸

disturbance

+ ge3︸︷︷︸
gravity

, (12)

Ω̇p[k] = J−1(M[k] +ML1[k]︸ ︷︷ ︸
actuation

+ σ4:6[k]︸ ︷︷ ︸
disturbance

−Ωm[k]× JΩm[k]︸ ︷︷ ︸
cross

).

(13)
Finally, we integrate over a time step dt with a weighted
average of the measurement and the predicted velocities. A
weighted average is used to filter the noise inherent in the
measured velocity[
vp[k + 1]
Ωp[k + 1]

]
= (1− λ)

[
vp[k]
Ωp[k]

]
+ λ

[
vm[k]
Ωm[k]

]
+ dt

[
v̇p[k]

Ω̇p[k]

]
.

(14)
The weighted average term is λ = K · dt. This is predicted
value is looped backed into our L1 control law eq. (11) in the
next time step k + 1

D. Propeller Damage Estimation

We estimate the propellers’ damage using our augmented
control. We assume that in nominal flight conditions a
quadratic relationship between the ith propeller thrust and
corresponding motor speed fi = kfrealω

2
i where kfreal represents

the true thrust coefficient of the propeller and ωi is the motor
speed of the ith propeller. A damaged propeller spinning at the
original RPM provides lower thrust due to the change in kfreal .
We quantify our propeller damages on the thrust coefficient
by the following mismatch index

kfmis = 1− kfreal

kfmodel

, (15)

where kfmodel is the thrust coefficient used by our controller.
When a propeller gets damaged, both the thrust coefficient kf
and torque coefficient km are affected. The two coefficients de-
cay as functions of the propeller radius r4 and r5 respectively

[7]. Due to this relationship, a damaged propeller spinning at
higher RPM will provide adequate thrust but less torque than
a healthy propeller. The L1 adaptive law compensates for both
thrust and torque mismatch requiring the healthy propellers’
RPMs to compensate for the damaged propeller’s lower torque.
As the thrust and torque coefficients are highly coupled, we
formulate an optimization problem for damage estimation.
First, we initialize a baseline estimate of our propeller damage
for each propeller. Next, we identify damaged and undamaged
propellers to form a prior. Finally, we perform a null-space
projection optimization.

We can estimate our initial guess kfreal using the additional
RPM spin that L1 provides to our system. Specifically, let ωi
now be the RPM for motor i given by the geometric controller
without L1 compensation and ωL1i be the RPM for motor
i with L1 compensation. Supposing that L1 adaptation has
compensated for the propeller damage, we will have

kfmodelω
2
i = kfrealω

2
L1i. (16)

Converting terms we have an initial guess

kfreal = kfmodel ·
ω2
i

ω2
L1i

. (17)

Next, we identify the damaged propellers using our initial
estimate di within a 5% threshold as

di =

{
0.0 if kfmis ≤ 0.05

kfmodel · ω2
i

ω2
L1i

if kfmis > 0.05
. (18)

This threshold is set as undamaged propellers are likely to have
negative damage due to torque mismatch. However a negative
damage is physically impossible. A detailed explanation of
this concept is discussed in Section V.

We then formulate our estimate as a quadratic program-
ming problem. Let Let k =

[
kf1real kf2real kf3real kf4real

]⊤
represent the true thrust coefficients we wish to solve for and
d ∈ R4×1 is a vector where each component di is obtained
from eq. (18). The goal of our optimization is to find a solution
that matches the propeller motor dynamics while also being
close to our initial estimate described in eq. (18) without
torque mismatch as

min
k

(k− d)⊤(k− d),

s.t. Ak = b.
(19)

Here, A and b are defined as

A =

 ω2
L11

ω2
L12

ω2
L13

ω2
L14

dxω
2
L11

dxω
2
L12

−dxω2
L13

−dxω2
L14

−dyω2
L11

dyω
2
L12

dyω
2
L13

−dyω2
L14

 ,
b =

[
f M1 M2

]⊤
,

(20)

where b represents the desired force and moments of the
quadrotor commanded by the nominal control without L1 and
ωL1 =

