
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2024 1

Low Frequency Sampling in Model Predictive Path
Integral Control

Bogdan Vlahov1, Jason Gibson1, David D. Fan2, Patrick Spieler2,
Ali-akbar Agha-mohammadi2, Evangelos A. Theodorou1

Abstract—Sampling-based model-predictive controllers have
become a powerful optimization tool for planning and control
problems in various challenging environments. In this paper,
we show how the default choice of uncorrelated Gaussian
distributions can be improved upon with the use of a colored noise
distribution. Our choice of distribution allows for the emphasis on
low frequency control signals, which can result in smoother and
more exploratory samples. We use this frequency-based sampling
distribution with Model Predictive Path Integral (MPPI) in both
hardware and simulation experiments to show better or equal
performance on systems with various speeds of input response.

Index Terms—Optimization and Optimal Control; Motion and
Path Planning; Integrated Planning and Control

I. INTRODUCTION

AS autonomous systems grow in interest, the choice of
methods and algorithms used to do real-time motion

planning and control becomes critical to achieve complex
tasks. In general, there are two approaches to this sort
of problem: gradient-based and sampling-based. Gradient-
based approaches, such as Differential Dynamic Programming
(DDP) [1] or Sequential Quadratic Programming (SQP) [2],
generally have requirements on the dynamics or cost functions
used such as they need to be continuously differentiable. In
exchange, they provide controls that converge on the true opti-
mal sequence as the number of iterations increase. Sampling-
based methods such as [3], [4] relax the requirements on the
dynamics and cost functions to allow for completely arbitrary
functions but require many samples to get a good estimation
of the true optimal control trajectory.

Model Predictive Path Integral (MPPI) is one such
sampling-based algorithm that has been used to achieve ag-
gressive behavior in a small-vehicle setting. While ideally, one
would sample every possible control trajectory to determine
the true path integral, this suffers from the curse of dimen-
sionality as both the control dimensions and the time horizon

Manuscript received: October, 12, 2023; Accepted March, 11, 2024.
This work was supported in part by the Jet Propulsion Laboratory, Cali-

fornia Institute of Technology, under contract with the National Aeronautics
and Space Administration (80NM0018D0004) and the Defense Advanced
Research Projects Agency, and in part by the Office of Naval Research
(N00014-21-1-2074). (Corresponding author: Bogdan Vlahov)

1 Bogdan Vlahov, Jason Gibson, and Evangelos Theodorou are with
the Autonomous Control and Decision Systems Lab, Georgia Institute of
Technology, Atlanta GA 30313 USA (e-mail: bvlahov3@gatech.edu; jgib-
son37@gatech.edu; evangelos.theodorou@gatech.edu)

2 David D. Fan, Patrick Spieler, and Ali-akbar Agha-mohammadi
are with NASA Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, CA, USA (e-mail: david.fan@gmail.com;
patrick.spieler@jpl.nasa.gov; aliagha4@gmail.com)

Fig. 1. (Upper) The off-road vehicle in a desert terrain just before an
autonomy test. (Lower) A screenshot of the Flightmare quadrotor simulator

increase. By instead sampling from a Gaussian distribution,
computationally-feasible solutions has been derived in path-
integral [4], information-theoretic [5], and stochastic search [6]
approaches. The Gaussian distribution gives a clean equation
for distribution calculations and is a natural starting point when
constructing a sampling-based algorithm.

However, sampling a Gaussian at every time step leads to
control trajectories samples containing high-frequency noise.
Depending on the dynamics model, the effect of the high
frequency controls can be dampened when calculating the state
trajectory, allowing for control trajectories with high-frequency
noise and low-frequency noise to produce similar costs. This
in turn allows the approximate optimal control trajectories
computed from finite samples to chatter significantly. This can
cause damage over time when applied to real systems. When
looking at data collected from human experts on these systems,
it can be seen that they generally take smoother actions over
a longer time horizon to achieve their desired behavior.

In order to address these issues, we look to sampling
distributions that can adjust the level of high-frequency noise
that appears in control trajectories. In this paper, we explore
sampling focused around the low-frequency domain by using
a colored noise distribution. We show how this choice of
sampling distribution can lead to better state exploration when

ar
X

iv
:2

40
4.

03
09

4v
2 

 [
cs

.R
O

] 
 1

8 
A

pr
 2

02
4



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2024

compared to standard Gaussian sampling in MPPI, like shown
in Fig. 2. Furthermore, we will show the resulting controls
are smoother and thus reduce the wear and tear on systems,
such as those shown in Fig. 1, caused by chattering. Previous
works have attempted to sample smoother controls in various
ways but our method provides an additional parameter, γ, to
adjust the smoothness of sampled control without adjusting
the overall range of sampled controls like adjusting variance
would cause. This smoothness adjustment is done by explicitly
lowering the chance of sampling of higher frequency signals,
resulting in less oscillatory behavior and allows its use with
multiple systems with different control bandwidths. The con-
tributions of this paper can be summarized as follows:

• We show how a frequency-based sampling distribution
can be used in MPPI with minimal adjustments to the up-
date rules and optimal control calculation in Section III.

• We perform experiments on a real hardware platform that
has large control lag in Section IV-A as well as highly-
reactive systems in Sections IV-B and IV-C. These tests
show that our approach can be considered a generaliza-
tion of Gaussian sampling applicable in many scenarios.

The paper is organized as follows. In Section II, we go
over other approaches to choosing sampling distributions. In
Section III, we discuss the frequency-based sampling is per-
formed and the modifications required to MPPI. We showcase
experiments in Section IV and conclude in Section V.

