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Dedicated Dynamic Parameter Identification for Delta-Like Robots
D. Gnad1, H. Gattringer1, A. Müller1, W. Höbarth2, R. Riepl2, L. Messner2

Abstract—Dynamics simulation of parallel kinematic manipu-
lators (PKM) and non-linear control methods require a precisely
identified dynamics model and explicit generalized mass ma-
trix. Standard methods, which identify so-called dynamic base-
parameters, are not sufficient to this end. Algorithms for identi-
fying the complete set of dynamic parameters were proposed for
serial manipulators. A dedicated identification method for PKM
does not exist, however. Such a method is introduced here for
the large class of Delta-like PKM exploiting the parallel structure
and making use of model simplifications specific to this class. The
proposed method guarantees physical consistency of the identified
parameters, and in particular a positive definite generalized mass
matrix. The method is applied to a simulated model with exactly
known parameters, which allows for verification of the obtained
dynamic parameters. The results show that the generalized mass
matrix, the acceleration, and the Coriolis, gravitation and friction
terms in the equations of motion (EOM) are well approximated.
The second example is a real 4-DOF industrial Delta robot ABB
IRB 360-6/1600. For this robot, a physically consistent set of
inertia and friction parameters is identified from measurements.
The method allows prescribing estimated parameters, but does
not rely on such data, e.g. from manufacturer or CAD.

Index Terms—Parallel manipulators, dynamic parameter iden-
tification, inverse dynamics, mass-inertia parameter identifica-
tion, excitation trajectories, model-based control

I. INTRODUCTION

Dynamics simulation and advanced model-based non-linear
control methods, e.g. computed torque [1] (feedback lin-
earization), passivity based control [2], and augmented PD
control [3], rely on equations of motion (EOM) of a robotic
manipulator of the form

M(q)q̈+C(q, q̇)q̇+ g(q) + f(q̇) = τ (1)

where M(q) is the positive definite generalized mass matrix,
C(q, q̇)q̇ represents Coriolis and centrifugal forces, g(q) and
f(q̇) are gravitational and friction forces, τ are actuation
forces, and q, q̇, and q̈ are generalized coordinates, velocity,
and acceleration, respectively. Symmetry and positive defi-
niteness of the mass matrix is crucial for forward dynamics
simulation, where (1) is solved for q̈ using Cholesky fac-
torization. Augmented PD control, for instance, additionally
requires skew symmetry of 1

2Ṁ−C. Symmetry and positive
definiteness of the mass matrix are guaranteed only if the
inertia parameters of each (rigid) body of the system is physi-
cally consistent. This requirement is not taken into account
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by standard identification methods. Standard identification
methods identify dynamic parameters, summarized in p, of
an inverse dynamics model

τ = Y(q, q̇, q̈)p (2)

exploiting the fact that the EOM (1) are linear in the inertia and
(standard) friction parameters [4]. However, not all dynamic
parameters in p can be identified since (2) does not have a
unique solution. A solution is given in terms of linear combina-
tions of the inertia parameters, referred to as base-parameters.
The base-parameters are obtained as a least squares solution
without conditions on physical consistency. This approach was
introduced for serial robots [4], and later for parallel robots
[5], [6]. Identification of base-parameters leads to an inverse
dynamics model that allows for computing the feed-forward
control τ for given motion q(t), but it does not yield explicit
EOM of the form (1).

The inertia properties of a rigid body are physically con-
sistent if they satisfy the following three conditions: the mass
m is positive, the inertia tensor Θ is positive definite, and the
moments of inertia satisfy the so-called triangle inequalities.
The base-parameter identification does not account for these
conditions, and often leads to physical inconsistencies [7],
[8]. To ensure consistency, the above three conditions were
included as linear matrix inequality constraints [9], [10],
[11], [12]. An unconstrained formulation that ensures physical
consistency was proposed in [13] by means of a non-linear
transformation of the dynamic parameters to another set of
algorithmic parameters.

Up to now, identification of physically consistent inertia
parameters has exclusively been pursued for serial kinematic
robots. This paper, for the first time in the literature, presents a
method to identify physically consistent dynamics parameters
of Delta-like robots. The method is suited for various robots
belonging to that class of PKM and demonstrated using the
4 DOF Delta robot. The kinematic structure of the PKM is
exploited to simplify the model, speed up the computation
time, and improve the identification result. The presented
method provides a foundation for applications that require
explicit models, e. g. forward dynamics simulation, model-
based control schemes, and constraint force computation. The
method does not need additional information, e.g. CAD data
from robot manufacturers.

