
1

Improving the performance of Learned Controllers
in Behavior Trees using Value Function Estimates

at Switching Boundaries
Mart Kartašev and Petter Ögren

Abstract—Behavior trees represent a modular way to create an
overall controller from a set of sub-controllers solving different
sub-problems. These sub-controllers can be created using various
methods, such as classical model based control or reinforcement
learning (RL). If each sub-controller satisfies the preconditions
of the next sub-controller, the overall controller will achieve
the overall goal. However, even if all sub-controllers are locally
optimal in achieving the preconditions of the next, with respect
to some performance metric such as completion time, the overall
controller might still be far from optimal with respect to the
same performance metric. In this paper we show how the
performance of the overall controller can be improved if we
use approximations of value functions to inform the design of
a sub-controller of the needs of the next one. We also show
how, under certain assumptions, this leads to a globally optimal
controller when the process is executed on all sub-controllers.
Finally, this result also holds when some of the sub-controllers are
already given, i.e., if we are constrained to use some existing sub-
controllers the overall controller will be globally optimal given
this constraint.

Index Terms—Behavior trees, Reinforcement learning, Au-
tonomous systems, Artificial Intelligence

I. INTRODUCTION

BEHAVIOR TREES (BTs) are receiving increasing atten-
tion in robotics [1], [2] where they are used to create

modular reactive controllers from a set of sub-controllers
solving different sub-problems. In this paper, we show how
to improve the performance of such modular designs when
incorporating RL [3] by iteratively computing value functions
of sub-controllers and using those value functions in the design
of the sub-controllers executing before them.

BTs were originally conceived in the game AI domain [4],
in an effort to make the controllers of in-game characters more
modular, and were later shown to be optimally modular, in the
sense of having so-called essential complexity equal to one [5].

Modularity is an important property in many engineering
disciplines that enables designers to solve problems by divid-
ing them into sub-problems, that are combined into a solution
for the overall problem. In the context of robot control, this
might correspond to creating sub-controllers such as Move to,
Grasp, Push etc. These controllers will then be executed in
a sequence until a primary goal is reached.

However, just reaching the goal is sometimes not enough.
Instead we might want to reach it in a way that is near optimal

The authors are with the Robotics, Perception and Learning Lab., School of
Electrical Engineering and Computer Science, Royal Institute of Technology
(KTH), SE-100 44 Stockholm, Sweden, kartasev@kth.se

Digital Object Identifier (DOI): see top of this page.

0 0 0 0 0 0 0 0 0
5 A 0

0
5

Room 1 6 Room 2 0
7 0
8 0

0 0
10 B 0

0 0 0 0 0 0 0 0 0

(a)

0 0 0 0 0 0 0 0 0
4 3 2 5 A 0
3 2 1 0 0
4 3 2 5

4 5 4 3 6 Room 2 0
5 4 3 7 0
4 3 2 8 0

0 3 2 1 0 0
4 3 2 10 B 0
0 0 0 0 0 0 0 0 0

(b)
0 0 0 0 0 0 0 0 0

5 A 1 2 3 0
2 1 2 3 4 0
5 2 3 4 5

Room 1 6 3 4 5 6 0
7 4 5 6 7 0
8 7 8 0

0 11 10 9 8 9 0
10 11 10 9 10 0

0 0 0 0 0 0 0 0 0

(c)

0 0 0 0 0 0 0 0 0
5 11 10 9 10 0
11 10 9 8 9 0
5 9 8 7 8

Room 1 6 8 7 6 7 0
7 7 6 5 6 0
8 4 5 0

0 2 1 2 3 4 0
10 B 1 2 3 0

0 0 0 0 0 0 0 0 0

(d)

Fig. 1: The agent first goes from room 1 to room 2, and then
goes to either object A or object B, see the map in (a). The
value functions for going from room 1 to room 2 can be seen
in (b), the value function for going to A can be seen in (c)
and the value function for going to B can be seen in (d).

with respect to some metric such as completion time, energy or
safety. If the overall task is associated with such a performance
metric it might be that all sub-controllers are locally optimal
with respect to this metric, but the overall controller is still far
from globally optimal.

An example of this is shown in Figure 1. Here the overall
goal is to reach either position A or position B in room 2,
starting from room 1. This problem is divided into three sub-
controllers, Go to room 2 (1b), Go to position A (1c) and
Go to position B (1d). The numbers in the figures show the
value function in terms of the remaining time to completion
(assuming one step takes one time unit). Let’s assume that the
controllers are to take the shortest path to their goal. If we
connect Go to room 2 with Go to position A, the combined
controller will first leave room 1 and then reach object A.
However if we start in the lower half of room 1 we will exit
through the lower door, from which there are 11 steps left to
reach A, if we instead would have exited through the upper
door, it would have taken longer time to exit room 1, but the
path to A in room 2 would only be 2 steps long, leading to an
overall shorter path. In this case the overall controller would
not be globally optimal, even though the sub-controllers are
locally optimal.

As seen in the example above, to achieve global optimality

ar
X

iv
:2

30
5.

18
90

3v
3

 [
cs

.R
O

]
 2

2
Fe

b
20

24

2

0 0 0 0 0 0 0 0 0
6 5 4 5 A 0
5 4 3 2 0
6 5 4 5
7 6 5 6 Room 2 0
8 7 6 7 0
9 8 7 8 0

0 10 9 8 11 0
11 10 9 10 B 0
0 0 0 0 0 0 0 0 0

(a)

0 0 0 0 0 0 0 0 0
11 10 9 5 A 0
10 9 8 11 0
9 8 7 5
8 7 6 6 Room 2 0
7 6 5 7 0
6 5 4 8 0

0 5 4 3 2 0
6 5 4 10 B 0
0 0 0 0 0 0 0 0 0

(b)

Fig. 2: Knowing which object to go to, we can use the value
function of that action, or an approximation of it, as a boundary
value for the first action. Using the boundary values from
object A in Figure 1(c) we get the value function of Goto
room 2 shown in (a). Similarly, using the boundary values
from object B in Figure 1(d) we get the value function of
Goto room 2 shown in (b).

each controller needs to be aware of how good different
states are from the perspective of the next controller. This
information can be found using the value function (estimating
the expected accumulated future reward) of the next controller
at the switching boundary. The results of doing this for Go to
room 2 is shown in Figure 2.

As an example where such issues arise in practice, consider
a hypothetical agent navigating indoors with a ”Move To”
action. If completion time is penalized, a locally optimal
solution will induce high speeds and accelerations. However,
this might cause problems after the switching boundary, where
the robot might collide with an object, or frighten a human
collaborator. With our method, the training of Move to can also
take the considerations of the subsequent actions into account.

The main contributions of this paper are as follows:
1) For a set of two local RL-controllers (controllers created

using RL) with given execution order, we show that if
we use the value function of the second controller as
a reward during the final step of the first controller,
the resulting value function will satisfy the Bellman
equation across the switching boundary, making the
combined controller globally optimal.