II. RELATED WORK

Before going into frequency-based techniques, a brief
overview of relevant concepts is required. The Power Spectral
Density (PSD) provides a measure of how much power every
frequency, f , contributes to a time-domain signal. Samples
from a zero-mean, uncorrelated Gaussian distribution have
constant power at every frequency, PSD(f) ∝ 1. Colored
Noise distributions cover a large space of distributions that
have a PSD of the form PSD(f) ∝ 1

fγ .
There have been multiple works on adjusting the sampling

distributions used in MPPI to improve sampling exploration.
The original Gaussian sampling distribution used in [4] pro-
vides a good starting point, but can have difficulty to fully
explore the possible state space. [7] uses Gaussian Processes
(GPs) as their sampling distribution and can show that the
resulting optimal controls are smoother than those found using
Gaussian noise. However, it could require much more compu-
tation to generate samples depending on the time horizons
chosen as the prior. [8] uses a Normal Log-Normal (NLN)
distribution for sampling and shows that the samples generated
can explore a wider space than standard Gaussian sampling.
While NLN distributions allow for more sampling on the
tail ends of a distribution compared to a normal distribution,
there is still only a small chance to sample multiple tail-
end values in a row for slow-acting systems unlike colored
noise distributions. [9] showed that sampling in a derivative
”action space” would also further improve the exploration and
smoothness of the control trajectories MPPI would produce.
Specifically, the authors end up not integrating the Gaussian
samples over time but instead over iterations of MPPI. While

−20 −10 0 10 20
y [m]

−5

0

5

10

15

20

25

x 
[m

]

−20 −10 0 10 20
y [m]

0 1 2 3 4 5
t [s]

0

20

40

X 
Va

r.
 [
m

2 ] σ= 0.4 Colored
σ= 0.4 Gaussian
σ= 2.0 Gaussian

0 1 2 3 4 5
0

10

20Fig. 2. 300 samples of state trajectories generated from running frequency-
based (Left) and Gaussian (Right) control samples through the off-road
vehicle dynamics described in Section IV-A. The frequency-based throttle
and steering samples are generated using γ = 4 and both distributions used
the same σ set to 0.4. Descriptions of γ and σ can be found in Section III-A.
(Lower) Variance in the x direction of the same 300 samples from frequency-
based and Gaussian distributions over time. There is an additional Gaussian
distribution with σ = 2.0 to show that increasing the standard deviation does
not allow Gaussian sampling to explore as far as colored samples. Colored
samples reach further extremes in both the x and y directions due to the
reduction of high frequency signals in the control trajectories.

this sampling technique does improve smoothness, it does so
by multiplying the samples by dt. This can cause explorations
issues with small dt. Our frequency-based sampling can adjust
the time correlation of our trajectories independent of dt.

Other works have used multi-hypothesis distributions [10],
[11] such as Gaussian Mixture Models (GMMs) and Stein
Variational distributions to try to increase the exploration
capabilities of the algorithm. While GMMs can maintain
multiple distributions, there is nothing to prevent the several
modes from collapsing which became the motivation for
Stein variational policies. Stein variational policies maintain
multiple particles as Gaussian distributions with fixed variance
but ensure that the means of these Gaussians are pushed apart
by inclusion of a kernel function. Recently, there has also
been work in learning sampling distributions with concepts
like normalizing flow [12], [13]. These methods make use of a
starting distribution and then perform a transform of that base
distribution into a new one. This transform can then make
use of machine learning to incorporate outside information
such as the location of obstacles in order to bias the resulting
distribution into safe regions.

The use of frequency-based sampling has been explored
before as well. [14] used frequency-based sampling as well as
other techniques in a Cross-Entropy Method (CEM) controller
to create improved Cross-Entropy Method (iCEM). They



VLAHOV et al.: LOW FREQUENCY SAMPLING IN MODEL PREDICTIVE PATH INTEGRAL CONTROL 3

showed that using frequency-based sampling has one of the
largest positive impacts on the overall performance of the CEM
controller. We will use the same frequency-based sampling
technique with MPPI which uses a weighted combination
of every sample to compute the optimal control trajectory
rather than using a percentage cutoff. [15] used a power law
noise to improve exploration for their Reinforcement Learning
(RL) agent. They specifically generated a 1

f2 distribution
by filtering white noise and saw large improvements over
Gaussian sampling in their ablation study. We will be using a
different power law noise generation technique so that we can
use any exponent we desire.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

3

2

1

0

1

2

3

C
o
n
tr

o
l

Gaussian Noise

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

3

2

1

0

1

2

C
o
n
tr

o
l

Colored Noise with = 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

2

1

0

1

C
o
n
tr

o
l

Colored Noise with = 5

Fig. 3. A comparison of Gaussian and Colored noise with various exponents.
As γ increases, the samples generated become smoother and can reach tail-
end values more consistently.

III. MATHEMATICAL BACKGROUND

A. Low Frequency Sampling Distribution

For this paper, we will be using a colored noise distribution
found by sampling Gaussians in the frequency domain and
performing the inverse Fast Fourier Transform (iFFT) to go
to the time domain, first described in [16]. These samples are
control trajectories with a finite time horizon of T steps. We
first will show that samples derived from this method are still
Gaussian in the time domain.

In order to limit our time-domain signal to contain only
real components, we sample a particular frequency-domain
sequence known as a Hermitian-symmetric sequence [17,
Fig. 2.5]. A Hermitian-symmetric sequence is one where the
second half of the sequence is the complex conjugate of the
first half of the sequence. Let Z[n] = Zreal[n] + iZimag[n]
be a point in the frequency domain with a real and imaginary
component. There will be N = ⌊T

2 ⌋ + 1 frequency samples.