II. EXISTING APPROACHES TO DYNAMICS MODELING

A. Delta-Like Robots

High-speed applications and design of Delta robots necessi-
tate model-based control schemes and dynamics simulations,
thus on correct dynamics parameters. There are various other
PKM designs that all share the same principle setup, in
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the following referred to as Delta-like robots [14]. A Delta-
like manipulator is understood to be a PKM where each
limb, connecting moving platform and base, consists of an
articulated link (called upper arm or shoulder) followed by a
parallelogram mechanism formed by two slender struts. For
example, Clavel’s original 3 DOF Delta robot [15] comprises
three limbs where the first link is connected to the base by
an actuated revolute joint (R-joint), and the two struts of the
parallelogram are connected by R-joints. The platform can
perform spatial translations. The 4 DOF version of the Delta
contains an additional telescope bar Cardanically suspended
between base and platform at which the end-effector (EE) is
attached. In most of the industrially available Delta robots, a
spherical joint (S-joint) is used instead of the two R-joints
connecting the struts. These S-joints are formed by a ball
and a (partially cut) socket held together with springs. This is
kinematically equivalent to two subsequent R-joints. Various
variations with different actuation and DOF were proposed.
The H4 [16], I4 [17], and Par4 [18] are examples with 4 DOF,
which contain an articulated platform to generate platform
rotations about a constant axis, and can be actuated by revolute
or linear actuators. The particular kinematic structure of Delta-
like robots can be exploited for deriving a tailored inverse
dynamics model with a reduced set of dynamic parameters.

B. Model Simplification

All identification schemes so far, especially for the family
of Delta-like robots, share some similarities in terms of model
simplifications. Due to the lightweight structure of the arms
and struts, the slender struts (also called ’forearms’) are often
regarded as point-masses located at the end of the upper
arm [6], [19]. In [14], [20], [21] half of the mass of a strut
is added to the end of the upper arm and to the moving
platform, respectively. In [19] it is assumed that the center
of mass (COM) of the upper arm is at the geometric center.
The common assumption of the above references is that all
upper arms and all struts are identical and can consequently
be described by the same inertia parameters. This implies a
drastic reduction of the unknown inertia parameters. There are
even further simplifications especially w.r.t. the slender struts
introduced in the literature. Some approaches even neglected
the mass of the struts, and hence all inertia effects of the struts
[22], [23]. Various other (non Delta-like) PKMs [24] were also
described in terms of base-parameters [25], [26]. However,
none of these account for physical consistency of the inertia
and friction parameters. Additionally, [27], [20] further rely
on CAD data available for the identification scheme.

III. INVERSE DYNAMICS MODEL

The inverse dynamics model is expressed in terms of the
complete set of dynamic parameters.

A. Inverse Kinematics

The Delta robot in Fig. 1 is used as representative example
throughout the paper. Its motion is described by the δ = 4
actuator coordinates qT =

[
φ1 φ2 φ3 ψ

]
, which serve as
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Fig. 1. Sketch of the δ = 4 DOF Delta model kinematically equivalent to
the ABB IRB 360-6/1600 treated as example in Sec. VIII. The telescope bar
is often also referred to as Cardanic axle or spindle.

generalized coordinates, where φi denotes the angle of the
actuated R-joint connecting the shoulder of limb i = 1, 2, 3 to
the base, and ψ is the rotation angle of the actuated universal
joint of the vertical telescope bar. The EE pose is described
by the task space coordinates zT =

[
Ir

T ψ
]
, where Ir is

the position vector of the platform, resolved in inertial frame
FI , and the rotation of the EE is identical to the rotation
angle ψ of the telescope bar drive. The actuator coordinates
are determined by the task space coordinates via the inverse
kinematics map q = fIK(z).

B. Equations of Motion in Parameter-Linear Form

As the forward kinematics z = fFK(q) can (locally) be
solved analytically, the EOM of a Delta-like robot can be
expressed in the general form (1).

The EOM are linear in the dynamic parameters. If the PKM
contains N moving bodies and nf joints where viscous and
Coulomb friction are considered, the inverse dynamics model
can be written in the parameter-linear form (2) with

Y(q, q̇, q̈)p =

N∑
i=1

Yi(q, q̇, q̈)pi +Yf(q, q̇)pf (3)

where Y = [Y1, . . . ,YN ,Yf ] is a δ × (10N + 2nf) matrix,
and

pi =
[
m m cT Θxx Θyy Θzz Θxy Θyz Θxz

]T
i

(4)

comprises the 10 inertia parameters of body i. Therein, m is
the mass, and c =

[
cx cy, cz

]T
the position vector of the

COM measured from the joint (or link) frame, so that mc
comprises the first moments of inertia. The symmetric inertia
tensor