2) We extend this result to a larger set of local RL-
controllers, under certain assumptions, making the com-
bined controller globally optimal.

3) Given a mixed set of controllers designed using RL
or with manual design principles, we extend the result
above so that the global controller is optimal, under the
constraint that the non-RL controllers are not changed.

Before moving on we note two things: First, the proposed
approach is applicable in any context where the switching
boundaries between a set of policies are fixed, and some or
all of those policies are implemented using RL. This includes
settings such as using RL with the sequential behavior com-
positions in [6] and the consecutive policies of [7]. However,
BTs are one of the most common setups that specifically
lead to such static switching boundaries, and the computation
needed to find these boundaries for an arbitrary BT can be
found in [8]. Therefore, even though the results might be
applicable outside a BT setting, we choose to present and
motivate our work in the context of BTs.

Second, note that in the example above, tailoring Goto

room 2 to Goto A makes the overall performance worse when
combined with Goto B, and vice versa. But what if you wanted
to create a policy that performs well for both A and B? This
can be done in two ways. If the knowledge of what will come
next can be included in the state, Goto room 2 knows whether
A or B is next, and the suggested optimization will produce
a policy that handles both cases optimally. If on the other
hand the outcome of what will come next is unknown or
random, we can optimize over an (estimated) distribution of
subsequent policies. In the example above, if there is a 30%
probability of going to A and a 70% probability of going to B,
a weighted average of the value functions in Figures 1c and 1d,
(0.3vA+0.7vB) can be used to optimize Goto room 2, yielding
a slight preference for the lower door, but not as strong as
if it were known that B was always the target. Similarly, in
the previous example of indoor navigation, we would learn
that a high velocity on the boundary leads to a low reward
with high probability as the value prediction decreases due
to experienced collisions. Then, over time we would learn to
slow down.

Thus, our approach can create a reusable policy, that
is designed to optimize the expected reward over a given
distribution of possible subsequent policies. This allows for
modular use of actions within specific contexts, while improv-
ing expected performance, albeit with a possible trade-off in
performance with respect to other contexts, that are not expe-
rienced in training or represented in the state. As seen in the
examples above, our method yields the greatest performance
improvement in scenarios where the locally optimal solution
causes global performance degradation.

The remainder of this paper is organized as follows. The
related work is described in Section II. A brief background is
provided in Section III. Then the proposed approach including
the theoretical results is given in Section IV, followed by
a numerical example in Section V. Finally, conclusions are
drawn in Section VI.

II. RELATED WORK

RL has previously been used in BTs for training both the
control switching mechanisms [3], [9]–[12], and the individual
actions [3] that constitute a BT. Many of these works handle
this in the framework of Hierarchical Reinforcement Learning
(HRL). However HRL is not applicable to our problem as
the hierarchical controller we consider, with it’s switching
boundaries, is fixed, as given by the BT.

In [9] the authors build a so-called Q-condition for the
lowest level sequences of a BT, that can estimate the Q-value
for each action in a sequence. Every tick of the BT evaluates
the Q-conditions and reorders the actions in the sequences. The
highest utility action of each sequence is used to determine the
utility of the sequence, which can then be recursively used
to reorder the entire tree, ensuring that the right action is
executed at the right time. The concepts of learning action
node and learning composite node are introduced in [3], using
the Options framework [13] as the theoretical foundation. The
learning action node encapsulates an independent RL problem
with a complete definition of states, actions and rewards. In the

3

case of the composite node, the authors use branches of the BT
as actions in an RL problem to create control flow nodes. In a
similar fashion, [10]–[12] all use RL in slightly different ways
to train fallbacks that optimize the choice between alternative
options that achieve the same sub-goal. Our work is different
from [10]–[12] in that we use RL to update the policies,
whereas they use RL to decide when to use different policies.

As mentioned above, [3] included an approach for using RL
to create individual policies in a BT using a learning action
node, where a user defined MDP was created for each policy.
However, these policies were solved separately, leading to the
problem of locally optimal policies possibly being far from
globally optimal, as discussed above. Our work can be seen
as an extension of [3], where, under certain assumptions, we
can produce globally optimal policies by letting the reward on
the switching boundary be given by the value function of the
subsequent policy.

The most similar related work can be found in [7], where the
authors address the problem of local/global optimality in RL
applied in different regions with fixed switching boundaries.
However, their work is different from ours in the following
aspects: (a) they provide no theoretical analysis, while we
show convergence to the globally optimal policy. (b) they
combine critics linearly across all states, while we use the
next task’s value function as reward only at the boundary.
(c) they rely on a user-defined parameter (η), while our
approach does not. (d) Their method cannot handle cases
where preference information needs to flow across multiple
switching boundaries, whereas our approach can.

Another paper that addresses a related problem is [14].
There, it is noted that switching between different controllers
is sometimes problematic, as one controller might finish in
a state that makes the subsequent controller fail. The pro-
posed solution records success and failure data from expe-
rienced trajectories, and uses this to train transition policies to
reach successful starting states before invoking the original
controller. The approach in [14] does remove failures, but
cannot optimize further than that. Our method can achieve
near optimal performance, as measured by the MDP reward,
whereas they focus on feasibility. We adopt the final part of a
controller execution to the subsequent one, where they let the
first controller finish and then execute a transition to the next
skill.

III. BACKGROUND

In this section we will give a very brief description of
how BTs induce a partitioning of the statespace into different
operation regions, as well as listing some key concepts and
results from reinforcement learning.

A. Behaviour trees

A BT represents a way of combining a set of sub-controllers
into one overall controller in a way that is hierarchical and
have been shown to be optimally modular [5]. A recent survey
can be found in [1], and technical overview in [8].

A given BT induces a partition of the state space into a
hierarchical set of operating regions Ωi, where controller i

is executing when the state s ∈ Ωi as seen in the following
Lemma from [8].

Lemma 1. For a given node j, with operating region Ωj ,
controller j is executed when s ∈ Ωj , and the operating
regions of the children of j is a partitioning of Ωj .

Proof. This is a concatenation of Lemmas 7 and 8 of [8].

The computation of the operating regions is a straightfor-
ward, but somewhat complex recursive operation on the tree
structure, given by Definitions 10 and 11 in [8].

An illustration of this partitioning can be found in Figure 4
below. In this paper we will investigate the interactions be-
tween controllers across the operating regions.

B. MDPs and Reinforcement learning

Let a Markov Decision Process (MDP) be defined as follows
[15, p232]:

Definition 1. (Markov Decision Process). An MDP is a 4-
tuple

(S,A, p, r), (1)

where S is a set of states, A is a set of actions, with A(s) ⊂ A
the set of actions available at state s, p(s′|s, a) = p(st+1 =
s′|st = s, at = a) is the probability of state transitions, and
r(s, s′, a) is the reward for transitioning to state s′ from state
s applying action a.

