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Leadership Inference for Multi-Agent Interactions
Hamzah I. Khan and David Fridovich-Keil

Abstract—Effectively predicting intent and behavior requires
inferring leadership in multi-agent interactions. Dynamic games
provide an expressive theoretical framework for modeling these
interactions. Employing this framework, we propose a novel
method to infer the leader in a two-agent game by observing
the agents’ behavior in complex, long-horizon interactions.
We make two contributions. First, we introduce an iterative
algorithm that solves dynamic two-agent Stackelberg games with
nonlinear dynamics and nonquadratic costs, and demonstrate that
it consistently converges in repeated trials. Second, we propose
the Stackelberg Leadership Filter (SLF), an online method for
identifying the leading agent in interactive scenarios based on
observations of the game interactions. We validate the leadership
filter’s efficacy on simulated driving scenarios to demonstrate
that the SLF can draw conclusions about leadership that match
right-of-way expectations.

Index Terms—Leadership Inference, Stackelberg Games, Op-
timization and Optimal Control, Probabilistic Inference

I. INTRODUCTION

DURING daily commutes, drivers assert themselves in
running negotiations with other road users in order

to reach their destinations quickly and safely. Right-of-way
expectations inform these assertions between road users. Con-
sider the passing lane shown in Fig. 1. Agent A2 (blue)
initially follows behind agent A1 (red), and we may intuitively
perceive A1 as the leader. If instead A2 overtakes A1, the
scenario seems to imply a reversal of leadership, with A2

in front and A1 behind, as in the inset of Fig. 1. However,
this intuition is vague and premature. If A2 tailgates A1

or otherwise behaves aggressively, A1 might speed up or
yield to A2 out of caution. However, aggressive behavior
does not necessarily indicate leadership, as A1 could also
react to A2 tailgating by slowing down and relying on the
knowledge that A2 will not risk a collision. Here, any simple
intuition of the leadership dynamics falls short. Depending
on each driver’s safety and comfort tolerances, either A1

or A2 may be the leader. Hence, deciphering leadership
dynamics requires understanding common expectations, agent
incentives, and other agents’ actions. Successfully doing so
can improve autonomous intent and behavior prediction for
motion planning, as shown by [1].

We turn to optimal decision making and game theory for
tools to analyze interactive scenarios. Stackelberg games [2],
also known as leader-follower games, stand out because they
model interactions with clear leadership hierarchies. In a
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Fig. 1. Agents A1 (red) and A2 (blue) initially proceed along the same
lane of a two-way road at similar speeds. While A2 is behind A1, the
SLF infers that A1 is the leader. During A2’s passing maneuver, the SLF
captures the leadership probability shifting to A2. The dashed line in the
inset indicates the probabilities at the current time. We display the current
expected measurements generated by the measurement model h. The blue
coloring indicates that most particles in the SLF believe A2 is the leader.

Stackelberg game, a leader selects its strategy to influence the
follower’s response. Each strategy in a Stackelberg solution
satisfies leadership conditions that describe how the leader’s
behavior induces the follower to act. Additionally, solving
Stackelberg games results in trajectories that we can use
for model-predictive control. Using these attractive properties,
we propose a leadership inference technique for multi-agent
scenarios like that of Fig. 1.

To this end, we first contribute Stackelberg Iterative Linear-
Quadratic Games (SILQGames), an algorithm for solving
dynamic Stackelberg games, and we empirically show that
it converges for games with nonlinear dynamics and general
costs. Second, we propose the Stackelberg Leadership Filter
(SLF) to infer leadership over time in interactions based on
observations of the agents. We validate that it infers the correct
Stackelberg leader in two-agent games and report results on
simulations of driving scenarios.

II. RELATED WORK

Leadership Inference. Many prior works develop leader-
ship inference techniques, particularly for robotic swarms
and animal sociology. As an abstract concept, leadership is
challenging to measure [3], [4]. Leadership models prespecify
particular agent(s) as leaders that influence group motion.
Swarm applications [5], [6] often assume the Reynolds flock-
ing model [7]. Animal sociology applications define leadership
models based on principal component analysis [8] or stochastic
inference [9] with hand-selected domain-specific features. By
contrast, we explicitly frame these interactions in terms of
optimal decision making and game theory and therefore utilize
the Stackelberg leadership model. Defining a Stackelberg game
requires prespecifying a leader and solving one produces
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equilibrium trajectories for each agent. Hence, by associating
a particular leader with solution trajectories in a principled
manner, Stackelberg leadership allows for modeling leadership
over long-horizon interactions without hand-crafted heuristics.
Stackelberg Games for Motion Planning. Recent advances
[10], [11] investigate Stackelberg models of leadership for
interactive scenarios involving self-driving vehicles. In particu-
lar, Tian et al. [1] incorporate leadership as a latent variable by
solving open-loop Stackelberg games and comparing expected
leader and follower behaviors with observed agent behaviors.
Our method generalizes this underlying approach to Stack-
elberg leadership by modeling a joint distribution over game
state and leadership. We solve feedback Stackelberg games for
richer access to leadership information.
Solving Dynamic Games. Identifying computationally effi-
cient game-solving techniques with theoretical guarantees of
finding equilibria remains an open area of research. Most
existing game-solving algorithms consider Nash games, which
find equilibria for which each actor is unilaterally optimal
given fixed opponent strategies. These algorithms [12]–[17]
generally use Newton-based schemes based on iterative and
dynamic programming algorithms that have been widespread
for decades [18], [19]. We note two axes on which such ap-
proaches differ: first, these approaches solve either open-loop
games [12]–[15] or feedback games [12], [16], [17]. Second,
these algorithms either reduce the game to a simpler problem
[15] or directly solve the game [12]–[14], [16], [17]. In
particular, Fridovich-Keil et al. [16] introduce Iterative Linear-
Quadratic Games (ILQGames), an iterative method that ap-
proximates solutions to nonlinear dynamic, nonquadratic cost
feedback Nash games by repeatedly solving linear-quadratic
(LQ) approximations until convergence. Convergence analysis
of these methods is subtle, as described in depth by Laine
et al. [20]. Our work is closely related to [17], which uses
ILQ schemes to solve for feedback Stackelberg equilibria.
Both our work and [17] utilize similar approaches as [16] to
solve for feedback Stackelberg equilibria, a different solution
concept than (1) single-agent optima found by Iterative Linear
Quadratic Regulation (ILQR) or DDP and (2) feedback Nash
equilibria found by [16].