Θ =

Θxx Θxy Θxz

Θxy Θyy Θyz

Θxz Θyz Θzz

 (5)
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comprises the second moments of inertia w.r.t. the joint frame.
The δ× 2nf matrix Yf =

[
Yv Yc

]
in combination with the

friction parameter vector pT
f =

[
pT
v pT

c

]
yields generalized

forces Yvpv due to viscous friction and Ycpc due to Coulomb
friction. For the viscous friction forces, the matrix

Yv =

[
diag(q̇)

(
ϑ̇j

∂ϑ̇j

∂q̇

)T
j=1...nf−δ

]
(6)

contains a diagonal matrix of the velocities of the (actu-
ated) coordinates diag(q̇) and partial derivatives of velocities
ϑ̇1, . . . , ϑ̇nf−δ of further joints whose friction is modeled. The
viscous friction parameter vector pv = [pv1 , . . . pvnf

] contains
the viscous friction coefficients. Analogously, Coulomb fric-
tion is described with

Yc =

[
diag(sign(q̇))

(
sign(ϑ̇j)

∂ϑ̇j

∂q̇

)T
j=1...nf−δ

]
(7)

where pc = [pci , . . . , pcnf
] comprises the Coulomb friction

coefficients. The parameter vector pT =
[
pT
i , i = 1 . . . N pT

f

]
comprises the total 10N inertia and 2nf friction parameters.

IV. PERSISTENT EXCITATION TRAJECTORY

Trajectories are determined that yield a persistent excitation
for identification of base-parameters. It is assumed that these
are also valid trajectories for identification of the full set of
parameters p.

A. Determination of Independent Base-Parameters

The matrix Y (q, q̇, q̈) is evaluated for ν different realiza-
tions of (q, q̇, q̈), with ν ≥ (10N + 2nf)/δ. The obtained
matrices are stacked to form a νδ × (10N + 2nf) matrix Ȳ,
called the system regressor matrix. Not all of the (10N+2nf)
parameters in p are identifiable, thus the maximal rank of Ȳ
is νB < (10N + 2nf). A QR factorization Ȳ = QR is used
to identify νB linearly independent columns, indicated by the
values on the main diagonal of R, which gives rise to a νδ×νB
matrix ȲB.

The conditioning of the reduced matrix ȲB depends on
the realizations q, q̇, q̈ at which Y is evaluated. For serial
manipulators, uniform sampling of q, q̇, q̈, within the joint
limits, can be pursued to obtain representative samples. For
PKM, due to the loop constraints, the admissible range joint
coordinates and derivatives is defined by nonlinear relations
depending on the joint limits, which makes a uniform sampling
in joints space difficult. Instead, a random sampling can be
pursued in task space. To this end, task space coordinates z are
restricted to an approximated workspace, and joint variables
are computed from the inverse kinematics q = fIK(z). The
task space boundary can usually be approximated easily. This
is shown in Fig. 2 for the industrial Delta robot ABB IRB 360-
6/1600 used as example in Sec. VIII, where it is approximated
by a hemisphere B.

The realizations of the motor torques are summarized in
vector τ̄ . This gives rise to the linear regression problem τ̄ =
ȲBpB, where pB is a vector of νB base-parameters, and ȲB

serves as regressor matrix. Identification of base-parameters
thus boils down to solving the linear regression problem for
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Fig. 2. Approximation of the task space (blue dotted texture) of the industrial
Delta robot ABB IRB 360-6/1600 with a hemisphere B approximation (orange
and more dense pattern).

recorded motion and corresponding actuation torques. The
rank of ȲB is νB, and the regression problem has a unique
solution. The solution minimizing the weighted squared error∥∥τ̄ − ȲBpB

∥∥2
Wτ

is pB = (ȲT
BWτ ȲB)

−1ȲT
BWτ τ̄ . Therein,

and throughout the paper ∥x∥W =
√
xTWx denotes weighted

norm of a vector x w.r.t. a metric W. If Wτ = Σ−1 is used,
where Σ is the covariance matrix of the actuation torques
τ derived from the motor torque measurements, then this
is an unbiased minimum variance Gauss-Markov estimator
[28], [29]. However, in order to obtain Σ, an estimator
for the motor torques τ , i.e. an identified model, is needed
beforehand. If available, estimated base-parameters can be
used to obtain an estimate for Σ [28]. In the following the
weight Wτ = diag(τmax)

−2 will be used, where elements of
τmax are the maximal values of the respective drive torque,
which yields a dimensionless normalization of the torques τ .

B. Trajectory Optimization

The regressor matrix serves to determine optimal identifi-
cation trajectories. Trajectories are determined such that ȲB

is well-conditioned, and thus lead to persistent excitation.
In case of PKM, the motion is best described in task space.