A policy, π : S → A, assigns an action to each state. The
value function, vπ : S → R, of a policy π is the expected
cumulative reward gained by the policy,

vπ(s) = E{rt + γrt+1 + γ2rt+2 + . . . |st = s, π}, (2)

and satisfies the Bellman equation

vπ(s) =
∑
s′

p(s′|s, π(s)) [r(s, s′, π(s)) + γvπ(s′)]. (3)

A policy that maximizes vπ is called an optimal policy
π∗, and the corresponding value function, the optimal value
function v∗, is the unique solution to the Bellman optimality
equation [15, p233]

v∗(s) = max
a

∑
s′

p(s′|s, a)[r(s, s′, a) + γv∗(s′)]. (4)

An optimal policy can be found from the optimal value
function as [15, p233]

π∗(s) = argmaxa
∑
s′

p(s′|s, a)[r(s, s′, a) + γv∗(s′)]. (5)

IV. PROPOSED APPROACH

In this section we will provide the main result of the
paper. The intended use of the results is to let the sets
Ωα,Ωβ below correspond to different operating regions Ωi

of a BT. Then, Lemma 2 shows how the policy in Ωβ can be
designed independently of Ωα, and exactly how the policy in
Ωα must take Ωβ into account to provide overall optimality.
Furthermore, Lemma 4 shows how to handle the case when the
policy in Ωβ is already given. Finally, Lemma 5 shows how to

4

recursively extend these results to BTs with many operating
regions.

Definition 2 (MDP-neighbors). Given an MDP, we say that
two disjoint sets Ωα,Ωβ ⊂ S are MDP-neighbors if there are
two states sα ∈ Ωα, sβ ∈ Ωβ and an action a ∈ A such that
the transition probability p(sβ |sα, a) ̸= 0, i.e. the MDP can
transition from Ωα to Ωβ in a single step.

Assumption 1. Assume that Ωα,Ωβ are MDP-neighbors for
some MDP and that every trajectory of an optimal policy

1) ends in Ωβ with a finite accumulated reward,
2) if it is in Ωβ it will not leave Ωβ ,
3) if it starts in Ωα it will transition to Ωβ without entering

some other part of S first.

Note that the above assumption is satisfied for many prob-
lems with a large positive reward for transition to some states
inside Ωβ ending the episode, and a smaller negative reward
for all other transitions inside Ωα∪Ωβ . This might correspond
to a problem where the policy should reach a goal region
inside Ωβ using e.g., minimum time or minimum energy.
The two regions might correspond to a move to action and
a pick/push object action, where it is clear that you have to
move to the object before picking/pushing it. However, there
are also many combinations of MDPs and regions that do not
satisfy Assumption 1, i.e., when the optimal policy passes the
switching boundary multiple times, so it needs to be checked
for each case.

We will use the following definition to first solve a smaller
MDP in Ωβ and then solve another smaller MDP in Ωα, using
the value function of the first one as part of the reward. We
call the two smaller MDPs restrictions of the original MDP.
We want them to be very similar to the larger MDP, but since
an MDP cannot have transitions out of the state set, we need to
add a set of states Sadd along the boundary that are absorbing
(no transitions out), and give no rewards, see below.

Definition 3 (Restriction). By the restriction of a MDP P0 =
(S,A, p, r) to Ŝ ⊂ S we mean a new MDP P̄ = (S̄, Ā, p̄, r̄)
with a smaller set of states S̄ = Ŝ ∪ Sadd, where

Sadd = {s′ ∈ S \ Ŝ : ∃s ∈ Ŝ, a ∈ A(s) ∧ p(s′|s, a) ̸= 0}.

The available actions are the same Ā(s) = A(s). The
transition probability is given by

p̄(s′|s, a) =

p(s′|s, a), if s ∈ Ŝ

1, if s = s′, s ∈ Sadd

0, otherwise.
(6)

Note that this makes the states in Sadd absorbing, i.e. they can
never be exited. The reward is given by

r̄(s, s′, a) =

r(s, s′, a), if s, s′ ∈ Ŝ

r(s, s′, a) + v+(s
′), if s ∈ Ŝ, s′ ∈ Sadd

0, if s ∈ Sadd,

(7)

where v+(s
′) is a given function impacting the reward when

transitioning from Ŝ to Sadd.

Below we will use v+ to penalise undesired transitions, and
reward desired transitions based on the value function in the

destination state.

Lemma 2 (Decoupled solutions). Given an MDP P0 =
(S,A, p0, r0), with optimal value function v∗0(s), let Assump-
tion 1 hold for two sets Ωα,Ωβ .

Let the MDP Pβ = (Sβ , Aβ , pβ , rβ) be the restriction of P0

to Ωβ with
v+(s

′) = −∞, (8)

having the corresponding optimal value function v∗β .
Let the MDP Pα = (Sα, Aα, pα, rα) be the restriction of

P0 to Ωα with

v+(s
′) =

{
γv∗β(s

′), if s′ ∈ Ωβ

−∞, otherwise
(9)

having the corresponding optimal value function v∗α.
Then the optimal value functions of Pα and Pβ are identical

to the optimal value function of P0 in Ωα and Ωβ respectively.
That is

v∗0(s) =

{
v∗α(s), if s ∈ Ωα

v∗β(s), if s ∈ Ωβ

(10)

Note that the lemma above states that we can solve P0 by
first solving the smaller MDP Pβ over Ωβ and then solving Pα

over Ωα using optimal value function v∗β(s
′) on the boundary

as v+. Also note that once we have the optimal value function,
we can easily find an optimal policy through Equation (5).

Proof. The optimal value function that solves Equation (4)
for a given MDP is known to be unique [15]. Therefore we
can assume that v∗0 of P0 is known, and if we can construct
solutions v∗α of Pα and v∗β of Pβ that satisfies Equations (4)
and (10) we are done.

We start by looking at Pβ . Let

v∗β(s) =

{
v∗0(s), if s ∈ Ωβ

0, if s ∈ Sadd

(11)

Clearly this satisfies Equation (10), so it remains to show that
it satisfies the Bellman optimality equation (4) for Pβ .

We will show that the equations for both P0 and Pβ do not
depend on the values outside Ωβ , and since the values inside
Ωβ are identical, (4) must hold for Pβ if it holds for P0.

For P0 we know by Assumption 1 that any trajectory of an
optimal policy π∗

0 of P0 will remain in Ωβ . Therefore π∗
0 must

be such that p(s′|s, π∗
0(s)) = 0 for all s ∈ Ωβ , s

′ ̸∈ Ωβ .
We also know that π∗

0 satisfies (5), therefore, for s ∈ Ωβ ,
the action a that maximizes the right hand side of (5) is such
that p(s′|s, a) = 0 for all s ∈ Ωβ , s

′ ̸∈ Ωβ . In (4) the same
sum is maximized over a, and therefore p(s′|s, a) = 0 in (4)
as well.