III. PROBLEM FORMULATION

Let N = 2 agents, A1 and A2 (e.g., vehicles), operate in
a shared n-dimensional state space with state xt at each time
t ∈ T ≡ {1, 2, . . . , T} and sampling period ∆t. Agent Ai has
controls u(i)t ∈ Rm(i)

. The state evolves according to
xt+1 = ft

(
xt, u

(1)
t , u

(2)
t

)
. (1)

We denote sequence of states x1:T = (x1, x2, . . . , xT ) and
u
(i)
1:T = (u

(i)
1 , u

(i)
2 , . . . , u

(i)
T ) as the sequence of Ai’s controls.

We assume that ft is continuous and continuously differen-
tiable in xt, u

(1)
t , u

(2)
t . Ai’s objective,

J (i)
(
x1:T ,u

(1)
1:T ,u

(2)
1:T

)
≡

T∑
t=1

g
(i)
t

(
xt, u

(1)
t , u

(2)
t

)
, (2)

describes its preferences in a given scenario. We model the
objective (2) as the sum of stage costs g(i)t , assumed to be
twice differentiable in xt, u

(1)
t , u

(2)
t . Each agent Ai minimizes

its objective with respect to its controls u
(i)
1:T .

A. Background: Feedback Stackelberg Games

Stackelberg games model leadership as a mismatch of in-
formation. Intuitively, the leader AL commits to a strategy and
communicates it to the follower AF . Given this relationship,
the leader carefully selects its strategy in order to influence
the follower.

Formally, a Stackelberg equilibrium {u(L∗)
1:T ,u

(F∗)
1:T (u

(L∗)
1:T )}

is a tuple of optimal control trajectories for both agents. The
function u

(F∗)
1:T (u

(L)
1:T ) highlights thatAF ’s optimal strategy de-

pends on the leader’s (possibly non-optimal) chosen strategy.
Using an abuse of notation, we omit the state argument of Ai’s
objective J (i), and define γ(u

(i)
t ) ≡ [u

(i)
1:t−1, u

(i)
t ,u

(i∗)
t+1:T ],

containing arbitrary controls from time 1 to t−1, control u(i)t

passed as a parameter, and an equilibrium strategy u
(i∗)
t+1:T

from time t + 1 to T . We note that the game dynamics
ensure that u

(i∗)
t+1:T is implicitly a function of the state. We

define the set of all optimal follower responses at time t,
U

(F∗)
t

(
u
(L)
t

)
⊂ Rm(F )

, as

U
(F∗)
t

(
u
(L)
t

)
≡ argmin

u
(F )
t

J (F )
(
γ
(
u
(L)
t

)
,γ

(
u
(F )
t

))
. (3)

We assume |U (F∗)
t (u

(L∗)
t )| = 1, i.e., that an optimal leader

strategy results in a unique optimal follower response at each
time t. Under this assumption, the set of control trajectories
for all agents forms a feedback Stackelberg equilibrium if, at
every time t ∈ T, the optimal trajectories satisfy

J (L)
(
γ
(
u
(L∗)
t

)
,γ

(
u
(F∗)
t

))
= (4)

min
u
(L)
t

max
u
(F )
t ∈U

(F∗)
t

(
u
(L)
t

)J (L)
(
γ
(
u
(L)
t

)
,γ

(
u
(F )
t

))
.

Since the follower knows the leader’s controls at time t, (3)
ensures that the follower produces a best response at time t.
Next, (4) ensures that the leader’s strategy guides the follower
towards its least bad option for the leader at time t.

Stackelberg games are generally non-cooperative, meaning
that agents do not coordinate but plan based on observations
of the game state. Agents in open-loop games observe only the
initial game state, whereas in feedback games, agents adjust
their control inputs after observing the state at each time step,
producing complex, temporally-nested game constraints (3)
and (4). LQ Stackelberg games have analytic solutions given
strictly convex costs [21, Eq. 7.14-15].