The sampling of Zreal[n] and Zimag[n] is done from Gaussian
distributions of the form N

(
µn,

(
max

{
n
N , fmin

})−γ σ2

ζ

)
where fmin = 1

N is a cutoff frequency to ensure non-zero
variance, γ is a user-chosen colored exponent, σ is a user-
chosen standard deviation, and

ζ = T−2Nγ

(
1 + 4

N−1∑
n=1

n−γ

)
(1)

ensures that the time-domain variance equals σ2. The effects
of different γ on sample control trajectories is shown in Fig. 3.
The Hermitian-symmetric sequence can be compactly repre-
sented as ZN = {Z[0], Z[1], ..., Z[N − 1]} in the frequency
domain . As each point Z[n] in the frequency domain has
both a real and imaginary part, there is no reduction of the
total number of points sampled compared to uncorrelated
time-domain Gaussian sampling. The full frequency-domain
sequence, Z ′

T can then be constructed as

Z ′[t] =


Z[t] if 0 ≤ t ≤ N − 1

Z[T − t] if N − 1 < t < T

, (2)

where · is the conjugate operator. The time-domain sequence
is found using the iFFT, referred to as Ψ for notional conve-
nience:

z(t) =
1

T

T−1∑
n=0

Z ′[n]ei2πnt/T = Ψ(ZN ) . (3)

The iFFT is thus a matrix transform of our frequency-
domain samples and can be simplified to the following when
sampling Hermitian-symmetric sequences:


z(0)

...
z(t)

...

 = M


Zreal[0]

...
Zreal[n]
Zimag[n]

...

 , ∀ n = 0, ..., N − 1
t = 0, .., T − 1

(4)

M =
1

T


1 · · · 2 0 · · ·

...
1 · · · 2 cos

(
2πnt
T

)
−2 sin

(
2πnt
T

)
· · ·

...

 . (5)

Note that if T is even, the final sample, Z[N − 1], must only
have a real component (Zimag[N − 1] = 0) to be considered
Hermitian. As the M matrix does not depend on the samples
drawn for Z[n], each z(t) is a linear combination of Gaussian
independent random variables, making it Gaussian as well.
However, these samples will now be time-correlated. In a
slight abuse of notation, we will use the term Gaussian to
mean uncorrelated Gaussian distributions and Colored to refer
to our frequency-based sampling technique throughout the rest
of this paper unless otherwise noted.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2024

B. MPPI derivation from Frequency Domain Sampling

Consider a general nonlinear system with discrete-time
dynamics and cost function of the following form:

xt+1 = xt + F (xt,ut)∆t+wt, (6)

J(X,U) = ϕ(xT ) +

T−1∑
t=0

q(xt), (7)

where x ∈ Rnx is our state, u ∈ Rnu is our control, and w ∈
Rnx are external disturbances that are unknown but assumed
to be bounded. J(·, ·) is the cost function of a given state
trajectory X , and control trajectory U , with a terminal cost
ϕ(·) and nonlinear state cost q(·). We exclude control costs
from this work for the sake of brevity but they can be added
with no change to the following discussion.

MPPI is trying to minimize the cost function of the system,
by sampling and applying a weighted exponential averaging to
produce the optimal control. By following the stochastic search
derivation of MPPI, we can make some small adjustments to
accommodate our new sampling distribution. We make use of
the fact that Gaussian distributions belong to the exponential
family of probability distributions P , parameterized by θ, with
θ = [µ,Σ]T specifically for Gaussians. We define l(θ) in order
to better align with theory presented in [6],

l(θ) = lnEϵ∼P (θ) [S(−J(X,U))]. (8)

where S(·) is a generic shaping function. This function l(θ)
represents a log-transform on the expectation of the negated
cost function over sampled controls. Maximizing l(θ) is equiv-
alent to minimizing E [J(X,U)] which is the goal of our
original optimal control problem. [6] shows that, given l(θ),
the update law for θ at iteration k can be gradient ascent,

θk+1
t = θkt + αk∇θt l(θ

k
t ) (9)

∇θt l(θt) =
Eϵt∼P (θ) [S(−J(X,U))∇θt ln p (ϵt; θt)]

EP (θ) [S(−J(X,U))]
, (10)

where αk satisfies:

αk > 0 ∀k, lim
k→∞

αk = 0,

∞∑
k=0

αk = ∞, (11)

in order to achieve asymptotic convergence [18]. If the shaping
function is chosen to be the exponential function,

S(y;λ) = exp

(
1

λ
y

)
, (12)

with λ being the inverse temperature, Eq. (10) becomes
equivalent to the update law for information-theoretic MPPI
[5],

u∗
t = EV∼P (θ) [w(V )(vt)] , (13)

w(V ) =
1

η
exp

(
− 1

λ
J (X,V )

)
, (14)

where η is a regularization term, V = {v0, ...,vT−1} is a
sampled control trajectory from the Gaussian control distri-
bution P (θ), and w is the weight associated with V . As
our distribution in the frequency domain is independent and
Gaussian, we can change the t variable in Eqs. (9) and (10)

to n and subsume the iFFT transform inside of J with the
following equation, J̌(X,U) = J(X,Ψ(U)). This allows us
to use the same update law to update the parameters of our
frequency-domain sampling distribution,

θk+1
n = θkn + αk∇θn l(θ

k
n), (15)

∇θn l(θn) =
Eϵn∼P (θ)

[
S(− J̌(X,U))∇θn ln p (ϵn; θn)

]
EP (θ)

[
S(− J̌(X,U))

] .