To this end, the task space trajectory z (t) (EE translation
and rotation about the vertical axis) is expressed as truncated
Fourier series [30]

zi = bi,0 +

nF∑
k=1

[ai,k sin(ω0kt) + bi,k cos(ω0kt)] (8)

with base frequency ω0. The coefficients ai,k and bi,k are
determined so to produce a persistent excitation of all base-
parameters [31]. Persistency is reflected by the conditioning
of the regressor matrix ȲB. This is quantified by the index
J := cond(ȲT

BȲB) or J := −det(ȲT
BȲB). An overview of

the suitable objective functions for computing optimal excita-
tion trajectories was reported in [32], along with interpretations
of the associated Fischer-Information [29]. The coefficients
ai =

[
ai,1 . . . ai,nF

]
, bi =

[
bi,0 . . . bi,nF

]
and the

base frequency ω0 are determined by solving the optimization
problem

min
a,b,ω0

(
J − w∥q̇∥Wq̇

)
(9)

s.t. Ir ∈ B, |ż| ≤ żmax, |z̈| ≤ z̈max, (10)
qmin ≤ q ≤ qmax, |q̇| ≤ q̇max, |q̈| ≤ q̈max, (11)

where B ∈ R3 is the admissible range of the position vector
Ir, as part of the task space coordinates z, and żmax, z̈max are
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the upper limits of the derivatives of task space coordinates.
Furthermore, qmin,qmax are limits of joint coordinates, and
q̇max, q̈max of the velocities and accelerations, respectively.
The second term in (9) is included to aid the identification
of friction. In this term, the joint velocities q̇ are normalized
using the weighting matrix Wq̇ = diag(q̇max)

−2, and the
scaling factor w is used to ensure sufficiently high velocities.
Notice that no explicit collision avoidance constraints are
necessary since the EE position is confined to Ir ∈ B, which
is sufficient for Delta-like robot.

V. IDENTIFICATION OF PHYSICALLY CONSISTENT
DYNAMIC PARAMETERS

A. Transformation of Inertia Parameters

The conditions on the inertia data of rigid body i can be
expressed by means of the 4 × 4 inertia matrix, which was
introduced in multibody dynamics in [33],

M̄i(pi) =

[
Θ̄i m ici
m ic

T
i mi

]
(12)

where Θ̄i = 1
2 tr(Θi)I − Θi is Binet’s inertia tensor [34].

The 10 inertia parameters pi are physically consistent if and
only if M̄i(pi) is positive definite [11]. This obviously implies
positiveness of the mass m, while positiveness of Θ̄i accounts
for the triangle inequalities λa + λb > λc; a, b, c ∈ {1, 2, 3},
with the eigenvalues λ1, λ2, λ3 of the inertia tensor Θi in (5).
If Θi is expressed in a principle axis frame, the eigenvalues
correspond to the principal inertia moments.

Being positive definite, matrix (12) possesses a Cholesky
factorization M̄i = UTU, with an upper triangular matrix
U (omitting index i). Requiring the diagonal elements of
U(πi) to be positive ensures positive definiteness of M̄i.
This requirement is imposed by introducing another set of 10
parameters

πT
i =

[
α d1 d2 d3 s12 s23 s13 t1 t2 t3

]
(13)

to parameterize U (πi), which leads to the log-Cholesky
factorization M̄i(πi) = UT (πi)U (πi), as proposed in [13].
Comparing elements of M̄(pi) and M̄i(πi) yields the relation

pi(πi) = e2α[t21 + t22 + t23 + 1, t1 e
d1 , t1 s12 + t2 e

d2 ,

t1 s13 + t2 s23 + t3 e
d3 ,

s212 + s223 + s213 + e2d2 + e2d3 ,

s212 + s213 + e2d1 + e2d3 , −s12 ed1 ,

− s12 s13 − s23 e
d2 , −s13 ed1 ] (14)

of the original physical parameters pi and the new parameter
set πi. The elements in πi can be physically interpreted
as deformation of a reference body in order to achieve the
desired inertia [13]. This parameterization ensures the positive
definiteness of the inertia matrix Θi and consequently all
necessary conditions for a physically meaningful body, hence
the resulting parameter vector pi(πi) is physically consistent.

It is important to notice that the above parameterization (14)
ensures that for any choice of πi the inertia parameter pi(πi)
is physically feasible. As a consequence, it is not possible to
omit principle moments of inertia Θxx, Θyy, Θzz , which would

lead to a physically infeasible body. This must be taken into
account when some of these inertia moments do not appear in
the EOM, and would not need to be identified (see Sec. VI).