Thus, by (4), the values of v∗0(s) for s ∈ Ωβ do not depend
on the values of v∗0(s) for s ̸∈ Ωβ .

For Pβ we have that states outside Ωβ are the absorbing
states Sadd. The reward of transferring to those is −∞, since
r̄(s, s′, a) = r(s, s′, a) + v+(s

′) = r(s, s′, a) −∞ = −∞ by
(7). We know that there exists a policy that avoids leaving Ωβ

and results in a finite accumulative reward, since the available
actions are the same, Ā(s) = A(s). Since leaving Ωβ has a

5

<latexit sha1_base64="1OfLb8zIrV1mIFv5L+3Cp9aVaqo=">AAAB8XicbVBNS8NAEJ3Urxq/qh69LBbBU0lE1GPRizcr2A9sQ9lsN+3S3U3Y3Qgl9F948aCIV/+NN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZRWVtfWN8qb7tb2zu5eZf+gpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4vsn99hNVmsXywUwSGgg8lCxiBBsrPfbuBB3ivu+6/UrVq3kzoGXiF6QKBRr9yldvEJNUUGkIx1p3fS8xQYaVYYTTqdtLNU0wGeMh7VoqsaA6yGYXT9GJVQYoipUtadBM/T2RYaH1RIS2U2Az0oteLv7ndVMTXQUZk0lqqCTzRVHKkYlR/j4aMEWJ4RNLMFHM3orICCtMjA0pD8FffHmZtM5q/kXt/P68Wr8u4ijDERzDKfhwCXW4hQY0gYCEZ3iFN0c7L8678zFvLTnFzCH8gfP5A/kfj9A=</latexit>

⌦1
<latexit sha1_base64="vS4bMeCeKEiTtf1Y3Rwqw4IFYtg=">AAAB8XicbVBNSwMxEM3Wr7p+VT16CRbBU9ktRT0WvXizgv3AdinZdLYNTbJLkhVK6b/w4kERr/4bb/4bs+0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpuuzu7e/sHpcOjlo5TRaFJYx6rTkg0cCahaZjh0EkUEBFyaIfjm8xvP4HSLJYPZpJAIMhQsohRYqz02LsTMCT9quv2S2Wv4s2BV4mfkzLK0eiXvnqDmKYCpKGcaN31vcQEU6IMoxxmbi/VkBA6JkPoWiqJAB1M5xfP8JlVBjiKlS1p8Fz9PTElQuuJCG2nIGakl71M/M/rpia6CqZMJqkBSReLopRjE+PsfTxgCqjhE0sIVczeiumIKEKNDSkLwV9+eZW0qhX/olK7r5Xr13kcRXSCTtE58tElqqNb1EBNRJFEz+gVvTnaeXHenY9Fa8HJZ47RHzifP/qlj9E=</latexit>

⌦2

Fig. 3: The basic case with Ωα = Ω1 and Ωβ = Ω2. The arrow
indicates that trajectories of an optimal policy will always
move from Ω1 to Ω2 and never in the opposite direction.

reward of −∞ we conclude that the optimal policy for Pβ

does not leave Ωβ , and by the argument above, the values of
v∗β(s) for s ∈ Ωβ do not depend on the values of v∗β(s) for
s ̸∈ Ωβ . This concludes the proof regarding Pβ .

For Pα we will explore how it depends on values outside
Ωα. First we note that v∗α(s) = 0 for s ∈ Sadd since Sadd are
absorbing (no transitions out) and have reward 0 for staying
by (7). If s ∈ Ωα, s

′ ∈ Ωβ we note the following

pα(s
′|s, a)[rα(s, s′, a) + γv∗α(s

′)], (12)
pα(s

′|s, a)[(r0(s, s′, a) + v+(s
′)) + γv∗α(s

′)] = (13)
pα(s

′|s, a)[(r0(s, s′, a) + γv∗β(s
′)) + 0] = (14)

p0(s
′|s, a)[r0(s, s′, a) + γv∗0(s

′)] (15)

where we have used (7) in the first equality, v∗α(s
′) = 0 and

(9) in the second equality, and finally (6) and (11) to get the
last equality.

Thus we see that the right hand side of (4) is the same for
P0 and Pα for s ∈ Ωα, s

′ ∈ Ωβ .
For transitions inside Ωα, i.e. s, s′ ∈ Ωα the right hand

sides are clearly the same. Transitions leaving Ωα ∪ Ωβ are
handled as above as we know the optimal policy of P0 never
leaves Ωα ∪Ωβ , and the reward in Pα for leaving Ωα ∪Ωβ is
−∞. Thus values outside Ωα ∪Ωβ does not influence (4) for
s ∈ Ωα, and states s′ ∈ Ωβ produce identical contributions by
(15). Therefore, if v∗0(s) satisfies (4) of P0 so does v∗α(s) of
Pα.

Example 1. Consider a ball-shaped agent that is to push a
box to a given goal region, modelled as an MDP P0. It is
clear that each successful policy must first move to the box,
and then push it into the goal region (as you cannot push
without being close to something). Thus we can divide S into
Ω1 (not close to box) and Ω2 (close to box).

Lemma 2 now tells us that we can first solve the ball pushing
MDP P2, and then solve the move to MDP P1 using the value
function from P2 (which basically describes what positions
around the box are beneficial for pushing it to the goal), as
input.

Having done this, Lemma 2 tells us that the optimal value
functions of P0 will be the same as P1, P2 on Ω1,Ω2 cor-
respondingly. Since the optimal policy can be found from the
optimal value function through (5), we have found the optimal
policy to the original problem by solving the two smaller
problems.

A detailed version of this example can be found in Section V
below.

The next result concerns the case where we have a MDP
and want to use an existing policy for parts of the solution.
Examples include a classical PID controller, inverse kinemat-

ics for bringing a robot arm to some configuration, or some
other policy that we want to reuse.

Lemma 3 (Constraining the optimal policy). Let the MDP
P0 = (S,A(·), p, r) and a policy πg : S → A that we must
execute in some domain Ωg ⊂ S be given.

If we define a new function Ā : S → A such that

Ā(s) =

{
{πg(s)}, if s ∈ Ωg

A(s), otherwise,
(16)

then the optimal solution π∗
1(s) of the new MDP P1 =

(S, Ā(·), p, r) is such that π∗
1(s) = πg(s) when s ∈ Ωg .

Proof. Any policy in the new MDP must satisfy π(s) = πg(s)
when s ∈ Ωg , as this is the only available action. Thus it also
holds for the optimal policy.

Lemma 4 (Combining manual and learned sub-polices).
Given a MDP P0 = (S,A, p, r) and a given policy πg : S →
A that we want to execute in some domain Ωg ⊂ S.