(16)

For this paper, we choose to only update the mean of our con-
trol distribution, θn = {µn}, and leave the variance constant;
variance updates would be derived the same way if desired.
The gradient is estimated using Monte-Carlo sampling . Once
the gradient is estimated, we choose to do the mean trajectory
update in the time domain for computational convenience,

µk+1
t = Ψ

(
µk+1
N

)
= Ψ

(
µk
N

)
+ αkΨ

(
∇µN

l
(
µk
N

))
, (17)

where Ψ
(
µk
N

)
is equivalent to µk

t and

Ψ
(
∇µN

l
(
µk
N

))
= Ψ

(
M∑

m=0

wmEm
N

)
=

M∑
m=0

wmzm(t),

(18)

with M being the total number of sample trajectories, µN

referring to the collection of {µn; n = 0, .., N}, Em
N refers to

the mth sample trajectory’s collection of frequency samples
Em
n = {ϵm0 , ϵm1 , ..., ϵmN}, and wm is calculated using Eq. (14).

The final algorithm for Frequency Sampling MPPI can be
seen in Algorithm 1 with changes from the standard MPPI
algorithm highlighted in blue.

IV. EXPERIMENTAL RESULTS

A. Off-road Vehicle Platform

We conducted experiments on a full-scale autonomous off-
road modified Polaris Razer X, shown in Fig. 1. It is equipped
with a sensor array mounted on top and a onboard computer
using 4 RTX 3080s, 256 GB of RAM, and a Threadripper
3990x. The autonomy controls the vehicle using the power-
assisted steering wheel actuator, a pump for brake pressure,
and direct access to the throttle. The control inputs for the
throttle and brake are combined to create a range of [−1, 1]
and the steering wheel control input is normalized to within
[−1, 1]. Each control input has some form of delay from apply-
ing a signal and seeing an effect on the vehicle. For example,
turning the steering wheel fully from right to left takes about
two seconds. We learned the dynamics and modeling delays,
F (·, ·), using [19]. The slow response to controls is where
the limitations of Gaussian sampling become clear. In order to
achieve tight turning maneuvers like human drivers can, MPPI
needs to sample large steering values in the same direction for
multiple time steps in a row. While increasing the variance of
the Gaussian distribution makes sampling larger values easier,
it does nothing to address the fact that the samples need to
have the same sign to actually make a sharp turn. Running
several iterations can move the mean to one extreme but this
is computationally expensive and slow-moving.



VLAHOV et al.: LOW FREQUENCY SAMPLING IN MODEL PREDICTIVE PATH INTEGRAL CONTROL 5

Algorithm 1: Frequency-based Sampling MPPI
Given: F (·, ·), q (·), ϕ (·) M , I , T , λ, σ, γ, ζ, fmin, α: System

dynamics, running state cost, terminal cost, num. samples,
num. iterations, time horizon, temperature, standard
deviations, sampling exponents, sampling normalization
term, minimum sampling frequency, update step size;

Input : x0, U: initial state, mean control sequence;
Output: U : optimal control sequence

// Calculate Frequency range
1 N ← ⌊T

2
⌋+ 1;

// Begin Cost sampling
2 for i← 1 to I do
3 for m← 1 to M do
4 Jm ← 0;
5 x← x0;

// Sample Frequency noise
6 EmN =

(
ϵm0 . . . ϵmN

)
, ϵmn ∈

N (0, ζ−1
(
max

{
n
N
, fmin

})−γ
);

7 for t← 0 to T − 1 do
8 zm(t)← Ψ

(
EmN

)
;

9 vt ← ut + σzm(t);
10 x← F (x,vt);
11 Jm += q (x);

12 Jm += ϕ (x)

// Compute trajectory weights
13 ρ← min

{
J1, J2, ..., JM

}
;

14 η ←
∑M

m=1 exp
(
− 1

λ
(Jm − ρ)

)
;

15 for m← 1 to M do
16 wm ← 1

η
exp

(
− 1

λ
(Jm − ρ)

)
;

// Control update
17 for t← 0 to T − 1 do
18 Ut ← ut + α

∑M
m=1 wmzm(t);

In our experiments, both the Gaussian and Colored sampling
MPPI algorithms are implemented in CUDA with I = 3
iterations, M = 6144 samples, λ = 0.1, dt = 0.02s, and
T = 250 step horizon. The cost function for both algorithms
is

q(x) = CostToGo (x) + d̂
(

WheelRisk (x)

+ BodyRisk (x) + Lethal (x) + Rollover (x)

+ Roll (x) + Pitch (x) + Speed (x)
)
,

(19)

where d̂ = vdt is the estimated distance traveled at a given
timestep.

In Fig. 4, the vehicle is attempting to stay within the
bounds of this zig-zag corridor which requires hard turns for
appreciable periods of time to achieve. There is a human safety
operator in the vehicle that would engage the manual override
whenever the vehicle would exit the corridor. It is important to
note that both controllers look to violate the boundaries of the
corridor but this is due to drift in state estimation between the
vehicle position and the corridor location. Gaussian sampling
could not complete more than a single turn even when started
in various locations whereas the Colored sampling only had
one human intervention in its six attempts. The times and suc-
cess rates are summarized in Table I. The computation times of
the Colored MPPI averaged 26.846ms over these experiments
while the vanilla MPPI algorithm averaged 24.839ms, showing
there is minimal overhead to using the Colored approach on
this hardware.

−100 −50 0
X [m]

−60

−40

−20

0

Y 
[m

]

RACER Hardware Experiments

0

2

4

6

8

[s
]

(a) Gaussian

−100 −50 0
X [m]

−60

−40

−20

0

Y 
[m

]

RACER Hardware Experiments

0

5

10

15

20

25

30

35

[s
]

(b) Colored

Fig. 4. Hardware experiments using Gaussian and Colored Sampling on
the vehicle. These graphs show the vehicle trying to maneuver in a zig-zag
corridor shown in red. The colors along the trajectories indicate the amount
of time spent in autonomy before manual override/goal achieved with purple
dots indicating the starting points. The Colored samples can go from one end
of the corridor to the other while the Gaussian sampling struggles to make
more than a single turn even when started in various locations.