[
ωL11 ωL12 ωL13 ωL14

]⊤
are the RPMs from the

combination of L1 and nominal geometric system, dx and dy
represent the distance from the propeller to the center of mass
in the body frame projected on axes b1 and b2 respectively. To
prevent the torque effect from L1 control we remove the fourth
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Table I: Tracking RMSE (in meters) where kfmis represents the thrust loss. FT represents the fault-tolerant control. L1 Off does
not have data for kfmis

= 60% because the aerial robot is unstable outside of the hover condition.

Duration [s] Axis kfmis = 0.0 kfmis = 20% kfmis = 40% kfmis = 60% FT
Max Speed [m/s] L1 ON L1 OFF L1 ON L1 OFF L1 ON L1 OFF L1 ON L1 OFF L1 ON

12
[0.5]

x 0.031 0.042 0.017 0.072 0.020 0.127 0.207 - 0.041
y 0.070 0.092 0.062 0.233 0.030 0.453 0.358 - 0.044
z 0.002 0.017 0.002 0.050 0.003 0.082 0.005 - 0.011

8
[0.8]

x 0.037 0.040 0.031 0.067 0.032 0.16 0.208 - 0.075
y 0.064 0.10 0.064 0.222 0.048 0.42 0.384 - 0.059
z 0.002 0.022 0.004 0.051 0.003 0.09 0.007 - 0.020

5
[1.1]

x 0.045 0.052 0.060 0.079 0.046 0.181 0.204 - 0.093
y 0.079 0.112 0.072 0.249 0.047 0.406 0.406 - 0.109
z 0.003 0.025 0.005 0.050 0.003 0.090 0.009 - 0.019
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Figure 4: A comparison between estimated damage and true damage with a real-world MAV during a 1.1 m/s flight. Propeller
damage is estimated using eq. (17). True Propeller damage is solved by measuring the coefficient on a thrust bench.
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Figure 5: Tracking RMSE averaged over 3 axes vs Propeller
Damage at hover with various levels of propeller damage.

row of our constraints along with M3 (the torque components)
from our optimization. The L1 controller drives the error to
zero between desired and executed action through the use of
supplemental control action [24]. We construct our equality
constraint in eq. (20) to represent this behaviour where the real
thrust coefficients must be consistent with the supplemental
action that generates the desired action. The optimum based
on null-space projection is

k = A⊤ (
AA⊤)−1

(b−Ad) + d. (21)

Finally, we convert k to percentage form using eq. (15).

E. Fault-Tolerant Transition

We leverage our propeller damage estimate, eq. (21) to
determine when to switch to fault-tolerant control. Our fault-

tolerant control is implemented based on our previous work
[21] which was only tested in simulation. From the qualitative
results with damaged propellers, we set a threshold at 50%
damage. Based on our vehicle’s thrust-to-weight ratio of
2.5 : 1, we experimentally verify that 50% damage provides a
safety margin within the limit. Once the threshold is met, the
system automatically transitions to the fault-tolerant control
per our control design as shown in Fig. 3.

IV. RESULTS

Our experiments are conducted in a flying space of 10 ×
6 × 4 m3 at the Agile Robotics and Perception Lab (ARPL)
at New York University. The environment is equipped with
a Vicon motion capture system which provides accurate pose
estimates at 100 Hz. This is fused with IMU measurements
through an Unscented Kalman Filter to provide state estimates
at 500 Hz. The robot, based on our previous work [26], is
equipped with a VOXL®2 ModalAITM and four brushless
motors and modified to obtain a 2.5 to 1 thrust to weight
ratio with total a weight of 700 g. We set the K such that
λ = Diag

[
0.4 0.4 0.4 0.1 0.1 0.1

]
.