If we constrain the available actions A(·) as described in
Lemma 3 we can still apply Lemma 2 if the new MDP also
satisfies Assumption 1.

Proof. This is clear since applying Lemma 3 just produces a
new MDP, and Lemma 2 can be applied to any MDP satisfying
Assumption 1.

Remark 1. Note that this can be practical if there exists a
manually designed controller, e.g., a PID- or LQR controller
that we want to combine with a learned controller in an
optimal way. If Ωg = Ωβ , the optimal policy in all of Ωβ is
already known, and we can compute the optimal value function
v∗β(s) in Ωβ using e.g. policy evaluation, as suggested in [16].

Example 2. Looking back at the ball pushing problem in
Example 1, we might have an existing pushing policy that
we want to use. If that is the case we can constrain the
available actions according to this policy, compute the value
function for the given policy, and then find the optimal move to
behavior using the value function of the manual push-behavior.
A detailed version of this example can be found in Section V
below.

Lemma 5 (Recursive application over many policies). Given a
MDP P0 = (S,A, p, r) where S is divided into a set of disjoint
operating regions Ωi, such that S = ∪iΩi, as illustrated in
Figure 4. Assume the optimal policy has a finite accumulated
reward from all starting states.

Let M ⊂ N be the indices of existing policies πi : Ωi → A
for i ∈ M we want to use.

First we constrain the MDP with respect to these con-
trollers, according to Lemma 3.

If the Ωi are numbered such that transitions of optimal
policies will always happen from a lower index to a higher
index in this constrained MDP, we improve the policy in any
region Ωi, i ̸∈ M by letting Ωα = Ωi and Ωβ = ∪j>iΩj , and
applying Lemma 2.

If we recursively apply this strategy backwards from the
highest index, we will recreate the globally optimal policy.

6

<latexit sha1_base64="B6e5Dkm/UDDl3e76g3dNorfuw6E=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBU9nVoh6LXrxZwX5Iu5Rsmm1Dk+ySZIWy9Fd48aCIV3+ON/+N2XYP2vpg4PHeDDPzgpgzbVz32ymsrK6tbxQ3S1vbO7t75f2Dlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Cbz209UaRbJBzOJqS/wULKQEWys9Ni7E3SI++elfrniVt0Z0DLxclKBHI1++as3iEgiqDSEY627nhsbP8XKMMLptNRLNI0xGeMh7VoqsaDaT2cHT9GJVQYojJQtadBM/T2RYqH1RAS2U2Az0oteJv7ndRMTXvkpk3FiqCTzRWHCkYlQ9j0aMEWJ4RNLMFHM3orICCtMjM0oC8FbfHmZtM6q3kW1dl+r1K/zOIpwBMdwCh5cQh1uoQFNICDgGV7hzVHOi/PufMxbC04+cwh/4Hz+AMUuj74=</latexit>

⌦3

<latexit sha1_base64="hsyaQyP1FBmd0RKQVyABKKsHx/o=">AAAB8XicbVBNS8NAEN34WeNX1aOXxSJ4KokU9Vj04s0K9gPbUDbbSbt0dxN2N0IJ/RdePCji1X/jzX/jps1BWx8MPN6bYWZemHCmjed9Oyura+sbm6Utd3tnd2+/fHDY0nGqKDRpzGPVCYkGziQ0DTMcOokCIkIO7XB8k/vtJ1CaxfLBTBIIBBlKFjFKjJUee3cChqRfc91+ueJVvRnwMvELUkEFGv3yV28Q01SANJQTrbu+l5ggI8owymHq9lINCaFjMoSupZII0EE2u3iKT60ywFGsbEmDZ+rviYwIrScitJ2CmJFe9HLxP6+bmugqyJhMUgOSzhdFKccmxvn7eMAUUMMnlhCqmL0V0xFRhBobUh6Cv/jyMmmdV/2Lau2+VqlfF3GU0DE6QWfIR5eojm5RAzURRRI9o1f05mjnxXl3PuatK04xc4T+wPn8Af2xj9M=</latexit>

⌦4

<latexit sha1_base64="xEzO7dRfLjTlh05YI15jOy34/xs=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoPgKexKfByDXrwZwTwwWcLsZDYZMjO7zMwKYclfePGgiFf/xpt/42yyB00saCiquunuCmLOtHHdb6ewsrq2vlHcLG1t7+zulfcPWjpKFKFNEvFIdQKsKWeSNg0znHZiRbEIOG0H45vMbz9RpVkkH8wkpr7AQ8lCRrCx0mPvTtAh7p+XSv1yxa26M6Bl4uWkAjka/fJXbxCRRFBpCMdadz03Nn6KlWGE02mpl2gaYzLGQ9q1VGJBtZ/OLp6iE6sMUBgpW9Kgmfp7IsVC64kIbKfAZqQXvUz8z+smJrzyUybjxFBJ5ovChCMToex9NGCKEsMnlmCimL0VkRFWmBgbUhaCt/jyMmmdVb2Lau2+Vqlf53EU4QiO4RQ8uIQ63EIDmkBAwjO8wpujnRfn3fmYtxacfOYQ/sD5/AH/N4/U</latexit>

⌦5

<latexit sha1_base64="1OfLb8zIrV1mIFv5L+3Cp9aVaqo=">AAAB8XicbVBNS8NAEJ3Urxq/qh69LBbBU0lE1GPRizcr2A9sQ9lsN+3S3U3Y3Qgl9F948aCIV/+NN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZRWVtfWN8qb7tb2zu5eZf+gpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4vsn99hNVmsXywUwSGgg8lCxiBBsrPfbuBB3ivu+6/UrVq3kzoGXiF6QKBRr9yldvEJNUUGkIx1p3fS8xQYaVYYTTqdtLNU0wGeMh7VoqsaA6yGYXT9GJVQYoipUtadBM/T2RYaH1RIS2U2Az0oteLv7ndVMTXQUZk0lqqCTzRVHKkYlR/j4aMEWJ4RNLMFHM3orICCtMjA0pD8FffHmZtM5q/kXt/P68Wr8u4ijDERzDKfhwCXW4hQY0gYCEZ3iFN0c7L8678zFvLTnFzCH8gfP5A/kfj9A=</latexit>

⌦1
<latexit sha1_base64="vS4bMeCeKEiTtf1Y3Rwqw4IFYtg=">AAAB8XicbVBNSwMxEM3Wr7p+VT16CRbBU9ktRT0WvXizgv3AdinZdLYNTbJLkhVK6b/w4kERr/4bb/4bs+0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpuuzu7e/sHpcOjlo5TRaFJYx6rTkg0cCahaZjh0EkUEBFyaIfjm8xvP4HSLJYPZpJAIMhQsohRYqz02LsTMCT9quv2S2Wv4s2BV4mfkzLK0eiXvnqDmKYCpKGcaN31vcQEU6IMoxxmbi/VkBA6JkPoWiqJAB1M5xfP8JlVBjiKlS1p8Fz9PTElQuuJCG2nIGakl71M/M/rpia6CqZMJqkBSReLopRjE+PsfTxgCqjhE0sIVczeiumIKEKNDSkLwV9+eZW0qhX/olK7r5Xr13kcRXSCTtE58tElqqNb1EBNRJFEz+gVvTnaeXHenY9Fa8HJZ47RHzifP/qlj9E=</latexit>