We denote SiT (xt) as the T -horizon Stackelberg game
solved from state xt with leader Ai. For a more detailed
treatment of Stackelberg equilibria and solving LQ Stackelberg
games, refer to Başar and Olsder [21, Ch. 3, 7].

B. Stackelberg Leadership Filtering

We seek to describe a filter that identifies a leadership
belief for Ai based on observations. To this end, we define
Ht ∈ {1, 2} to be a binary random variable (RV) indicating
the leader at time t. Next, we state our assumptions about
the game’s observability. We assume state xt is observable
via noisy measurement zt ∼ N (h(xt;Ht),Σt) with known
covariance matrix Σt ≻ 0 and measurement model h. We also
assume that control inputs u(i)t for each agent Ai are directly
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observable. Next, recall that each agent has an objective that
describes its preferences. For this work, we assume all agent
objectives {J (i)} are known a priori. In general settings, we
note that techniques exist [22]–[24] to infer agent objectives
from noisy observations, though further work may be required
to confirm the computational tractability of simultaneously
inferring leadership and objectives. We define the leadership
belief for Ht as b(Ht)=p{Ht|z1:t}.

IV. INFERRING LEADERSHIP

We propose Stackelberg Iterative Linear-Quadratic Games
(SILQGames), which iteratively solves nonlinear dynamic,
general cost (non-LQ) Stackelberg games with continuous and
differentiable dynamics and costs. We use SILQGames in the
Stackelberg Leadership Filter (SLF, Fig. 2) as part of the
Stackelberg leadership model. Our method infers the leading
agent of a two-agent interaction from observations.

A. Iteratively Solving Stackelberg Games

At a high level, SILQGames (Alg. 1) iteratively solves LQ
approximations of Stackelberg games (lines 4 to 8), updates
the control trajectories using the solutions to these approxi-
mated games (line 9), and terminates if the updated trajectory
satisfies a convergence condition (lines 10 to 12). Upon
successful convergence, the resulting trajectory constitutes an
approximate Stackelberg equilibrium. This type of approach
also yields approximate equilibrium solutions in the Nash case,
although establishing precise error bounds remains an open
problem [20]. We expect a similar result for SILQGames,
though it is beyond the scope of this work.

Algorithm 1 Stackelberg Iterative Linear-Quadratic Games

Input: leader AL, initial state x1, nominal strategies
{
u
(i),0
1:T

}
Output: converged strategies

{
u
(i),s−1
1:T

}
1: x0

1:T ← applyGameDynamics
(
x1,

{
u
(i),0
1:T

})
2: αs ← α1

3: for iteration s = 1, 2, . . . ,Miter do
4: F1:T ≡ {A,B(i)}t=1:T (5a, 5d)
5: ← linearizeDynamics

(
xs−1
1:T ,

{
u
(i),s−1
1:T

})
6: G1:T ≡ {Q(i), q(i), Rij , rij}t=1:T (5b, 5c, 5e, 5f)
7: ← quadraticizeCosts

(
xs−1
1:T ,

{
u
(i),s−1
1:T

})
8: P

(i),s
1:T ,p

(i),s
1:T ← solveLQStackelberg({F1:T ,G1:T })

9: xs
1:T ,

{
u
(i),s
1:T

}
← stepToward(P (i),s

1:T ,p
(i),s
1:T , αs) (7)

10: if ∥xs
1:T − xs−1

1:T ∥∞ ≤ τ then
11: return xs−1

1:T ,
{
u
(i),s−1
1:T

}
12: end if
13: αs+1 ← max(αmin, βαs)
14: end for

Inputs. SILQGames accepts an initial state x1 and a leader
AL. It accepts a set of all agents’ nominal control trajectories
{u(i),s=0

1:T }. We produce a nominal state trajectory x0
1:T by

applying the nominal controls from x1 (line 1).

LQ Game Approximation. At each iteration s, we first
linearize the dynamics (lines 4 and 5) and take second-order
Taylor series approximations of the costs (lines 6 and 7)
about the previous iteration’s state and control trajectories,
xs−1
1:T ,u

(1),s−1
1:T ,u

(2),s−1
1:T :

At = ∇xft, (5a)

Q
(i)
t = ∇2

xxg
(i)
t , (5b)

Rij
t = ∇2

u(j)u(j)g
(i)
t , (5c)

B
(i)
t = ∇u(i)ft, (5d)

q
(i)
t = ∇xg

(i)
t , (5e)

rijt = ∇u(j)g
(i)
t . (5f)

We define the state and control variables for our LQ game
approximation as deviations from the previous state and
control trajectories: δxs

1:T = xs
1:T − xs−1

1:T and δu
(i),s
1:T =

u
(i),s
1:T − u

(i),s−1
1:T . We then approximate the game as an LQ

problem with linear dynamics and quadratic costs

δxst+1 ≈ Atδx
s
t +

∑
i∈{1,2}

B
(i)
t δu

(i),s
t , (6a)

g
(i)
t (·, ·, ·) ≈ g(i)t

(
xs−1
t , u

(1),s−1
t , u

(2),s−1
t

)
+

1

2
∥δxst∥2Q(i)

t

+ q
(i)⊺
t δxst +

N∑
j=1

(
1

2
∥δu(j),st ∥2

Rij
t
+ rij⊺t δu

(j),s
t

)
, (6b)

where ∥ · ∥M is an induced matrix norm. We exclude mixed
partials ∇xu(i) ,∇u(i)u(j) due to their rarity in cost structures
of relevant applications, but they can be included if needed.