B. Transformation of Friction Parameters

The only constraint on the viscous friction parameters pv

and the Coulomb friction coefficients pc to be physically
consistent, is that each of these coefficients must be positive.
This is ensured by the transformation pvi

= eβi , pci =
eσi , i = 1 . . . nf to a new set of friction parameters πT

f =[
β1 . . . βnf

σ1 . . . σnf

]
. The original friction coeffi-

cients pf(πf) are thus always positive for any πf .

C. Determination of Complete Set of Parameters

The overall vector of 10N + 2nf original and transformed
inertia and friction parameters is denoted pT =

[
pT
I pT

f

]
and

πT =
[
πT
I πT

f

]
, respectively. The persistent excitation trajec-

tory is executed and s samples are recorded for q, q̇, q̈ ∈ Rδ

and for the actuation torques τ ∈ Rδ . Denote with τ̄ ∈ Rsδ

the vector comprising the recorded torque values, and with Ȳ
the sδ × (10N + 2nf) matrix formed by stacking the matrix
Y evaluated at the s samples. Identifying the inertia and
friction parameters amounts to find π minimizing the error∥∥τ̄ − Ȳp (π)

∥∥2
Wτ

, where Wτ = diag(τ̄max)
−2 is used to

normalize and homogenize the error. The system regressor
matrix is not full rank, since not all dynamic parameters can
be identified, and there is no unique solution π minimizing
this error. Therefore, a regularization is needed.

To this end, nominal or estimated parameter values preg are
prescribed and the objective function

J (π) :=
γτ
s

∥∥τ̄ − Ȳp (π)
∥∥2
Wτ

+γp ∥p (π)− preg∥2Wp
(15)

is introduced, where Wp = diag(preg)
−2, and γτ , γp ∈ R+

are weighting coefficients. The identification problem amounts
to find parameters π minimizing J (π). The additional second
term serves as regularization term. The smaller the ratio γτ/γp
the closer the computed parameter are to the regularization
term preg. The latter also provides a means to prescribe
physically consistent initial values for numerically minimizing
the objective (15). It is to be noticed that the value π∗ is
uniquely related to p∗ at which the objective (15) attains
the minimum. With the weights Wτ and Wp, the objective
function (15) is dimensionless, and the second term is the
relative difference of the current parameter value and the
regularization term. The latter term could, alternatively be
replaced by a measure of difference of the inertia matrix (12)
obtained with either parameter vector. This was proposed in
[35], [36], where a matrix norm d(M̄(p), M̄(preg)) was used.

VI. PARAMETER REDUCTION FOR DELTA-LIKE ROBOTS

Delta-like robots possess very special kinematics and ge-
ometric proportions. This fact allows for neglecting certain
dynamic parameters a priori.
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a) Deviation moments: Since the principal geometric
extensions of the links are generally known, the link frames are
assumed to be aligned with the principal axis of inertia. Thus,
as first simplification the deviation moments Θxy, Θyz, Θxz

are set to zero. This implies s12 = s23 = s13 = 0, and leads
to the reduced parameter vector

pi(πi) = e2α[t21 + t22 + t23 + 1, t1 e
d1 , t2 e

d2 , t3 e
d3 ,

e2d2 + e2d3 , e2d1 + e2d3 , e2d1 + e2d2 ]. (16)

b) Upper arms (shoulder): The upper arms only execute
a rotary motion about the y-axis of the link frame FU ,
as shown in Fig. 1. Hence, only the first mass-moments
mcx,m cz , and the principal inertia moment Θyy contribute
to the EOM, and thus to the motor torques τ . The first mass
moment mcy = 0 can be set to zero, resulting in t2 = 0,
and the remaining principle inertia moments can be neglected.
Consequently, it is sufficient to use the reduced inertia pa-
rameter vector pU (πU ) =

[
m mcx mcz Θyy

]T
which is

described by the four parameters in πU =
[
d1 d3 t1 t3

]T
.

This reduction does not change the EOM.
c) Lower arms (parallelogram formed by slender struts):

The QR factorization of the regressor matrix indicates that all
10 parameters can be identified. The values range from 0.4
associated with the rotatory inertia up to 104 representing
the mass. However, for feasible motions of the Delta, the
inertia effects due to the first mass moments mcy and mcz
(lateral motions of the strut according to link frame FS shown
in Fig. 1), and due to the longitudinal inertia Θxx (rotation
about the beam axis) are not sufficiently excited for reliable
identification, thus have insignificant contributions to the mass
matrix. This is confirmed by the corresponding small value in
the QR-decomposition. A simplification for the struts is thus
to set the first mass moments mcy = mcz = 0 and thus with
(16) directly yields t2 = t3 = 0. The only remaining non-zero
parameters in (13) are πS =