⌦2

<latexit sha1_base64="cOqGDzTbaa20ySIoR7atGjemcCc=">AAAB8XicbVBNSwMxEM3Wr7p+VT16CRbBU9mVUj0WvXizgv3AdinZdLYNTbJLkhVK6b/w4kERr/4bb/4bs+0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpuuzu7e/sHpcOjlo5TRaFJYx6rTkg0cCahaZjh0EkUEBFyaIfjm8xvP4HSLJYPZpJAIMhQsohRYqz02LsTMCT9muv2S2Wv4s2BV4mfkzLK0eiXvnqDmKYCpKGcaN31vcQEU6IMoxxmbi/VkBA6JkPoWiqJAB1M5xfP8JlVBjiKlS1p8Fz9PTElQuuJCG2nIGakl71M/M/rpia6CqZMJqkBSReLopRjE+PsfTxgCqjhE0sIVczeiumIKEKNDSkLwV9+eZW0Lip+rVK9r5br13kcRXSCTtE58tElqqNb1EBNRJFEz+gVvTnaeXHenY9Fa8HJZ47RHzifPwDMj9U=</latexit>

⌦6

<latexit sha1_base64="9ySCFb04gwYDEUs/QM4T4cOD7uc=">AAAB8nicbVBNS8NAEJ3Urxq/qh69LBbBU0lErMeiF29WsB+QhrLZbtqlu9mwuxFK6c/w4kERr/4ab/4bN20O2vpg4PHeDDPzopQzbTzv2ymtrW9sbpW33Z3dvf2DyuFRW8tMEdoikkvVjbCmnCW0ZZjhtJsqikXEaSca3+Z+54kqzWTyaCYpDQUeJixmBBsrBb17QYe4X3ddt1+pejVvDrRK/IJUoUCzX/nqDSTJBE0M4VjrwPdSE06xMoxwOnN7maYpJmM8pIGlCRZUh9P5yTN0ZpUBiqWylRg0V39PTLHQeiIi2ymwGellLxf/84LMxNfhlCVpZmhCFovijCMjUf4/GjBFieETSzBRzN6KyAgrTIxNKQ/BX355lbQvav5V7fLhstq4KeIowwmcwjn4UIcG3EETWkBAwjO8wptjnBfn3flYtJacYuYY/sD5/AE5X4/q</latexit>

⌦7

Fig. 4: Illustration of the iterative application of the main
result. If we know that trajectories of optimal policies will
always move from Ωi to Ωj , with i < j, and finally stay in
Ω7, we can apply Lemma 5 with Ωα = Ωi and Ωβ = ∪j>iΩj ,
starting from the back with Ωα = Ω6 and Ωβ = Ω7, then
Ωα = Ω5 and Ωβ = Ω6 ∪ Ω7, and so on.

Proof. Since we know that the optimal policy has a finite
accumulated reward, and all transitions of the optimal policy
will happen to a region with higher index i, items 1, 2 and
3 of Assumption 1 is satisfied for all Ωα,Ωβ constructed as
above. If the assumption is satisfied, we can apply the lemma
to improve performance. Since the solution in Ωα depends on
the solution in Ωβ , we will get the optimal solution by starting
with the highest index and going backwards.

V. NUMERICAL EXAMPLES

A simple numerical example was already described in
Section I and Figures 1 and 2 above. To see how the theoretical
results from Section IV apply to a more dynamic example, we
implemented Examples 1 and 2 above using the Unity Engine
and the RL framework called ML-agents [17]. This section
will give an overview of the setting, configurations and results.

A. Motivation of the setup

To illustrate the theoretical results above we picked a simple
example with just two policies. This example shows how the
approach works, but not why it is needed, as the example
can easily be solved by using a standard single RL policy,
as is done for performance comparison in the experiment.
To motivate the approach, we note that this example is not
a typical intended use case. As discussed above, BTs have
been shown to be optimally modular [18], and modularity is
important only when you have a complex system with many
policies, such as the one in Figure 1 of [8]. This is a typical
use case, with a BT having 13 conditions to elaborately switch
between 8 different actions. However, the principles are the
same, and to enable us to go into details, we pick the simple
example above.

B. Scenario setup

As in Examples 1 and 2 above, and illustrated in Figure 5,
the environment consists of an agent in the shape of a ball, a
target object in the shape of a box, and a rectangular goal area.
The environment is initialized by setting a random position for
the agent and the target object, as well as a randomly chosen
edge for the goal area. The task of the agent is to push the

Fig. 5: A snapshot of the experimental environment including
a blue spherical agent, a blue goal area rectangle and a red
target box. The agent fails if the target or the agent leave the
plane, and succeeds if the target reaches the blue goal area.

Close
to Box

?

Move
to Box

—>

Push
Box

<latexit sha1_base64="8UoVEJBWT8Qe//CZ7cQwClj+8nk=">AAACLHicbVDLSgMxFM3UV62vqks3wVLQTZkpRcVVoRtXPsCq0BlKJr1tQ5PJkGTEMvSD3PgrgriwiFu/w4zOwloPBA7nnEvuPWHMmTauO3UKC4tLyyvF1dLa+sbmVnl750bLRFFoU8mluguJBs4iaBtmONzFCogIOdyGo1bm396D0kxG12YcQyDIIGJ9RomxUrfc8i8EDEjXw1VfhPIhPTiXBlMuNWAjsVUOJ6VqHqrjPNOa8bvliltzv4HniZeTCspx2S2/+D1JEwGRoZxo3fHc2AQpUYZRDpOSn2iICR2RAXQsjYgAHaTfx05w1So93JfKvsiumqm/J1IitB6L0CYFMUP918vE/7xOYvonQcqiODEQ0Z+P+gnPzsyawz2mgBo+toRQxeyumA6JItTYfku2BO/vyfPkpl7zjmqNq0aleZrXUUR7aB8dIA8doyY6Q5eojSh6RM/oDU2dJ+fVeXc+fqIFJ5/ZRTNwPr8AV8qmdA==</latexit>