In practice, Q(i)
t and Rij

t may not be positive definite. Recall
that LQ Stackelberg games have unique global solutions given
strictly convex costs. Thus, we enforce positive definiteness,
and thus convexity, in the quadratic cost estimates by adding
a scaled identity matrix νI to all Q(i)

t and Rij
t terms. This

addition increases each eigenvalue by ν ∈ R+ [26, Ch. 3], so
a sufficiently large choice of ν guarantees convexity. Finally,
we solve the LQ game analytically (line 8) [21, Eq. 7.14-15].
Strategy Update. After approximating the game as LQ and
solving it, we update the control strategy (line 9). The analytic
solution to the LQ game consists of gain and feedforward
terms P

(i),s
1:T ,p

(i),s
1:T constituting an affine feedback control law

that produces strategy δû(i),st = −P (i),s
t δxst−p

(i),s
t . Following

standard procedures in ILQR [18], we define update rule

u
(i),s
t = u

(i),s−1
t − P (i),s

t δxst − αsp
(i),s
t , (7)

where αs ∈ (0, 1] is an iteration-varying step size parameter.
As αs approaches 0, the new iterate u

(i),s
t approaches the

previous iterate u
(i),s−1
t . Likewise, as αs approaches 1, we

adjust our previous iterate by the full step δû
(i),s
t . In single-

agent settings, methods like ILQR commonly apply a line
search for step size selection. However, this approach requires
a detailed description of complex, temporally-nested feedback
game constraints (3) and (4). Instead, SILQGames decays the
step size (line 13) with configurable decay factor β ∈ (0, 1)
and minimum step size αmin. Initial step size α1 = 1 unless
otherwise specified (line 2).
Convergence Criterion. Optimization algorithms commonly
use first-order optimality conditions [26, Ch. 12] to test
for convergence, and incorporating a line search guarantees
monotone improvement in such a convergence metric. As with
a line search, however, using first-order optimality conditions
becomes unwieldy due to the feedback game constraints (3)
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Fig. 2. Each particle in the Stackelberg leadership filter has
context ckt = [x̃k

t , H
k
t ]

⊺, where continuous RV xt ∈ Rn

describes the state and discrete RV Ht ∈ {1, 2} indicates
the leader. 1. At t − 1, we have a prior distribution
over the filter context. For Ht−1, the prior is Bernoulli
distributed. 2. The continuous state transitions according
to game dynamics ft−1. Leadership state evolves stochas-
tically based on a two-state Markov chain. 3. We play
a Stackelberg game from each particle’s previous state
and extract the game state at the current time t as the
expected measurement. 4. The algorithm uses a standard
particle filter measurement update [25, Ch. 4]. Resampling
eliminates unlikely particles and reweights the particle set
towards those that are similar to the measurement. Finally,
we marginalize over the continuous state and produce a
probability of leadership.

and (4). In practice, we define a convergence criterion as a
function of the current and next iterate’s states:

Conv
(
xs
1:T ,x

s−1
1:T

)
=

∥∥xs
1:T − xs−1

1:T

∥∥
∞ . (8)

We compute xs
1:T based on the proposed controls resulting

from update step (7). We say SILQGames converges if the
metric value falls below a threshold τ . SILQGames stops
after a maximum number of iterations Miter, irrespective of
convergence. We expect SILQGames to converge, though we
do not expect monotone decrease in the convergence criterion
as a large step size may occasionally overshoot the Stackelberg
equilibrium. Oscillations in the convergence metric can occur
when step sizes are consistently too large and may indicate
that αmin or β should be reduced. Please refer to our results
in Section V-A for further details.
Computational Complexity. The complexity analysis of [16]
holds almost identically for SILQGames. For a size-n state,
linearizing the dynamics and computing quadratic cost approx-
imations both require taking O(n2) partial derivatives. Solving
the coupled Ricatti equations for the approximate LQ game has
complexity O(n3) for a constant (N = 2) number of agents,
so the per-iteration runtime of SILQGames is cubic in n. The
entire algorithm runs in O(sn3), where s≤Miter is the number
of iterations to convergence.