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Th
ro

ttl
e/

Br
ak

e

Gaussian
Colored

0 1 2 3 4 5 6 7 8
Time [s]

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00
St

ee
rin

g

Fig. 5. Controls from the vehicle hardware attempts. Picture are the controls
from the first eight seconds of the first attempt of each controller starting
from the same location. We can see that the colored sampling technique is
achieves smoother and larger throttle, brake, and steering commands. Throttle
and brake are combined into a single graph with brake values being below
the red line.

Furthermore, from the controls plotted in Fig. 5, we can
further see that the Gaussian sampler can hit high steering
angles of 0.5 but only slowly as the Model Predictive Control
(MPC) nature of MPPI adjusts the mean of the steering
trajectory in small steps. For this testing, the control standard
deviations were both set to 0.8, the combined throttle and
brake exponent was γthrottle = 10, and the steering exponent
was γsteering = 4.

TABLE I
LAP EXPERIMENT SUMMARIES

Sampling Avg Time[s] Min Time[s] SR[%]

Off-road HW Gaussian N/A N/A 0.00
Off-road HW Colored 38.33 ± 3.32 35.990 83.33

Quad. SIM Gaussian 8.547 ± 0.206 8.360 24.32
Quad. SIM Colored 8.691± 0.457 7.695 42.86



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2024

10 5 0 5 10
X [m]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Y
 [

m
]

Frequency-based Sampling Quadcopter Experiments

0

2

4

6

8

[m
/s

]

(a) Gaussian

4

3

2

1

0

1

2

3

4

A
n
g

u
la

r 
R

a
te

 [
ra

d
/s

]

Ang Rate X

Ang Rate Y

Ang Rate Z

1 2 3 4 5 6 7 8
Time (s)

4

5

6

7

8

9

10

11

12

T
h
ru

st
 [

m
/s

^
2

]

(b) Gaussian

10 5 0 5 10
X [m]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Y
 [

m
]

Frequency-based Sampling Quadcopter Experiments

0

2

4

6

8

10

12

[m
/s

]

(c) Colored

4

3

2

1

0

1

2

3

4

A
n
g

u
la

r 
R

a
te

 [
ra

d
/s

]

Ang Rate X

Ang Rate Y

Ang Rate Z

1 2 3 4 5 6 7 8
Time (s)

4

5

6

7

8

9

10

11

12

T
h
ru

st
 [

m
/s

^
2

]

(d) Colored

Fig. 6. Quadrotor flights using both types of sampling. Each controller is showing the first 9 successful attempts flying through this course. The red bars
indicate gate positions that the quadrotor was expected to fly through. The left side graphs show the trajectories taken by the two controllers, colored according
to the ground velocity of the quadrotor. On the right side, the controls that achieved the fastest lap for each controller are shown. Note that the throttle signal
is much smoother for the Colored sampling when compared to Gaussian.

B. Simulated Quadrotor Results

We conducted additional experiments on a quadrotor
platform in simulation. The simulation environment used is
the Flightmare simulator [20], shown in Fig. 1. The dynamics
function F (xt,ut) used within MPPI had a 13-dimensional
state of {px, py, pz, vx, vy, vz, qw, qx, qy, qz, ωx, ωy, ωz},
where p is position [m], v is linear velocity [ms−1], q is a
quaternion representation of orientation, and ω are angular
rates [rad s−1]. It was assumed a low-level controller existed
on the angular rates that could achieve a first order response
of τ = 0.25, and the control space was angular rates [rad s−1]
and thrust [m/s2]. Both MPPI algorithms were run with
I = 2 iterations, M = 4096 samples, λ = 0.3, dt = 0.01s,
and T = 150. The quadrotor was to fly through gates known
a-priori. The cost function was a combination of factors such
as distance to next gate, maintaining height of 2m above the
ground, tracking a desired velocity of 9m s−1, minimizing the
deviation of the thrust axis from vertical to maintain stable
flight, and crash costs for hitting the gate,

q(x) = a1Heading(x) + a2Height(x) + a3Speed(x)
+ a4Stabilize(x) + a5GateCrash(x)
+ a6Waypoint(x) + a7Path(x).

(20)

When running MPPI with Gaussian sampling, we used
standard deviations of [0.3, 0.3, 0.3, 3.5] for the angular rates
and thrust respectively. Note that the high thrust standard
deviation is required for the quadrotor to adjust quickly when
performing turns and reach quick lap times. As seen in Fig. 6a,
the quadrotor successfully flies through the gates. Looking
at the controls in Fig. 6b, we see that the controls end up
being quite chattery, especially in thrust. This sort of chatter
may lie outside of the control bandwidth of the quadrotor (i.e.
going from 5m/s2 to 11m/s2 in 0.02s is not possible given
the simulated motors) and can cause wear to physical motors
over time.

When running MPPI with Colored sampling, we used
standard deviations of [0.2, 0.2, 0.2, 0.5] and exponents γ of
[0.01, 0.01, 0.01, 0.5] for the angular rates and thrust respec-
tively based on best observed performance. Since the quadrotor
is more reactive to control inputs than the hardware ground
vehicle, lower exponents allow us to make sharp maneuvers
while still reducing control chatter. While the lap times do
not show much difference, we can see a difference in Fig. 6d
of the controls of the fastest lap. Unlike the throttle of the
Gaussian sampling case, we have lower frequency controls in
throttle even when choosing a relatively small exponent of 0.5.



