
Correspondence learning between morphologically different robots via
task demonstrations

Hakan Aktas1,2, Yukie Nagai2, Minoru Asada3,4, Erhan Oztop3,5, Emre Ugur1

Abstract— We observe a large variety of robots in terms of
their bodies, sensors, and actuators. Given the commonalities
in the skill sets, teaching each skill to each different robot
independently is inefficient and not scalable when the large
variety in the robotic landscape is considered. If we can learn
the correspondences between the sensorimotor spaces of different
robots, we can expect a skill that is learned in one robot can
be more directly and easily transferred to other robots. In this
paper, we propose a method to learn correspondences among
two or more robots that may have different morphologies. To be
specific, besides robots with similar morphologies with different
degrees of freedom, we show that a fixed-based manipulator
robot with joint control and a differential drive mobile robot
can be addressed within the proposed framework. To set up
the correspondence among the robots considered, an initial base
task is demonstrated to the robots to achieve the same goal.
Then, a common latent representation is learned along with the
individual robot policies for achieving the goal. After the initial
learning stage, the observation of a new task execution by one
robot becomes sufficient to generate a latent space representation
pertaining to the other robots to achieve the same task. We verified
our system in a set of experiments where the correspondence
between robots is learned (1) when the robots need to follow the
same paths to achieve the same task, (2) when the robots need
to follow different trajectories to achieve the same task, and (3)
when complexities of the required sensorimotor trajectories are
different for the robots. We also provide a proof-of-the-concept
realization of correspondence learning between a real manipulator
robot and a simulated mobile robot.

I. INTRODUCTION

We observe a large variety of robots in terms of their
morphology, sensors, and actuators, such as mobile, aerial,
underwater robots, and fixed-based manipulators. While the
robots are designed for the environments they operate, there
are commonalities in the required skills, such as grasping,
and releasing objects, grasping and using tools, and pushing
and pulling objects. In general, robots are equipped with these
skills by using the Learning-from-demonstration approach with
additional controller tuning when needed. Given the common-
alities in the skill sets, teaching each skill to each different
robot independently is not efficient and not scalable when the
large variety in the robotic landscape is considered. If we can
learn the correspondences between the sensorimotor spaces of

1Hakan Aktas and Emre Ugur are with Computer Engineering Department,
Bogazici University hakan.aktas1@boun.edu.tr 2Hakan Aktas and
Yukie Nagai are with IRCN, the University of Tokyo 3Minoru Asada and Erhan
Oztop are with SISREC, Osaka University 4Minoru Asada is also affiliated
with the International Professional University of Technology in Osaka 5Erhan
Oztop is also affiliated with Computer Engineering Department, Ozyegin
University.

different robots, we can expect a skill that is learned in one
robot can be more directly and easily transferred to the others.

The learning of sensorimotor correspondences between
robots has been studied in robotics, where emphasis was given
to efficiency in the transfer of skills from one robot to the
others [1]. The correspondence between the robots has been
established between all pairs of states [2] either by manually
forming a shared feature space [3] or by aligning states
using unsupervised manifold alignment [4]. State alignment
from local and global perspectives has also been used with a
regularized policy update [5]. Expectation-maximization-based
dynamic time warping has been utilized to align the states and
subsequently established a shared feature space by employing
non-linear embedding functions [6]. Transferring policies using
modularity have also been established in various studies [7],
with some using hierarchical decoupling between agents [8],
[9]. Methods that can find unsupervised action correspondence
using unpaired [10] and unaligned [11] have also been intro-
duced. While the previous work learned correspondences at
individual state level, in our previous work [12], we proposed to
form a common feature space for encoding the correspondence
between whole robot trajectories by introducing an additional
loss term to enforce the latent representations of the involved
robots to be the same. This allowed the skill transfer between
two fixed-based manipulators with 3 and 4 degrees of freedom,
albeit requiring extra hyperparameter tuning. In contrast, the
currently proposed method is free from this hyper-parameter
tuning and is directly applicable to any multiplicity of robots
with no scalability issues. Although the impressive develop-
ments in the LLM-robotic front [13], [14] may, in the future,
render robot-to-robot skill transfer obsolete for commonplace
robots, our model offers a zero-shot robot-to-robot skill transfer
mechanism with limited resources (computational power, robot
data), which can be applied to any type of robot.