B. Leadership Filtering

The Stackelberg Leadership Filter (SLF) estimates the
likelihood that each agent is the leader of a two-agent in-
teraction given noisy measurements z1:T . Let filter context
ct = [xt, Ht]

⊺ consist of continuous game state xt and leader
Ht. Following conventional Bayesian filtering practices and
denoting all agent controls wt = {u(1)t , u

(2)
t } for brevity, the

SLF refines prior context belief b(ct−1) with update rule

b(ct) ∝ p{zt|xt}
∫
ct−1

p {ct|ct−1, wt−1} b(ct−1)dct−1, (9)

In (9), the context transition probability term
p{ct|ct−1, wt−1} = p{xt, Ht|xt−1, Ht−1, wt−1} describes
the likelihood of context ct given the previous context ct−1

and each agent’s controls. Furthermore, the measurement
likelihood p{zt|xt} quantifies an expected measurement
based on how well the new state xt matches the observation

zt. Thus, we compute the leadership belief at time t by
marginalizing b(ct) = b(xt, Ht) over xt:

b(Ht) =

∫
xt

b(xt, Ht)dxt. (10)

To simplify the context transition probability, we assume
conditional independence of xt and Ht given ct−1 and wt−1.
While these values often evolve together, we can make this
assumption if the state responds slowly to changes in leader-
ship. In particular, if we select a sufficiently small sampling
period ∆t, then changes in state xt when Ht ̸= Ht−1 require
multiple time steps to observe. After this simplification,

p {ct|ct−1, wt−1}=p {xt|ct−1, wt−1} p {Ht|ct−1, wt−1}. (11)

The term p{xt|ct−1, wt−1} indicates that xt depends on the
previous leader and the previous state and controls through the
dynamics ft−1. The second term p{Ht|ct−1, wt−1} describes
how Ht depends on the previous state and controls. In the
passing scenario, for example, analyzing this term might allow
us to test for a relationship between Ht and whichever vehicle
was in front at time t− 1.

Constructing the SLF as a Bayesian filter first requires a
leadership transition process. However, establishing a form
for the p{Ht|ct−1, wt−1} term is difficult [3], [4], so we
leave it to user discretion if such knowledge is available. In
the case that a form does not exist, we treat the leadership
transition process as a two-state Markov Chain with transition
likelihood p{Ht ̸= Ht−1|Ht−1} = ptrans. In this chain, Ht

evolves independently of state xt−1 and agent controls wt−1.
One example in which this treatment appropriately models
leadership is when leadership is correlated with distraction and
can thus be modeled as only dependent on time. Despite this
simplification in construction, our experiments show the SLF
still accounts for the statistical dependence between leadership,
state, and controls.
Selecting a Filter. Due to the computational intractability of
exactly evaluating Bayesian update rule (9), we use a particle
filtering approach. Particle k has context ckt = [x̃kt , H

k
t ]

⊺. Par-
ticle filters use a measurement model to compute the expected
observation for a state xt [25, Ch. 4]. Our measurement model
h(x̃kt ;H

k
t ) solves a Stackelberg game to generate simulated

solution trajectories conditioned on the particle’s leader. In
the measurement update, we compare a subset of the solution
to the ground truth observations and update the likelihood of
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(a) Median ℓ∞ convergence metric, with 10th and 90th percentiles.

(leader)

(b) Stackelberg solution positions.

Fig. 3. We run 100 SILQGames
simulations on the non-LQ
shepherd and sheep game with
leader A2. The simulations
converge in 1133 ± 367 iter-
ations. (a) shows the number
of unconverged simulations and
(b) shows the solution for one
instance.

leadership using (9) and (10). We resample with replacement
to eliminate unlikely particles when the effective number of
particles, a metric that measures how well the particles repre-
sent the distribution, becomes low. We infer the leading agent
based on the similarity of expected measurements, generated
from Stackelberg games, to observations of the ground truth.
Since Stackelberg equilibria satisfy leadership condition (4),
converged solutions let the filter observe leadership indirectly
via the measurement model.
The Stackelberg Measurement Model. We construct a
measurement model that relates the leader Hk

t−1 in particle
k at time t−1 with the expected state measurement at time t;
in particular, we model the expected measurement from each
particle as an equilibrium strategy of game SH

k
t−1

Ts
(x̃kt−1). We

solve this game with SILQGames over horizon Ts, taking the
initial state and leader from previous particle context ckt−1.

For the third input, we require the user to provide an
application-specific function to specify nominal strategies
u
(i),s
t−1:t+Ts−1 using previous particles, a heuristic, etc. The SLF

calls this function within the measurement model to produce
nominal strategies as input to SILQGames. We describe one
such heuristic in the appendix. We call the solutions to these
games Stackelberg measurement trajectories and select the
state at time t as the expected measurement.

Next, we clarify a few practical details. First, experiments
determine that we must configure Ts carefully, neither too
short to provide relevant leadership information nor too long
as to cause excessive latency. Second, playing a Stackelberg
game from previous state xt−1 requires each particle to
maintain xt−1 as additional context. Third, after producing
a measurement trajectory, we attach measurement uncertainty
Σt to each state in it. Depending on the application, this step
may incorporate uncertainty from sensors, processing, etc.

V. EXPERIMENTS & RESULTS

We first introduce the two-agent LQ shepherd and sheep
game [27] and a nonlinear, nonquadratic variant, which we
use to validate SILQGames and the SLF. Finally, we run the
SLF on realistic driving scenarios.