[
α d1 d2 d3 t1

]T
with the

corresponding parameter vector pS(πS). Note that although
simplifications were made, the longitudinal inertia Θxx cannot
be set to zero, due to the properties of the mapping (14),
discussed in Sec. V-A.

d) Telescope bar: The telescope bar consists of an upper
and a lower part that are connected by a prismatic joint. The
upper part is connected to the base via a universal joint, and the
lower part by a universal joint to the moving platform. The link
frame FTU (see Fig. 1) is located at the center of the universal
joint at the upper part. Its z axis is aligned with the prismatic
joint. Both parts of the telescope bar are rotatory symmetrical,
thus the COM of the two parts is assumed to be located
along the respective symmetry axis. Therewith, the first order
moments vanish mcx = mcy = 0, and thus t1 = t2 = 0. The
QR factorization shows that all parameters of the lower part of
the telescope bar can be identified. It further indicates that the
mass m of the upper part cannot be identified separately as the
upper part tilts and rotates about the universal joint at the base,
but does not translate independently. Since a nominal value of
the mass of the upper part can usually be estimated (see Sec.
VIII), it is kept as a parameter, which serves as regularization
term. The remaining non-zero parameters for the upper and

lower part are pTU (πTU ) =
[
m mcz Θxx Θyy Θzz

]T
and pTL(πTL) =

[
m mcz Θxx Θyy Θzz

]T
, respectively,

which translates into the transformed parameters πTU =[
α d1 d2 d3 t3

]T
and πTL =

[
α d1 d2 d3 t3

]T
.

e) Platform: The platform of the Delta only performs
translational motions, hence only the mass of the platform
can be identified, resulting in πP =

[
α
]

with pP (πP ).
f) End-Effector: For the EE, with the joint frame FEE

shown in Fig. 1, the mass m, first mass-moments mcx,m cy
together with the rotatory inertia Θzz can be identified ac-
cording to the QR factorization. Hence, for the EE πEE =[
α d1 d2 t1 t2

]T
with pEE(πEE) can be used. However,

usually the EE can be assumed to be known, since most of the
time for the mounted tool CAD data is available, which can
be used as regularization parameter. In this case the EE can
be assumed to be known and excluded from the identification.

g) Parallel Topology: Delta-like robots are fully parallel
manipulators, and the several limbs are usually constructed
with identical geometric and dynamic parameters. This is
exploited for the identification, and the same (updated) param-
eters are used for the three limbs. This is also advantageous
for the performance of the identification since the effect of the
individual parameters on the actuation torques is increased.

In summary, with the above simplifications, only 36 opti-
mization variables are necessary to parameterize the rigid bod-
ies and the friction coefficients, whereas 61 parameters would
be necessary if all rigid bodies were fully parameterized. When
using the reduced set of independent dynamic parameters, 37
base-parameters are required, which are not guaranteed to be
physically consistent, however.

VII. EXAMPLE 1: IDENTIFICATION OF SURROGATE TEST
MODEL

The proposed method is first applied to identify a simulation
model of the 4 DOF Delta. That is, all inertia parameters
and friction parameters to be identified are known exactly,
which are referred to as nominal parameters. Viscous and
Coulomb friction is modeled in the actuated joints and the
prismatic joint of the telescope bar. The simulation model
was implemented in Matlab with assumed nominal parame-
ters. The minimization problem minπ J(π) with J in (15)
was solved with the optimization library Yalmip [37]. The
identification was executed with two different regularization
values preg. The nominal values, abbreviated as Nom, and
the two regularization/initial values, referred to as RG1 and
RG2, are shown in Fig. 3. The corresponding identification
results are referred to as ID1 and ID2. The first set of
regularization values for the rigid bodies are below the (actual)
nominal values, while all values of the second regularization
are above the nominal ones. It is apparent that some parameters
converged toward the nominal values while some did not, e.g.
the platform mass when using the first regularization. The
nominal parameter pT

v =
[
2 2 2 0.5

]
Nm/(rad/s), for

viscous, and pT
c =

[
4 4 4 1

]
in Nm, for Coulomb friction

were used in the model. The relative error of the identified
friction parameter is under 2.2%.