In this work, we aim to learn the correspondences among
robots with different morphologies, including robots as differ-
ent as a fixed-based manipulator and a differential-drive mobile
robot, that can learn to achieve the same tasks with significantly
different bodies, actuators, and control variables. Inspired by
[15], our system forms a common latent representation between
different robots. After learning the correspondences, and given
observations of a new task execution from one robot, this
common representation is used to generate the execution tra-
jectory of the same task for the other robots. Each skill in each
robot is encoded by a separate Conditional Neural Movement
Primitives (CNMPs) network [16], which is an encoder-decoder

ar
X

iv
:2

31
0.

13
45

8v
3 

 [
cs

.R
O

] 
 2

1 
N

ov
 2

02
3



Fig. 1: The conceptual summary of the task-based correspon-
dence learning problems studied in this paper. The middle, left,
and right columns represent task and sensorimotor (SM) spaces
of the mobile and manipulator robots, respectively. The shapes
of the markers represent tasks. Each marker in the middle plot
corresponds to the required robot execution trajectory in the
task space to achieve the task. Each marker in the left and right
plots represents the required SM trajectory of the corresponding
robot to achieve the task. The dashed line between markers
represents the mapping between SM and task spaces. In (A),
the robots follow the same task-space trajectory to achieve the
same task. In (B), the robots need to follow different trajectories
to achieve the same task. In (C), the robots again need to follow
different trajectories, but in this case, the complexity of the
sensorimotor mappings is also different.

network that can produce complex target trajectories from
observations on these trajectories. Observations are given to
the CNMP encoder to generate a latent representation for the
target trajectory. The core idea is to blend the latent represen-
tations of each robot’s CNMPs in order to form a common
latent representation for both robots for the same task. This
common latent representation is then fed to separate decoders
of different robots to generate the execution trajectories of the
corresponding robots. The core idea is that the coupled CNMP
system is trained such that the common latent representation,
which is able to generate execution trajectories for both robots,
can be obtained even only from the observations (and therefore
the latent encoding) of a single robot by setting the blending
weights accordingly. We envision that this approach would be
beneficial in real-life if different robots are aligned, possibly
at production time, through the proposed method by using an
initial fixed action set, such as manipulation of primitive shaped
objects. Then, when one robot learns to perform a novel task,
the other robots would be able to automatically have the ability
to fulfill this task thanks to the initial alignment. From the

viewpoint of world models [17], our system’s objective can also
be seen as using a correspondence between action trajectories
in two or more models and forming a shared representation
between them.

A series of experiments are conducted to assess the extent of
correspondence learning between the manipulator and mobile
robots in tasks with different levels of complexity. For this, we
designed these experiments to address the question of “Can
task-specific correspondences between robots be learned”

• when the robots need to follow the same task-space
trajectory to achieve the same task (Fig. 1 (A))?

• when the robots need to follow different trajectories to
achieve the same task (Fig. 1 (B))?

• when the complexities of the required motor trajectories
are different for different robots (Fig. 1 (C))?

II. METHOD

The general overview of our approach is given in Fig. 2. Two
(or possibly more) robots are provided initial proxy demonstra-
tions for the same tasks. Depending on the embodiment and
capabilities of the robots the demonstrations might differ in
terms of the used modalities and the required trajectories. Given
these demonstrations, the encoder networks (A) of the robots
are trained together, forming a common latent space that can be
used to generate the required trajectories for both robots. After
training, a new task configuration can be demonstrated for one
of the robots, either by providing an entire execution trajectory
or a number of observations sampled from this trajectory. Using
the common latent representation, our system can generate the
full execution trajectory for the other robot to achieve the same
task (B). We provide the details of the skill encoding, sharing,
and generation in the rest of this section.