In the LQ shepherd and sheep game, each agent’s state x(i)t

evolves according to planar double-integrator dynamics [28,
Eq. 75] discretized at ∆t. The game state combines the agent
states xt = [x

(1)
t , x

(2)
t ]⊺, and each agent controls its horizontal

and vertical accelerations. Agents’ costs

g
(1)
t

(
xt, u

(1)
t , u

(2)
t

)
=

(
p
(2)
x,t

)2

+
(
p
(2)
y,t

)2

+ ∥u(1)t ∥22, (12)

g
(2)
t (. . .) =

(
p
(1)
x,t − p

(2)
x,t

)2

+
(
p
(1)
y,t − p

(2)
y,t

)2

+ ∥u(2)t ∥22, (13)

are quadratic in state and controls and incentivize “shepherd”
A1 to minimize “sheep” A2’s distance to the origin (i.e., the
barn) and A2 to minimize its distance to A1. We denote the
planar positions for Ai as p(i)x,t, p

(i)
y,t. An analytic Stackelberg

solution exists since the game is LQ. When framing the
shepherd and sheep game as a Stackelberg game, we note
that either agent can be selected as the leader.

We form a nonlinear, nonquadratic variant of (12), (13) by
using planar unicycle dynamics [28, Eq. 77] with a velocity
state that evolves according to v̇ = α. We discretize the
dynamics at ∆t. Each agent Ai controls yaw rate ω(i)

t ∈ R
and longitudinal acceleration α(i)

t ∈R. The nonquadratic cost

g
(1′)
t

(
xt, u

(1)
t , u

(2)
t

)
= g

(1)
t (·, ·, ·)− log

(
ℓ− p(2)x,t

)
(14)

− log
(
p
(2)
x,t − ℓ

)
− log

(
ℓ− p(2)y,t

)
− log

(
p
(2)
y,t − ℓ

)
adds log barrier terms to (12) which force A1 to keep A2’s
position (p

(2)
x,t, p

(2)
y,t) bounded within an origin-centered square

of side length 2ℓ. The cost remains convex.

A. SILQGames Validation

To test convergence for non-LQ games, we run 100 simula-
tions of SILQGames on the non-LQ shepherd and sheep game
with A2 as leader. We fix A1’s initial position at (2m, 1m)
and vary A2’s initial position along the perimeter of a radius-√
5m circle. Both agents begin stationary and face toward the

origin. The nominal strategies apply zero input. We specify
additional parameters in the appendix.
Analysis. The results in Fig. 3a indicate that all simulations
converge. The median value of the convergence metric, shown
with 10% and 90% percentile bounds, exhibits a generally
decreasing trend. These results are consistent with our pre-
vious discussion on convergence, as SILQGames converges
in every simulation, though without monotone decrease in the
convergence criterion. SILQGames behaves similarly when we
vary the initial position of the follower.

In Fig. 3b, we report the solution for a particular (arbitrarily
chosen) simulation. Both agents’ motion follows the incentive
structure of the game: the distance between the two agents
decreases, as does the distance from A2 to the origin. As
expected, A1 exerts more control effort than A2 due to A2’s
leadership role and A1’s incentive to constrain A2’s position.
Finally, we note that A1’s motion changes sharply towards
the end of its trajectory. Here, the unicycle comes to a stop
and moves in reverse. These results demonstrate that, for a
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(a) Mean leader probability with standard deviation. (b) Measurement trajectories at t = 0.54 s. (c) Measurement trajectories at t = 2.04 s.

Fig. 4. We run 100 SLF simulations on analytic solutions to the LQ shepherd and sheep game. (a) indicates that the SLF initially misidentifies the leader
but then identifies the leader correctly as A1 before becoming uncertain due to noise. (b) and (c) are associated with a particular simulation and show the
Stackelberg measurement trajectories at t = 0.54 s and t = 2.04 s, respectively. The color of a particle’s measurement trajectory indicates leading agent
Hk

t−1, and the insets show the expected measurements for each particle, the actual measurement, and the ground truth.

game with nonlinear dynamics and convex, nonquadratic costs,
SILQGames converges to a solution that appears consistent
with the dynamics and costs.
Timing. We collect elapsed times for each iteration of 100
SILQGames simulations on AMD Ryzen 9 5900x 12-core
processors. The per-iteration runtime (with standard deviation)
of SILQGames is 0.49± 0.29 s. We note that straightforward
but nontrivial optimizations (i.e., more principled step size
selection, numerical optimization techniques, etc.) such as
those used in other iterative game solvers [29], [30] have been
shown to improve computational efficiency.

B. Leadership Filter Validation

We validate the leadership filter on analytic solution tra-
jectories of horizon Tsim for the LQ shepherd and sheep
game played with leader LGT = A1. Since we generate the
ground truth xGT

1:T with a known leader, a perfect filter should
infer the true leader with consistently high confidence. Our
results suggest that the SLF produces an observable signal for
Stackelberg leadership, but (as one can expect) noise and mea-
surement model configuration significantly affect performance.
We simulate noisy state measurements zt ∼ N (xGT

t ,Σ) and
pass Σ to the SLF. We list parameter values in the appendix.
Analysis. In our results, the SLF produces the expected
leadership probability for part of the simulation horizon. From
1.5−3.5 s in Fig. 4a, the SLF correctly infers A1 as the leader
with high likelihood. Examining the expected measurements
in Fig. 4c at 2.04 s, we note that the observations in this time
range more closely match the measurement models generated
with A1 as leader, which the SLF interprets as indicating
leadership by A1. In the left inset of Fig. 4c, the particles
that believe A2 to be the leader have positions further to the
left of those that consider A1 to be the leader. From this effect,
we see that the SLF accounts for the statistical dependence of
state and leadership despite our simplified treatment of the
leadership transition process.