Since the inertia parameters of the simulated model are
known exactly, the elements of the identified generalized mass
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Fig. 3. Comparison of identified parameter p for two different regularization
values. The longitudinal inertia Θxx of the struts is still parameterized by the
non-linear mapping and always greater than zero.
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Fig. 5. Comparison of the Coriolis terms τ cor = C(q, q̇)q̇ of the nominal
and the identified models with two different regularizations.

matrix M can be checked against the nominal values. Denote
with MIdent := M(q,pIdent) the mass matrix in terms of
the identified parameters pIdent, and in terms of the nominal
parameters pNom with MNom := M(q,pNom). Figure 4
shows the relative errors erel =

MNom(i,j)−MIdent(i,j)
mean(MNom(i,j)) of the

6 elements of the respective identified mass matrix along the
trajectory. The relative errors of the main diagonal elements
are below 1%, those of the off-diagonal elements are about
2%. Figure 5 shows the torque τ cor = C(q, q̇)q̇ due to the
Coriolis/centrifugal effects, whereas Fig. 6 depicts the torque
τ acc = M(q)q̈ for the nominal and the identified model when
using the two different regularization values as initial guess.
The difference of identified and the nominal torque is less
than 1% at any time. The identified mass matrix was positive
definite along the trajectory, which was checked by application
of the Cholesky factorization. The identification was carried
out for several different regularization values. The results were
always similar. By construction, the obtained parameters are
physically consistent and M positive definite.
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Fig. 6. Comparison of the acceleration terms τacc = M(q)q̈ of the nominal
and the identified models with two different regularizations.

VIII. EXAMPLE 2: INDUSTRIAL DELTA ROBOT

The proposed identification is applied to the ABB IRB 360-
6/1600 Delta robot. Coulomb and viscous friction are modeled
for the four actuated joints. The prismatic joint in the telescope
bar shows significant friction, hence viscous and Coulomb
friction are also modeled for this joint.

A. Regularization using estimated Parameters

The regularization values preg, which are used as initial
values for the identification, are helpful for speeding up the
optimization. For most industrial robots no reliable CAD data
is available (e.g. no volumetric information). Regularization
terms are therefore obtained from geometric approximations.

The upper arms can be approximated as hollow cylinders
of carbon fiber. The length (500mm) and wall thickness
(3mm) for the carbon fiber part is assumed to calculate the
mass and the first and second inertia moments w.r.t. the link
frame. The longitudinal and lateral inertia are computed as
1
2m(R2

o +R
2
i ) and 1

12m(L2+3(R2
o +R

2
i )), where m denotes

the mass, L the length and Ro, Ri the outer and inner radii,
respectively. Analogously the regularization values for the
struts are obtained using the length 1106mm, assumed wall
thickness of 1mm and the COM to be in the middle of the
carbon fiber part. The two ball sockets at both ends of the
struts weigh roughly the same as the carbon fiber part, so
these two sockets are similarly assumed as hollow cylinders
and accounted for in the regularization term for the struts. The
same approximation is used to obtain initial guesses for the
telescope bar with the assumption that the upper part (length
700mm, radius 8mm) is 6

10m of the complete telescope bar
and assumed to be a steel cylinder, whereas the lower part
(length 780mm, outer radius 14mm, inner radius 8mm) as
a hollow synthetic material cylinder with 4

10m. For the upper
part of the telescope bar the simplified formula for the inertia
w.r.t. the link for a slender strut can be applied, whereas for
the lower part the same approximation with a hollow cylinder
is possible. Since the telescope bar cannot be disassembled,
no further insight of the assembled parts is possible. The mass
of the moving platform can be obtained by approximation as
two cylinders of aluminum.
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TABLE I
IDENTIFIED NON-ZERO PARAMETER OF THE INDUSTRIAL DELTA ROBOT.

Param.
RG ID RG ID

Unitsimple simple geom geom
Upper Arm

mcy 0.250 0.128 0.101 0.091 kgm
mcz 0.000 -0.090 0.000 0.009 kgm
Θyy 0.084 0.146 0.127 0.189 kgm2

Strut
m 0.200 0.250 0.249 0.278 kg
mcx 0.111 0.072 0.129 0.104 kgm
Θxx 0.003 17.446 0.032 24.611 10−3kgm2

Θyy 0.082 0.086 0.109 0.114 kgm2

Θzz 0.082 0.089 0.109 0.116 kgm2

Platform
m 0.800 1.008 1.000 1.230 kg

Telescope Bar (upper part)
m 0.900 0.901 0.900 0.732 kg
mcx -0.315 -0.100 -0.315 -0.305 kgm
Θxx 0.147 0.168 0.147 0.148 kgm2

Θyy 0.147 0.168 0.147 0.148 kgm2

Θzz 28.800 0.884 28.800 2.826 10−6 kgm2

Telescope Bar (lower part)
m 0.600 0.456 0.600 0.483 kg
mcx 0.234 0.251 0.234 0.239 kgm
Θxx 0.122 0.141 0.122 0.126 kgm2