In our system, the skills are encoded and learned using CN-
MPs, and the latent representations of the CNMPs of different
robots are blended to form a common latent representation.
More formally, let R = [Robot1, Robot2, Robot3..., Robotn]
be a set of sensorimotor information collected by n robots
during action executions. The sensorimotor information during
these executions is recorded at each time step. Let I be the
multi-robot sensorimotor interaction data set, and the jth task
execution is shown as Ij = {(t, SR

t )}Tt=0 where SR
t is the

collection of sensorimotor data from all robots and t is time. SR
t

is defined as SR
t = [SRobot1

t , SRobot2
t , SRobot3

t , ..., SRobotn
t ],

where each element holds the sensorimotor information col-
lected by each robot. In this study, we used several robots
whose morphologies and capabilities are different from each
other to test the capabilities of our system. We aim to learn
correspondences among the robots considered even when the
means of achieving the target task may be significantly different
for each robot. In the rest of the description, for the sake of
brevity, we consider two robots, a manipulator and a mobile
robot without loss of generality.

Our proposed system connects multiple CNMP networks
to find a common latent space. At the start of each training
iteration, a task trajectory Id is sampled randomly from I . From



Fig. 2: The general overview: Task-based correspondence via forming common latent representation between different robots.E
represents encoders, S represents sampled observations, L values represent latent representations and Q represents decoders.
Given observations from an SM trajectory of one robot, our system can generate the full SM trajectory for the other robot to
achieve the same task by setting the blending weight p to 0 or 1. Please refer to the text for the details of training and generation.

I , an arbitrary number of data points of (t, SR
t ) are sampled

randomly as observations. The set of sampled observations
is defined as OR = {(ti, SR

ti )}
obsmax
i where (ti, S

R
ti ) ∈ Id

. As an example, we use two robots, a manipulator and a
mobile robot. The observation set of these will be represented
as Omanipulator and Omobile. Other than OR, a target tuple
(ttarget, S

R
ttarget

) is also sampled from Id which is used to
learn the distributions on ttarget for observations collected by
all robots.

The purpose of the model is to find a common latent
representation between observations of all robots. To this end,
the observations of each robot Or are converted to latent repre-
sentations, which are calculated using the following equation:

Lr
i = Er((ti, S

r
ti)|θ

r) (ti, S
r
ti) ∈ Or, r ∈ R (1)

where Er is a deep encoder for robot r with weights
θr, and Lr

i is the latent representation constructed using the
given observation. After the encoding process, we obtain
Lmanipulator
i and Lmobile

i for the manipulator and the mobile
robot, respectively. Following the construction of Lr

i ’s, these
representations are averaged for each robot:

Lr =
1

n

n∑
i

Lr
i r ∈ R (2)

where n is the number of sampled observations during this
iteration. Following this equation, we calculate Lmanipulator

and Lmobile, which represent the latent representations con-
structed using Omanipulator and Omobile, respectively. We aim
to find a common latent representation using the constructed
latent representations to generate the required trajectories for
both robots. To accomplish this, a general latent representation
L is constructed by taking the convex combination of all Lr:

L =

R∑
r

prLr 0 ≤ pr ≤ 1,
∑

pr = 1, r ∈ R (3)

This calculation is applied to blend all latent representations
into one common latent space.Each pr can be used to control
the information flow from its corresponding encoder Er. For
instance, if pk is close to zero, the effect of Lk constructed by
Ek in the formation of L is low. Similarly, if pk is close to 1,
its effect is high. During training, the p values are uniformly
sampled between zero and one and then normalized, i.e. L is
set to a (uniformly) random convex combination of Lrs, which
is computed at each gradient update step.

After all representations are merged into one, this represen-
tation is decoded to obtain target distributions on ttarget for all
robots:

(µr
ttarget

, σr
ttarget

) = Qr((L, ttarget)|ϕr) r ∈ R (4)

where Qr is a deep decoder with weights ϕr that con-
structs distributions with mean µr

ttarget
and variance σr

ttarget

for the robot r. For our robots, (µmanipulator
ttarget

, σmanipulator
ttarget

)

and (µmobile
ttarget

, σmobile
ttarget

) are obtained using Qmanipulator and
Qmobile, respectively. The learning goal of our system is to
obtain more accurate distributions for given condition point(s)
and the target point, and therefore the loss is defined similarly
to [16]:

Loss = −
R∑
r

logP (Strtarget
|µr

ttarget
, σr

ttarget
) r ∈ R (5)

where Sr
ttarget

∈ SR
ttarget

is the target SM state for agent r.
During training, deep decoders Q and encoders E are trained.
At each training step, OR and corresponding pr values are
given to the network as inputs along with a ttarget value. The
loss is calculated using the network’s prediction and SR

ttarget
.