However, we also see complex behavior in Fig. 4a. First,
the SLF initially misidentifies the leader as A2, as shown
by Fig. 4b, because the Stackelberg measurement trajecto-
ries do not capture leadership information over the whole
simulation horizon. Specifically, the measurement trajectories
{h(x̃kt−1, H

k
t−1)} are straight lines that roughly reduce the

state costs of the shepherd and sheep, but do not capture the
granularity of motion from the ground truth due to higher
control costs over the short horizon Ts ≪ Tsim.

Second, the SLF is completely uncertain after 4.5 s. Near
the origin, the contribution of process noise to the motion
outweighs the contribution of the dynamics, and together with
measurement noise obfuscate the dynamics.

From these results, we see that the SLF requires parameter
Ts to be of sufficient length to capture the influence of
leadership on the measurement trajectories. We note that the
SLF is sensitive to noise as it infers leadership indirectly by
comparing the observed motion with the expected motion of
a Stackelberg leader. Thus, too little process noise may lead
particles to converge to an incorrect trajectory, and too much
reduces the signal-to-noise ratio.
Timing. The mean overall runtime for 100 simulations of
an LQ game with 501 steps is 10.91± 1.64 s. For 50 par-
ticles and a 75-step measurement horizon, each step of the
SLF runs in 0.82 ± 0.35 s. Self-driving vehicle applications
require sub-100ms perception cycle computation time [31],
so our implementation is not real-time. To meet real-time
computational efficiency requirements, we must parallelize
particle computation and optimize SILQGames; the latter is
the most expensive step for each particle. These changes have
been shown to reduce computation time below 100ms, as
demonstrated by [29], [30], which use fast particle filters with
measurement models that solve dynamic games.

C. Realistic Driving Scenarios

We formulate passing and merging scenarios using realistic
ground truth trajectories without a clear leader. We demon-
strate that the SLF responds to changes in leadership, handles
objectives that imperfectly model agent behavior, and that the
results match right-of-way expectations. The dynamics and
cost terms demonstrate that the SLF does not require LQ
assumptions and works for nonconvex costs. Our results fur-
ther indicate that SILQGames, used within the SLF, converges
under these conditions.

Each agent’s state evolves according to unicycle dynamics.
The simulation runs for T steps at period ∆t = 0.05 s. We
model stage cost g(i)t as a weighted sum of incentives g(i)j,t ,
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g
(i)
t =

M(i)∑
j=1

w
(i)
j g

(i)
j,t . (15)

Weights {w(i)
j } ⊂ R+ specify the relative priorities of sub-

objectives. We define M (i) = 6 terms to incentivize driving
behaviors corresponding to legal or safety considerations.

g
(i)
1,t = d(x(i)t , x

(i),goal
t ) (16a)

g
(i)
2,t = − log(∥p(i)t − p

(j)
t ∥22 − dc) ∀i ̸= j (16b)

g
(i)
3,t = − log(vm − |v(i)t |)− log(∆ψm − |ψ(i)

t − ψr|) (16c)

g
(i)
4,t = (ω

(i)
t )2 + (α

(i)
t )2 (16d)

g
(i)
5,t = − log(∥p(i)t,llb − p

(i)
t ∥22)− log(∥p(i)t,rlb − p

(i)
t ∥22) (16e)

g
(i)
6,t = exp(−(1/2)(p(i)t,cl − p

(i)
t )⊺C−1(p

(i)
t,cl − p

(i)
t )) (16f)

Eq. (16a) requires a small distance between vehicle state x(i)t

and goal state x(i),goal
t . For this scenario, d(·, ·) is a weighted

Euclidean distance. Eq. (16b) requires a minimum safety ra-
dius dc between the vehicles. Eq. (16c) requires obeying speed
limit vm and avoiding excessive heading deviation ∆ψm from
road direction ψr. Eq. (16d) incentivizes low control effort.
Eq. (16e) enforces left and right lane boundaries p(i)t,llb, p

(i)
t,rlb,

based on lane width ℓw. Eq. (16f) uses a (nonconvex) Gaussian
function with covariance C to discourage crossing the center
line p(i)t,cl. We specify these parameter values in the appendix.
Lastly, we define the direction of motion as the y-direction
and the transverse direction as the −x-direction to maintain a
righthand coordinate frame.
Passing Scenario. The passing scenario begins with A2

behind A1 and runs for 7.5 s. In the ground truth trajectories
(Fig. 1), A2 initially follows A1 for 2.5 s, then passes in the
other lane, and ends ahead of A1 in the initial lane. A1 drives
along the lane at a constant velocity, applying no controls.

We simulate the leadership filter on the passing maneuver.
We expect A1 to start with a high leadership probability and
for that probability to decrease once the passing maneuver
begins, and vice versa for A2. In Fig. 1, the state estimate
tracks the ground truth, indicating that the leadership filter
captures the game dynamics. Since the SLF produces the
expected trends in the state estimates and agents’ probabilities,
our results show that Stackelberg leadership can match right-
of-way expectations for scenarios without a ground truth
leader. Moreover, the SLF responds appropriately to changing
leadership dynamics over time.