⌦1

<latexit sha1_base64="bgwtJn3v6rTcNWu8e/t5Bdra4AY=">AAACLXicbVDLSgNBEJyNrxhfqx69DIaAXsJuCCqeAnrw5APMA5IQZiedOGRmZ5mZFcPiD3nxV0TwEBGv/oazZhGjNjQUVdV0dwURZ9p43sTJzc0vLC7llwsrq2vrG+7mVkPLWFGoU8mlagVEA2ch1A0zHFqRAiICDs1gdJLqzVtQmsnw2owj6AoyDNmAUWIs1XNPS50LAUPS83GpIwJ5l+ydS4Mplxqwkdgy+/eFzFP59pzM6D236JW9r8J/gZ+BIsrqsuc+d/qSxgJCQznRuu17kekmRBlGOdh9sYaI0BEZQtvCkAjQ3eTr23tcskwfD6SyHdpTU/bnREKE1mMRWKcg5kb/1lLyP60dm8FRN2FhFBsI6XTRIObpm2l0uM8UUMPHFhCqmL0V0xuiCDU24IINwf/98l/QqJT9g3L1qlqsHWdx5NEO2kV7yEeHqIbO0CWqI4oe0BOaoFfn0Xlx3pz3qTXnZDPbaKacj0/Avaaj</latexit>

⌦2
Close to box

Not close to box

Fig. 6: The simple BT of the example on the left, with one
condition and two policies, and the operating regions on the
right. Move to box will execute in Ω1 and Push Box will
execute in Ω2.

target to the goal area. It can fail by exiting the mission area,
or moving the target outside of the mission area. The agent’s
controller is split into two sub-behaviors. A Move To behavior,
which is active when the agent is far away from the box, and
a Push behavior which is activated if the agent is close to
the box. Thus Ωβ = {s ∈ S : ||pagent − pbox|| < d} and
Ωα = S \ Ωβ , with d equal to 2.5 times the side of the box.

The target and the agent are subject to second-order dynam-
ics, including friction, as implemented by the physics engine
in Unity. The agent is controlled through applying a force in
the horizontal plane. The agent observes it’s own position and
velocity, as well as the relative position of the goal and the
target box, making the state space S 8-dimensional.

C. The different controllers
First we will create five different sub-behaviors, listed on

the left of Table I. Move To (Local) will be created using RL
aiming to reach the box as fast as possible. Move To (VF) will
be created using RL aiming to quickly reach a position in Ωβ

with a good value function of the following push behavior.
Push (RL) will be created using RL, aiming to quickly get the
box to the goal area when starting in Ωβ . Push (Manual) will
be created manually, aiming to do a decent job of pushing
the box to the goal area when starting in Ωβ . Finally, for
comparison, we create a Single Behavior for completing the
entire task in Ωα∪Ωβ as fast as possible, using RL. Note that
the Push (Manual) controller will be intentionally suboptimal
to highlight how this effects the overall system performance.
Thus Push (Manual) first moves straight towards a position
opposite the goal with respect to the target and then moves
the ball straight towards the box.

Then we create five different combinations of the sub-
behaviors, as listed on the left of Table II.

7

Behavior Reward every timestep Completion Fail
Move To (Local) −0.001 1 -1
Move To (VF) −0.001 γv∗β(s) -1
Push (RL) −0.001 + ∆dist 1 -1
Push (Manual) −0.001 + ∆dist 1 -1
Single Behavior −0.001 + ∆dist 1 -1

TABLE I: Rewards for the five different policies.
In the case of the manually designed push behavior, the policy
is not trained, but a critic network to estimate the value
function (VF) v∗β is.

Overall Accumulated Success Failure Success
Policy Reward Duration (steps) Duration (steps) Rate (%)
πA, Move To(Local) + Push (RL) 1.39± 0.48 248.02± 90.97 171.12± 58.85 95.20
πB , Move To(Local) + Push (Manual) −0.07± 1.20 237.88± 120.40 148.31± 57.84 39.59
πC , Move To(VF) + Push (RL) 1.57± 0.18 204.01± 56.21 175.65± 45.15 99.86
πD , Move To(VF) + Push (Manual) 1.40± 0.51 275.67± 138.14 280.56± 153.34 96.69
πE , Single Behavior 1.52± 0.17 192.49± 56.41 128.50± 80.01 98.76

TABLE II: Evaluated policies. Mean and standard deviation
across 10 000 random episodes post training. Best results
indicated by bold numbers.

Note that the two Move To (VF) are different, as they are
trained with different value functions on the boundary, coming
from Push RL and Push Manual respectively.

D. RL formulation

The rewards of the RL are summarized in Table I. All
sub-behaviors receive a small negative reward of −0.001 for
each passing time step and a small reward ∆dist for moving
the box closer to the goal area, ∆dist = (dgoal(st−1) −
dgoal(st))/dstart, with dgoal being the distance from the box
to the goal area, and dstart this distance at the start, for
normalization. At the end of the episode, all sub-behaviors
receive a negative reward of −1 if the agent or the target
leaves the mission area, and a positive reward of 1 or γv∗β(s)
for completion of the task. Above, v∗β(s) is the value function
of the following sub-behavior, i.e., either the manual or RL-
version of Push. All actions and observations are normalised
to a range of [−1, 1].

The training is done using the built-in implementation of
PPO [19] from the Unity ML-Agents package [20]. In the
case of the manual behavior Push (Manual), we only train a
critic network to estimate the value function, using the normal
PPO loss function [19], with the policy loss removed.

The RL was executed by training each sub-behavior when
active in a single environment, as opposed to using separate
training environments for each behavior. The agent operates
according to the policy of the currently active behavior, using
the gathered experiences for training that specific behavior.
Upon crossing a switching boundary, the ongoing episode
ends, and a new one is started for the switched-to policy.

As suggested in Lemma 2, we first train Move To (Local)
and Push (RL), and estimate the value function of Push
(Manual). This creates the components of πA and πB . Then
we train the two versions of Move To (VF), using the value
functions from Push (RL) and Push (Manual) respectively,
creating the components of πC and πD. Finally, we train Single
Behavior, for πE .

E. Results

We present the data in three parts. First, we discuss post-

Fig. 7: Training results for πA, πC and πE , using Push (RL).

Fig. 8: Training results for πB , πD and πE , using Push
(Manual).

training evaluation results. Providing context to these results,
we then analyze reward graphs and histograms of the training
data, comparing outcomes with and without utilizing the value
function as a reward signal. Finally, we measure the disparity
between the value function of the single learned policy and
those of the split models to illustrate the theory in Lemma 2.

Table II presents an overall evaluation of running five
policies from 10 000 random starting states. As theory sug-
gests, πC and πE perform best, with slight differences. πC

yields marginally higher rewards and fewer failures, and πE

completing tasks a bit faster when not failing. Both πC and πE

outperform the locally optimal πA. Comparing versions with
manual push behavior, πB has a significant 60% failure rate,
while despite the sub-optimal manual behavior, πD achieves
success rates and accumulated rewards comparable to RL
policies like πA, albeit with slightly longer completion times.

The historical training reward, per training session, can be
seen in Figures 7 and 8. Both graphs feature the single model
behavior as a baseline for comparison. We can see that after
an initial decrease in reward, all training configurations have
a stable upwards trend that reaches an equilibrium, with the
reward plateauing around a specific value.