A. L1 Performance Study

To evaluate the tracking performance, the quadrotor is
commanded to follow an ellipse of radius 1 m in x, 0.6 m in
y, and 0.1 m in z for each case of propeller damage as well as
under fault-tolerant control with one disabled propeller. The
trajectory is completed with and without L1 adaptive control.
This ellipse is flown at three different speeds: 12, 8, and 5 s
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Figure 6: Simultaneous propeller damage (propellers 2 and 3) for MAV moving 0.5m/s in a circle. Both PID (green) and L1
(blue) approaches for propeller damage estimation are shown.
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Figure 7: Propeller damage estimate of an undamaged vehicle under 3 different experimental conditions. Hover Baseline refers
to a hover with no external forces. Figure Eight refers to flying a trajectory in the shape of an eight with a max velocity of
3 m/s. Hover fan on refers to stabilizing the vehicle under a fan blowing wind at 3 m/s

periods. We observe in Table I that the RMSE reduces when
the L1 adaptation is switched on in all cases and has lower
tracking error than fault-tolerant for propeller damages below
40%. We also see in Fig. 5 the position error grows in the L1
Off case as the severity of propeller damage increases while L1
maintains accurate tracking performance despite the degree of
propeller damage. However when the damage reaches greater
than 40%, the error starts becoming too prominent for the
adaptive control to negate. In these cases, transitioning to a
fault-tolerant controller is preferable.

B. Propeller Damage Estimation

The L1 adaptive controller has demonstrated suitability and
robustness to propeller damage compensation. In this section,
we show that Sec. III-D represents an accurate estimate of
the propeller damage, kfmis , even when the aerial robot is in
motion. To calculate the various levels of propeller damage,
we use a thrust bench to calculate the true thrust coefficient of
the damaged propeller, kfreal and undamaged propeller, kfmodel ,
coefficient. We then use eq. (15) to calculate the damage, kfmis .
We test 4 levels of propeller damage based on kfmis : No damage
refers to kfmis = 0%. Low damage refers to kfmis = 20%.
Medium Damage refers to kfmis = 40%. High damage refers
to kfmis = 60%. In Fig. 4, we report the estimates of a
single damaged propeller at the aforementioned levels while
the quadrotor is executing an ellipse trajectory with a max
speed of 1.1 m/s. This method is able to estimate the error
with an error range of 4%. In terms of individual actuator
forces, this represents 8.3 g of thrust on a 700 g drone. Next,

we estimate dual propeller damage simultaneously in Fig. 6.
We compare two methods for damage estimation. First, we use
L1 complimentary actions shown in blue. Next, we replace the
L1 adaptive control with an integral term in a PID controller
for complimentary action in green. We substitute ωL1i with
the actions generated by an additional integral controller to
estimate the propeller damage following the same inference
and optimization procedure as Section III-D. The integral term
is placed over the velocity expressed in the body frame. While
the integral term can compensate some damage, it is unsuitable
for damage estimation. The L1 complimentary actions on the
other hand can be used to accurately estimate the propeller’s
damage.

Furthermore, we test the effects of medium speed flight
(3 m/s) and external disturbances on our propeller damage
estimation. In Fig. 7, we show the results of 3 experiments.
First, we show a control case where the quadrotor is in hover
without external disturbances and no damages. Second, we
show the same vehicle in hover with 3 m/s wind disturbance.
Third, we show a flight without external disturbances flying
at 3 m/s. Ideally, the desired estimated damage should be
0%. Overall, we notice that the fan has a significant effect on
damage estimation around 20%, but it is not enough to trigger
a transition. Medium speed motions at 3 m/s instead cause
minimal but noticeable deviations from around 0% to ±10%.

C. Fault-Tolerant Transition

We study the rise-time and effectiveness of our transitioning
mechanism by artificially injecting a fault mid-flight. This fault
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Figure 8: Real-world experiments with damage injected to propeller 1. Fault-tolerant transition threshold is set to 50%.
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Figure 9: Position tracking performance after propeller damage is injected in real-world flight. The 80% damage case shows
a high yaw rate because it triggers fault-tolerant control, causing a rapid spin unlike the 30% damage case.

is produced by corrupting a motor input to spin slower. In
our experiments, we tested the reliability of our system given
40 trials by injecting 30%, 40%, and 50% damages in a real
drone. 30% damage injection has a 100% success rate of not
transition whereas the 50% case shows a 100% successful
transitions. The 40% injection has a 87.5% success rate for
not transitioning and a 12.5% false positive transition. Our
method did not produce any false negative.