VLAHOV et al.: LOW FREQUENCY SAMPLING IN MODEL PREDICTIVE PATH INTEGRAL CONTROL 7

0 1 2 3 4
t [s]

−8

−6

−4
x 

[m
] Gaussian

log-MPPI
Colored 1.0 (Ours)
Colored 2.0 (Ours)
Smooth-MPPI
Smooth-MPPI*
Goal

0 1 2 3 4

−8

−6

−4

y 
[m

]

0 1 2 3 4
t [s]

−20

0

20

40

a x
 [
m

/s
2 ]

0 1 2 3 4

0

50

100

a y
 [
m

/s
2 ]

0 1 2 3 4
t [s]

−8

−6

−4
x 

[m
] Gaussian

log-MPPI
Colored 1.0 (Ours)
Colored 2.0 (Ours)
Smooth-MPPI
Smooth-MPPI*
Goal

0 1 2 3 4

−8

−6

−4

y 
[m

]

0 1 2 3 4
t [s]

−20

0

20

40

a x
 [
m

/s
2 ]

0 1 2 3 4

0

50

100

a y
 [
m

/s
2 ]

0 10 20 30
Frequency [Hz]

10−6

10−4

10−2

100

102

PS
D

0 10 20 30
Frequency [Hz]

10−12

10−8

10−4

100

PS
D

Fig. 7. State trajectories (Left), control trajectories (Middle), and PSD (Right) from the double integrator system with standard deviation set to 1.5. The
PSD is shown for the first 2 seconds of the control trajectories to highlight the frequencies used to reach steady-state. Log-MPPI reaches the goal fastest but
does so with lots of high frequency controls. The Colored methods using γ = 1.0 and 2.0 is able to react much quicker compared to Gaussian sampling by
producing a much larger initial control spike and subsequent control dip to slow down to reach the goal without overshooting. Smooth-MPPI* does reach the
goal sooner than Gaussian sampling but has larger control deviations around steady state. Finally, the Smooth-MPPI controller does not perform well with
σ = 1.5, keeping the control pretty close to 0. The PSD shows that Colored control trajectories have lower contributions from high frequency components
compared to Gaussian, Log-MPPI, and Smooth-MPPI*.

These are more likely to be within the control bandwidth of
the motors and we only see a 0.15s average time loss from
Colored sampling in Table I. The angular rates of Gaussian and
Colored sampling do not see much difference but this is in line
with the angular rates exponent, γ being set to 0.01. Looking
at Fig. 6c, we can also see that the quadrotor achieved speeds
of up to 12 m s−1 as it went towards the final gate compared
to 10 m s−1 from the Gaussian laps.

Looking at Table I, we can see that Colored sampling had
the fastest time through the course but could not reliably
achieve that time. The controllers were both run until they
achieved 9 valid attempts. We see that the Gaussian sam-
pling took many more attempts to get 9 valid laps than the
Colored sampling. Overall, the quadrotor system sees little
performance hit for smoother control inputs.

C. Double Integrator Results

Finally, we conduct a test on a simple double integrator
system. We tested six different controllers: MPPI with a
Gaussian distribution, log-MPPI from [8], Smooth-MPPI from
[9] as well as a modification described below, and MPPI with
Colored sampling and colored exponents γ = 1.0 and 2.0. The
MPPI controllers had M = 4096 samples, I = 1 iteration,
dt = 0.015s, T = 65, and λ = 1 for all sampling techniques.
The systems started at −9 m and had a quadratic state cost of

q(x) = 5 (x0 + 4)
2
+ 0.5x1

2. (21)

We conducted comparisons of all methods at σ = 0.5, 1.5,
and 3.0 to see how adjustments to variance affect the per-
formance of each controller. We reran all the controllers 1000
times to also see the variance caused by Monte-Carlo sampling
which is reported in Table II. Note that for Smooth-MPPI, we
saw poor performance using these standard deviations as the
control would barely deviate from 0. We found that by dividing
the provided standard deviation by dt, σ∗ = σ

dt , performance
fell in line with the other methods; we denote this change
to the original method as Smooth-MPPI* and include both in
our comparisons. In Fig. 7, we visualize the state and control
trajectories that achieved the minimum cost for controllers
using σ = 1.5. In addition, we also show the PSD of the
first 2 seconds of each control trajectory to visualize how
much each control frequency contributes to the trajectory as

it reaches the goal state. At this σ = 1.5, log-MPPI reaches
the goal first but uses extremely large controls that would be
impossible to achieve on hardware systems. Log-MPPI also
is extremely jerky in attempting to slow down, as evidenced
by high power concentration for large frequencies in the PSD.
The Colored sampling distributions with exponents γ = 1
and 2 reach the goal next with smaller peak controls than
log-MPPI. We see that the distribution with γ = 2 reaches
the goal slightly faster and has lower power concentraion
at frequencies above 20Hz. They both have smaller control
deviations from 0 at steady state compared to Smooth-MPPI*
and log-MPPI. Smooth-MPPI* is the next to reach steady
state but has oscillatory control behavior at steady state that
is larger than all the other methods. Gaussian sampling ends
up overshooting the goal and the control trajectory is not
as reactive as log-MPPI or the Colored distributions. Finally,
Smooth-MPPI as described in [9] barely reaches the goal in the
time allotted. The control trajectory does not deviate from 0 by
very much and has low power over all frequencies, showing
that it is unable to respond quickly with this sampling standard
deviation. Overall, Colored sampling allows the controller to
be more reactive compared to Gaussian sampling while also
being less oscillatory than both log-MPPI and Smooth-MPPI*
at the same standard deviation.