Θyy 0.122 0.141 0.122 0.126 kgm2

Θzz 78.000 0.010 78.000 1.151 10−6kgm2

B. Dynamic Parameter Identification

The objective function J(π) in (15) is minimized, where
initial values are obtained as π0 = argminπ ∥p− preg(π)∥22
with regularization parameters preg obtained in Sec. VIII-A.
Table I shows the parameters of the upper arms, struts,
platform, and telescope bar obtained with the two different
regularizations/initial guesses, referred to as RG simple and
RG geom. One regularization was obtained by a simple
guess and the other by taking into account the geometry
with assumed materials. The obtained parameters for the strut
remain close to the initial value for both regularizations. The
identified mass of the platform increased by roughly 20% for
both regularizations. In case of the upper arms, there is also a
noticeable difference. Comparison of these results shows, that
for both regularization the mass of the struts and platform
increased, whereas the mass of the lower part of the telescope
bar decreased. Both results lead to physically consistent bod-
ies, and hence a positive definite and symmetric mass matrix
M(q,pIdent). The identified lumped inertia of the fourth mo-
tor is Θ = 2.87 ·10−3 kgm2. The obtained friction parameters
for the drives are pv =

[
1.576 1.667 1.411 0.019

]
in

Nm/ rad
s and pc =

[
4.659 4.644 6.353 0.807

]
in Nm. The

friction coefficients for the prismatic joint of the telescope bar
are pv = 4.08N/m

s and pc = 5.36N.

C. Inverse Dynamics Verification

To validate the identification results, a different trajectory
is used, for which the joint torques τ are recorded. This
verification trajectory is obtained as another excitation tra-
jectory by optimizing it with different start values for the
coefficients a and b. The results for the drive torques τ =
Y(q, q̇, q̈)pIdent = M(q)q̈+C(q, q̇)q̇+g(q)+ f(q̇), when
executing the verification trajectory, are shown in Fig. 7. The
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Fig. 7. Motor torques τ for the verification trajectory. The root
mean squared (RMS) error of the base-parameter identification
eRMS(pB) =

[
2.0 1.8 2.2 0.25

]
Nm is close to the

eRMS(pIdent) =
[
2.0 1.7 2.2 0.20

]
Nm of the parameter pIdent

identified with the proposed method.
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Fig. 8. Verification with changed parameters for the viscous and Coulomb
friction of the fourth drive. This yields a RMS error eRMS = 0.15Nm.

first three torques fit well while the result for the spindle torque
τ4 is not satisfactory, for the base-parameter method as well as
the proposed method. The simple friction model was identified
as reason for the relatively large error. The maximal speed
of the identification trajectory was max(|q̇4|) ≈ 2760 °/s,
and maximal acceleration was max(|q̈4|) ≈ 13.8 · 103 °/s2,
whereas the verification trajectory had a maximal velocity
max(|q̇4|) ≈ 175 °/s and acceleration max(|q̈4|) ≈ 500 °/s2.
Changing the viscous friction coefficient of the actuated joint
4 to five times of the identified value, and decreasing the
Coulomb coefficient by factor 0.75, yields the result in Fig. 8.
It is concluded that an improved friction model is required if
the full speed range of the fourth drive is to be covered.

IX. CONCLUSION

A method to identify physically consistent dynamics pa-
rameters for the family of Delta robots was presented. It was
applied to a surrogate test model (simulation) with known
parameters, and to a real industrial 4 DOF Delta robot.
The approach makes use of a generic model that satisfies
certain model simplifications, such as omitting negligible or
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non-excited inertia parameter. The method is does not need
CAD data or data provided by the robot manufacturer. These
simplifications can be relaxed if data on the dynamics param-
eters becomes available. All necessary conditions for physical
consistency are encoded in the non-linear parameter trans-
formation (14), such that efficient unconstrained optimization
methods can be applied for solving the identification problem
(15). The identical limbs and kinematical structure of the
Delta robot allowed to systematically reduce the number of
variables needed to express the required inertia parameters,
and hence improve the identification result. The problem that
not all inertia parameters are identifiable, which motivated
the standard base-parameter method, is tackled by prescribing
regularization values. The latter are a means to obtain dynamic
parameters close to certain parameter values for which reliable
estimates exist. Results for the simulation model show that the
mass matrix, forces due to acceleration, the Coriolis and cen-
trifugal, gravitation, and friction forces are well approximated
by the identified model.

The presented method ensures that every rigid body is phys-
ically consistent, thus the model (1) is physically consistent,
in particular the generalized mass matrix M is guaranteed
to be positive definite and symmetric. This provides the
basis for forward dynamics simulations and advanced model-
based control schemes with realistically identified dynamic
parameters.

Future work will address means to identify the correct
(in addition to physically consistent) values of mass-inertia
parameters of each individual body using additional data such
as force measurements. This is a precondition for model-based
control when joint reaction forces are to be limited [38]. The
latter is important for many realizations of Delta robots.
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