Lastly, we analyze the computation time of the SLF (0.027±
0.03 s per particle, per step). We note that calls to SILQGames
converge in 4.2± 13.6 iterations. During the straight portions
of the passing maneuver, the nominal trajectories produce
better LQ approximations and thus SILQGames converges
faster. During the turns, poor nominal strategies lead to slower
convergence and result in variability in the computation time
of the SLF. Overall, our results show that SILQGames can
handle nonconvex cost terms.
Merging Scenario. The merging scenario involves three sec-
tions of road (see Fig. 5): two 30m-long lanes separated
by a barrier at x = 0m, a merging segment that decreases

Fig. 5. In this merge, A2 starts ahead in its lane and A1 yields to A2. We
see a high leadership likelihood for A2, as expected because it merges first.
The inset indicates the current probabilities with a vertical dashed line.

from width 2ℓw to ℓw over 30m of length, and a one lane
road centered along x = 0m. Both agents start in their own
lanes, though A1 starts behind A2. In the ground truth, A2

merges before A1, which slows down to yield before merging.
A2 delays its merge once it enters the merging segment. We
construct the game played within the measurement model to
incentivize each agent to merge quickly after entering the
merging segment, so the cost we define forA2 does not exactly
reflect its actual behavior.

In Fig. 5, we simulate this merge with the leadership filter.
We expect A2 to lead the interaction as it begins ahead and
merges first. Given their objectives, we expect the agents’
measurement trajectories to merge quickly, and we see these
trajectories quickly move toward the center of the merging
segment. Nevertheless, the leadership filter’s state estimate
tracks the ground truth, including A2’s delayed merge, and
the SLF infers A2 as the leader. Thus, the results match
our right-of-way expectations despite agent objectives that
do not exactly describe the observed ground truth behavior.
This mismatch results in poor initialization, which affects the
computation time (1.02±0.99 s per particle, per step) as calls
to SILQGames take longer to converge (69.2±38.3 iterations).
As with the passing scenario, the variance in computation time
reflects a degradation in the quality of the LQ approximation.
We further re-iterate that parallelization is critical for the SLF
to run in real-time.

VI. DISCUSSION & LIMITATIONS

We contribute SILQGames, an iterative algorithm to solve
Stackelberg games with nonlinear dynamics and nonquadratic
costs. Through empirical validation on non-LQ game scenar-
ios, we show it reliably converges. We also introduce the
Stackelberg Leadership Filter and apply it to noisy scenarios
with known leaders and realistic driving situations. Results
highlight the SLF’s ability to estimate leadership in long-
horizon interactions with changing leadership and with ob-
jectives that do not exactly reflect observed agent behavior.
Furthermore, we discuss the robustness of our method to the
measurement horizon and noise.

Future directions include extending SILQGames to N > 2
agents and overcoming combinatorial scaling challenges aris-
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ing from the pairwise definition of Stackelberg leadership. The
number of possible N -agent Stackelberg hierarchies grows
exponentially and resolving the dependencies in any such
hierarchy is nontrivial. Another critical direction involves
establishing theoretical bounds on the number of SILQGames
iterations. For the SLF, future work includes enabling real-
time application using more efficient estimators and algo-
rithmically adjusting the measurement horizon Ts to observe
leadership dynamics over different horizons.
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APPENDIX

SILQGames Parameters. We vary the initial position of A2

about (−1m, 2m) along a 0.4 rad arc of a circle. We set
convergence threshold τ = 1.2·10−3, the maximum number of
iterations to 3500, and minimum step size αmin = 10−2. We
play the game for 10 s with period ∆t = 0.02 s (501 steps).
The nominal controls apply zero input.
SLF Parameters. In our examples, we select nominal strate-
gies with a simple heuristic that returns Ts-length control
trajectories for each agent, i.e. at time t − 1, the nominal
strategy for Ai is [u

(i)
t−1 · · ·u

(i)
t−1]. We configure the number

of particles Ns = 50. The Stackelberg measurement horizon
Ts = 75 steps (1.5 s). Let ptrans = 0.02, so transitioning is
thus likely enough that particles can switch leadership state
and model dynamic leadership transitions without injecting
excessive uncertainty into the inference. For the process noise
uncertainty W , we set position and heading variances on the
order of magnitude of 10−3 and velocity variances to 10−4.
SLF measurement uncertainty Σ = 5·10−3I . The convergence
threshold τ = 1.5 · 10−2, the max iteration count Miter = 50,
and step size αmin = 10−2.
Driving Scenario Parameters. Let speed limit vm=35m s−1

with initial headings aligned with the road direction ψr.
Lanes are ℓw = 2.5m wide. A safety violation occurs if the
vehicles come within dc=0.2m of one another. We constrain
acceleration and rotational velocity magnitudes to 9m s−2 and
2 rad s−1. The measurement horizon Ts = 1.0 s, with sampling
periods of 0.05 s (20Hz). We use 100 particles with equal
initial chance of A1 and A2 as leader. The center line is at
x = 0m. Each agent begins with velocity 10m s−1. Other
parameters are identical to the SLF parameters.
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