We show the results across standard deviations of 0.5,
1.5, and 3.0 in Table II. The metric used in Table II for
comparing the algorithms at various standard deviations is
the accumulated cost of the states reached and we report
the standard deviation of these costs over 1000 attempts.
Depending on the standard deviation, log-MPPI, smooth-
MPPI, and smooth-MPPI* can have orders of magnitude more
variance in cost when tested multiple times compared to
both Gaussian and Colored sampling. Increasing the control
standard deviation improves all methods in general but the best
controller changes as well. Our Colored sampling distributions
maintain good relative performance, only losing to log-MPPI
at higher standard deviations. In addition, we see in Fig. 7
that our method does not rely on control impulses or exhibit
oscillatory behavior like controllers that do minimize the
accumulated cost better. Interestingly, Smooth-MPPI becomes
less consistent as the standard deviation increases but seems
to have the best performance on average around σ = 1.5.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2024

Looking at the Smooth-MPPI* results and Fig. 7, this is
most likely due to the standard deviation choices being too
small to properly excite the double integrator system. Finally,
there is some computational overhead to running Colored
sampling compared to other methods, but the increase in
computation time at around 0.12ms seems to fall within the
RTX 3080’s performance variance and is only noticeable when
the dynamics and cost function are so simple. While further
tuning for each controller is possible to address any specific
issue, we see that our proposed method performs well across
a variety of standard deviations, both in terms of cost and
control trajectory shape.

TABLE II
DOUBLE INTEGRATOR RESULTS

Std. Dev. Sampling Accumulated Cost Calc. Time (ms)

0.5

Gaussian 27 919.0±33.1 0.26± 0.23
Smooth-MPPI 61 330±17700 0.30± 0.17

Smooth-MPPI* 21 900±19 20000 0.29± 0.23
Log-MPPI 24 545.3±40.3 0.30± 0.12

Colored 1.0 13 569.7±65.4 0.38 ± 0.16
Colored 2.0 14 201.7±61.2 0.38± 0.16

1.5

Gaussian 13 815.5±64.6 0.26± 0.19
Smooth-MPPI 44 400±32300 0.29± 0.15

Smooth-MPPI* 11 446.3±71.1 0.29± 0.18
Log-MPPI 7316±324 0.30 ± 0.19
Colored 1.0 10 636.9±74.4 0.38± 0.18
Colored 2.0 11 081.2±75.6 0.38± 0.22

3.0

Gaussian 10 815.1±75.7 0.26± 0.21
Smooth-MPPI 68 090±75200 0.29± 0.13

Smooth-MPPI* 10 505.5±75.6 0.29± 0.21
Log-MPPI 6963±380 0.31 ± 0.16
Colored 1.0 9191.7±69.6 0.38± 0.33
Colored 2.0 9700.0±70.2 0.38± 0.25

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed use of a new sampling distri-
bution with MPPI to facilitate smoother controls and a larger
coverage of the state space. This Colored sampling distribution
was shown to have nearly identical update laws when used
in MPPI as the Gaussian distribution. This distribution has
a tunable amount of higher frequency components which
provides it the ability to be used across various dynamical
systems. In our hardware results, our vehicle is unable to
effectively maneuver when provided high-frequency samples
from Gaussian distributions, reducing the reachable state space
significantly. Meanwhile, our Colored sampling distribution
demonstrated tight turns only achievable by sampling near
the limits of the steering wheel for multiple timesteps in a
row. On the simulated quadrotor, we see that by lowering
our sampling exponents, we can achieve nearly similar perfor-
mance to Gaussian-based MPPI while maintaining smoother
throttle control. Finally, in the double integrator experiments,
Colored sampling is able to achieve more extreme control
trajectories than the Gaussian-based controller and produce
lower frequency control trajectories than other methods such
as log-MPPI and Smooth-MPPI. In the future, we plan to
apply this sampling distribution on more advanced forms of
MPPI such as Tube-MPPI and RMPPI as well as combine
with other multi-hypothesis distributions such as GMM and
Stein variational distributions.

VI. ACKNOWLEDGEMENTS

This research was developed with funding from the Jet
Propulsion Laboratory, Defense Advanced Research Projects
Agency, and the Office of Naval Research. The views, opin-
ions and/or findings expressed are those of the author and
should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.
Approved for public release and unlimited distribution.

REFERENCES

[1] D. H. Jacobson and D. Q. Mayne, Differential dynamic programming,
ser. Modern analytic and computational methods in science and
mathematics. American Elsevier Pub. Co., 1970. [Online]. Available:
https://cir.nii.ac.jp/crid/1130282270933519744 1

[2] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta
numerica, vol. 4, pp. 1–51, 1995. 1

[3] R. Rubinstein, “The cross-entropy method for combinatorial and
continuous optimization,” Methodology and computing in applied
probability, vol. 1, pp. 127–190, 1999. [Online]. Available: https:
//link.springer.com/article/10.1023/A:1010091220143 1

[4] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A.
Theodorou, “Aggressive Driving with Model Predictive Path Integral
Control,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2016, pp. 1433–1440. [Online]. Available:
https://ieeexplore.ieee.org/document/7487277/ 1, 2

[5] ——, “Information-Theoretic Model Predictive Control: Theory
and Applications to Autonomous Driving,” IEEE Transactions on
Robotics, vol. 34, no. 6, pp. 1603–1622, 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8558663/ 1, 4

[6] Z. Wang, O. So, K. Lee, and E. A. Theodorou, “Adaptive Risk
Sensitive Model Predictive Control with Stochastic Search,” in
Proceedings of the 3rd Conference on Learning for Dynamics
and Control. PMLR, 2021, pp. 510–522. [Online]. Available:
https://proceedings.mlr.press/v144/wang21b.html 1, 4

[7] J. Watson and J. Peters, “Inferring smooth control: Monte carlo
posterior policy iteration with gaussian processes,” in Conference
on Robot Learning. PMLR, 2023, pp. 67–79. [Online]. Available:
https://proceedings.mlr.press/v205/watson23a/watson23a.pdf 2