Additionally, we inject an 80% damage fault in a real-
world experiment to show that our latency is low enough
for practical uses. The damage estimation of the affected
propeller rises to 50% in 0.15 s, triggering the transition
to fault-tolerant control. Fig. 8 shows the damage estimation
in real-world experiments with 30%, 50%, and 80% damage
injections along with transition times when relevant. When
the fault-tolerant controller is activated (i.e., > 50% damage
cases), we stop the inference and estimation process. Fig. 9
shows the corresponding position tracking performances for
the non transitioning 30% case and the transitioning 80%
damage case. We see our methodology can autonomously
transition and stabilize the drone despite the injection of heavy
propeller damage. For visualization purposes, the last values
are repeated instead of cut when the inference stops after the

fault tolerant control is triggered.

V. DISCUSSION

The presented results show the benefit of the proposed
adaptive control scheme for damage estimation and compensa-
tion. However, L1 adaptation can only correct a disturbance if
the actions are within the actuator constraints [24]. Therefore
a switching threshold for adaptive to fault-tolerant control
should reflect this constraint. Our system has a 2.5 : 1
thrust to weight ratio which enables flight adaptive control
with up to 60% damage without switching to fault-tolerant
control. We choose to use a switching threshold of 50%
to allow some safety margin. For any quadrotor capable of
fault-tolerant flight, a 2 : 1 thrust to weight ratio minimum
is required. Therefore, a conservative switching threshold of
40% damage can be considered. Research has shown that
L1 adaptive control is effective on a variety of quadrotors
from 27 g Crazyflie [27], 70 g Parrot Mambo [15], to our
heavy weight platform 700 g along with theoretical guarantees
[24]. Our propeller damage estimation method is based on the
steady state adaptive properties of L1 [24], making it equally
generalizable to other platforms.
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One limitation of our approach is that we only consider
single or dual propeller damages cases. Damaged propellers
in a near hovering state will spin faster, and undamaged pro-
pellers will spin slower or remain at nominal speeds. A reverse
effect in hover (lower RPMs of damaged propellers) is highly
unlikely, so using the 5% threshold represents a conservative
method to detect propeller damage. Imagine a single damaged
propeller that is spinning clockwise. The damaged propeller
must spin faster to match the original thrust. However, this
produces less torque than the original undamaged propeller
creating a yaw acceleration. In order to counteract this yaw
acceleration, the two counterclockwise propellers will spin
slower. The opposite undamaged clockwise propeller remains
consistent with slight deviations. The same principle holds
for the case of two damaged propellers. In the adjacent
case, a counterclockwise and clockwise torque both decrease.
This results in a cancelling effect where the more damaged
propeller’s opposite will slow down a constant amount. In
the diagonal case, while a similar thrust can be achieved,
the alternative spinning undamaged propellers must reduce
their corresponding speeds to counteract the yaw acceleration.
These actions are handled by our adaption law eq. (11), and
our optimization method is only for damage estimation.

VI. CONCLUSION

In this paper, we presented an adaptive inference and
control strategy to ensure safe quadrotor flight in case of
propeller damage. Our approach incorporates an L1 adaptive
control technique in conjunction with a fault-tolerant mode.
We propose a method to quantify propeller damage using L1
adaptation that allows smooth transitioning to fault tolerant
control in the case of severe damage. The proposed method
can effectively account for all range damages from low to
severe levels.

Future works will attempt recovery and estimation during
more aggressive maneuvers [28]. We would also like to see if
the proposed approach can be extended to other thrust curve
models, especially for flight envelopes where the quadratic
relation is an inaccurate approximation.
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