In Figure 7 we see the training results of πA, πC and πE .
πE is trained first to use as a reference. Then we train πA

that does not use the value function to connect the two sub-
behaviors. As can be seen, the mean reward converges quickly
for Move To (Local)(green) and Push (RL)(red). Then we train
πC , by training Move To (VF)(blue) using v∗β(s) from Push
(RL). As can be seen, this achieves a higher mean reward than
Move To (Local). This is reasonable, as the final reward given
by v∗β(s) is sometimes larger than one.

8

Fig. 9: Mean absolute difference between the value functions
of the experimental configuration and single learned model
value function with 95% confidence interval. Computed over
100 example states per model iteration, 625 samples per state.

In Figure 8 we see the training results of πB , πD and πE .
When we train πB an interesting thing happens. As Move
To (Local) gets better, the performance of the fixed manual
controller Push (Manual)(red), decreases. This is due to the
fact that the manual controller is not very robust, and as Move
To (Local) learns to enter Ωβ in close to minimum time, using
high velocities, the starting states handed to Push (Manual)
become more difficult.

When training πD we used the value function v∗β(s) from
Push (Manual) as final reward. In this way, Move To (VF) is
made aware of the capabilities of the following Push (Manual).
The average reward of Move To (VF) rises slower than Move
To (Local), but at the same time the average reward of the
static Push (Manual) continues to increase. In the end, the
combined result of the constrained πD is slower, but almost
as reliable as the near optimal unconstrained πE , see Table II.

F. Comparing the Value Functions

Lemma 2 shows that the optimal value functions of the
original MDP P0 is identical to the optimal value functions of
the two restricted MDPs Pα and Pβ .

Running an RL algorithm we know that as time tends to
infinity, the learned value function will converge towards the
optimal one [16]. We measured the difference between the
value function of πE and the two restricted ones for the three
policies πA, πC and πD. The results, seen in Figure 9, show
that the difference is smallest for πC , as predicted by the
Lemma. Note also that after the initial drop, the difference
to πA and πD actually increases as training progresses, which
is reasonable as they are not expected to converge to the same
optimal value function.

The difference in value functions is more distinct in the
Manual case, since the Push behavior is fixed causing the
MoveTo to try to compensate. This means that the overall
behavior will diverge more strongly from the optimal single
behavior case, with both sub-behavior policies shaped dif-
ferently. With πA, the difference would primarily be in the
MoveTo behavior, causing the error the be smaller.

VI. CONCLUSIONS

We investigated solutions to the local optimality issue that
occurs when trying to combine learned controllers into a

handcrafted policy. Leveraging the BT structure’s determin-
istic switching between policies, we used the value function
estimate of the controller being switched to as a final reward
of the previous controller. The proposed approach goes beyond
the state of the art in that we provide theoretical guarantees of
optimality, are not using an arbitrary design parameter, and can
handle problems where information has to flow across more
than one switching boundary.

REFERENCES

[1] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A survey of
behavior trees in robotics and ai,” Robotics and Autonomous Systems,
vol. 154, p. 104096, 2022.

[2] M. Colledanchise and P. Ögren, Behavior trees in robotics and AI: An
introduction. CRC Press, 2018.

[3] R. d. P. Pereira and P. M. Engel, “A framework for constrained
and adaptive behavior-based agents,” arXiv preprint arXiv:1506.02312,
2015.

[4] D. Isla, “Handling Complexity in the Halo 2 AI,” in Proceedings of the
Game Developers Conference (GDC), 2005.

[5] O. Biggar, M. Zamani, and I. Shames, “On modularity in reactive
control architectures, with an application to formal verification,” ACM
Transactions on Cyber-Physical Systems (TCPS), May 2022.

[6] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential Com-
position of Dynamically Dexterous Robot Behaviors,” The International
Journal of Robotics Research, vol. 18, no. 6, pp. 534–555, June 1999.

[7] J. Erskine and C. Lehnert, “Developing cooperative policies for multi-
stage reinforcement learning tasks,” IEEE Robotics and Automation
Letters, vol. 7, no. 3, pp. 6590–6597, 2022.

[8] P. Ögren and C. I. Sprague, “Behavior Trees in Robot Control Systems,”
Annual Review of Control, Robotics, and Autonomous Systems, vol. 5,
no. 1, 2022.

[9] R. Dey and C. Child, “Ql-bt: Enhancing behaviour tree design and imple-
mentation with q-learning,” in 2013 IEEE Conference on Computational
Inteligence in Games (CIG). IEEE, 2013, pp. 1–8.

[10] B. Hannaford, D. Hu, D. Zhang, and Y. Li, “Simulation results on
selector adaptation in behavior trees,” arXiv preprint arXiv:1606.09219,
2016.

[11] Y. Fu, L. Qin, and Q. Yin, “A reinforcement learning behavior tree
framework for game ai,” in Proceedings of the 2016 International Con-
ference on Economics, Social Science, Arts, Education and Management
Engineering, 2016.

[12] Q. Zhang, L. Sun, P. Jiao, and Q. Yin, “Combining behavior trees
with maxq learning to facilitate cgfs behavior modeling,” in 2017 4th
International Conference on Systems and Informatics (ICSAI). IEEE,
2017, pp. 525–531.

[13] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning,”
Artificial Intelligence, vol. 112, no. 1-2, pp. 181–211, Aug. 1999.

[14] Y. Lee, S.-H. Sun, S. Somasundaram, E. S. Hu, and J. J. Lim, “Com-
posing complex skills by learning transition policies,” in International
Conference on Learning Representations, 2018.

[15] T. G. Dietterich, “Hierarchical Reinforcement Learning with the MAXQ
Value Function Decomposition,” Journal of Artificial Intelligence Re-
search, vol. 13, pp. 227–303, Nov. 2000.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
second edition ed., ser. Adaptive Computation and Machine Learning
Series. Cambridge, Massachusetts: The MIT Press, 2018.

[17] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy,
Y. Gao, H. Henry, M. Mattar, and D. Lange, “Unity: A general platform
for intelligent agents,” arXiv preprint arXiv:1809.02627, 2020.

[18] O. Biggar, M. Zamani, and I. Shames, “On modularity in reactive control
architectures, with an application to formal verification,” arXiv preprint
arXiv:2008.12515, 2020.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” arXiv, Aug. 2017.

[20] A. Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy,
Y. Gao, H. Henry, M. Mattar, and D. Lange, “Unity: A general platform
for intelligent agents,” arXiv preprint arXiv:1809.02627, 2020.

	Introduction
	Related Work
	Background
	Behaviour trees
	MDPs and Reinforcement learning

	Proposed approach
	Numerical Examples
	Motivation of the setup
	Scenario setup
	The different controllers
	RL formulation
	Results
	Comparing the Value Functions

	Conclusions
	References