[8] I. S. Mohamed, K. Yin, and L. Liu, “Autonomous Navigation of AGVs
in Unknown Cluttered Environments: Log-MPPI Control Strategy,”
IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 240–10 247,
2022. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
9834098 2, 7

[9] T. Kim, G. Park, K. Kwak, J. Bae, and W. Lee, “Smooth Model
Predictive Path Integral Control Without Smoothing,” IEEE Robotics
and Automation Letters, vol. 7, no. 4, pp. 10 406–10 413, 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/9835021 2, 7

[10] Z. Wang, O. So, J. Gibson, B. Vlahov, M. S. Gandhi, G.-H. Liu,
and E. A. Theodorou, “Variational Inference MPC using Tsallis
Divergence,” in Robotics: Science and Systems XVII. Robotics:
Science and Systems Foundation, Apr. 2021. [Online]. Available:
https://www.roboticsproceedings.org/rss17/p073.html 2

[11] A. Lambert, F. Ramos, B. Boots, D. Fox, and A. Fishman, “Stein
Variational Model Predictive Control,” in Proceedings of the 2020
Conference on Robot Learning. PMLR, 2021, pp. 1278–1297.
[Online]. Available: https://proceedings.mlr.press/v155/lambert21a.html
2

[12] J. Sacks and B. Boots, “Learning Sampling Distributions for Model
Predictive Control,” in Proceedings of The 6th Conference on Robot
Learning. PMLR, Mar. 2023, pp. 1733–1742. [Online]. Available:
https://proceedings.mlr.press/v205/sacks23a.html 2

[13] T. Power and D. Berenson, “Variational Inference MPC using
Normalizing Flows and Out-of-Distribution Projection,” in Robotics:
Science and Systems XVIII. Robotics: Science and Systems Foundation,
Jun. 2022. [Online]. Available: http://www.roboticsproceedings.org/
rss18/p027.pdf 2

[14] C. Pinneri, J. Achterhold, M. Rolı́nek, and G. Martius, “Sample-efficient
Cross-Entropy Method for Real-time Planning,” in Proceedings of the
2020 Conference on Robot Learning. PMLR, 2021, pp. 1049–1065.
[Online]. Available: https://proceedings.mlr.press/v155/pinneri21a.html
2

https://cir.nii.ac.jp/crid/1130282270933519744
https://link.springer.com/article/10.1023/A:1010091220143
https://link.springer.com/article/10.1023/A:1010091220143
https://ieeexplore.ieee.org/document/7487277/
https://ieeexplore.ieee.org/document/8558663/
https://proceedings.mlr.press/v144/wang21b.html
https://proceedings.mlr.press/v205/watson23a/watson23a.pdf
https://ieeexplore.ieee.org/abstract/document/9834098
https://ieeexplore.ieee.org/abstract/document/9834098
https://ieeexplore.ieee.org/document/9835021
https://www.roboticsproceedings.org/rss17/p073.html
https://proceedings.mlr.press/v155/lambert21a.html
https://proceedings.mlr.press/v205/sacks23a.html
http://www.roboticsproceedings.org/rss18/p027.pdf
http://www.roboticsproceedings.org/rss18/p027.pdf
https://proceedings.mlr.press/v155/pinneri21a.html


VLAHOV et al.: LOW FREQUENCY SAMPLING IN MODEL PREDICTIVE PATH INTEGRAL CONTROL 9

[15] Z. Zhang, J. Chen, Z. Chen, and W. Li, “Asynchronous Episodic
Deep Deterministic Policy Gradient: Toward Continuous Control
in Computationally Complex Environments,” IEEE Transactions on
Cybernetics, vol. 51, no. 2, pp. 604–613, 2021. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8946888 3

[16] J. Timmer and M. König, “On generating power law noise,” Astronomy
& Astrophysics, vol. 300, pp. 707–710, 1995. [Online]. Available:
http://jeti.uni-freiburg.de/papers/timmer95.pdf 3

[17] R. Bracewell, “The Fourier Transform and its Applications.” McGraw-
Hill, 2000, ch. 2. 3

[18] E. Zhou and J. Hu, “Gradient-Based Adaptive Stochastic Search for
Non-Differentiable Optimization,” IEEE Transactions on Automatic

Control, vol. 59, no. 7, pp. 1818–1832, 2014. [Online]. Available:
https://ieeexplore.ieee.org/document/6756948 4

[19] J. Gibson, B. Vlahov, D. Fan, P. Spieler, D. Pastor, A.-a. Agha-
mohammadi, and E. A. Theodorou, “A Multi-step Dynamics Modeling
Framework For Autonomous Driving In Multiple Environments,” in
2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, May 2023, pp. 7959–7965. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/10161330 4

[20] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza,
“Flightmare: A Flexible Quadrotor Simulator,” in Proceedings of the
2020 Conference on Robot Learning. PMLR, 2021, pp. 1147–1157.
[Online]. Available: https://proceedings.mlr.press/v155/song21a.html 6

https://ieeexplore.ieee.org/abstract/document/8946888
http://jeti.uni-freiburg.de/papers/timmer95.pdf
https://ieeexplore.ieee.org/document/6756948
https://ieeexplore.ieee.org/abstract/document/10161330
https://proceedings.mlr.press/v155/song21a.html

	Introduction
	Related Work
	Mathematical Background
	Low Frequency Sampling Distribution
	MPPI derivation from Frequency Domain Sampling

	Experimental Results
	Off-road Vehicle Platform
	Simulated Quadrotor Results
	Double Integrator Results

	Conclusions and Future Work
	Acknowledgements
	References