After sufficient training, the system can make action predic-
tions for all time steps of that action for all robots when a
distinct OR is provided to the system. More importantly, when
querying, trajectory generation can be achieved by making pr

for the source robot one. This makes the rest of the p values



Fig. 3: Training and test paths correspond to the paths required
to achieve the obstacle avoidance tasks in Section III-A. Left
and right figures show the manipulator and mobile robots. Blue
and red paths were used for training and testing, respectively.
Green lines show the action range of the manipulator.

zero since we are using convex combination. Hence, only Lr

is used to form L which is then used to construct the trajectory
outputs by all decoders. We also experimented with binary p
values reminiscent of a dropout [18] like idea, which was also
effective in learning the correspondences, albeit at a slower
rate. A notable difference we observed is that, a common latent
space was not formed, and the representations constructed by
the encoders were sparse when binary ps were used. Thus, in
the experiments reported continuous p values were used. The
results showed that, our system was able to generate the desired
trajectories for all the involved robots when only one robot
acted as the source or teacher by providing the demonstrations
for the novel task.

III. EXPERIMENTS

To analyze the capabilities and limits of our method, we
designed three experiments (Fig.1). We used a mobile robot
(Pioneer3-DX), a manipulator with 6 degrees of freedom (UR-
10), and a manipulator with 7 DOF named (Kuka LBR4+).
We also used 3 different grippers for the manipulators namely
Robotiq85, BarrettHand, and Robotiq 3-finger adaptive gripper.
The last one is used in the real-world experiment. We used 3
manipulators with different grippers to show the practicality of
our model, because although they are morphologically different
robots, most of the tasks they can perform are shared between
them. Alongside them, we chose to use a mobile robot to test

Fig. 4: The snapshots from the mobile robot to the manipulator
(on top) and from the manipulator to the mobile robot (on
bottom) for the experiment in Section III-A. Using three ob-
servations from the given trajectory on a new task configuration
(on the left of the figure), the system is able to generate the
desired trajectories for the other robot (on the right ).

Fig. 5: Generated trajectories of one of the data sets of
experiment in Section III-A with their ground truth values.
Dashed lines are expected ground truth values and solid lines
represent the generated values. The upper part shows the results
obtained using our model while the lower part shows the results
obtained using the ACNMP approach.

whether our model can perform when there is a significant
difference in the robot morphologies. The mobile robot is
controlled by setting the desired position and orientation of the
robot body at each step. Therefore Smobile includes position
and orientation. The manipulators are controlled by setting the
desired joint angles of the robot arms, therefore Smanipulator

includes the joint angles. The simulation experiments were
conducted in the CoppeliaSim [19].

A. Correspondence learning when the task requires the same
Cartesian path

This experiment, where Pioneer 3D-X and UR-10 with
Robotiq85 gripper were used, aims to verify that our method
can learn the correspondences between two robots when they
need to follow the same path in task space. An obstacle
avoidance task is designed where the robots are required to
avoid the obstacle using different paths. 8 different obstacle
avoidance trajectories were collected for each robot as shown
in Fig. 3 where 6 trajectories were used for training and the
rest were used for testing. After paired training is completed
with a number of demonstration trajectories, where position
and orientation are used for the mobile robot and joint angles
are used for the manipulator robot, the model was queried
to construct the trajectories for a robot given a number of
the observation points from the other robot at certain time
steps as input. When conditioned with an arbitrary number
of points collected by any robot, the system was able to
construct the corresponding trajectories. In other words, the
manipulator/mobile robot was able to avoid the obstacles in
the test and training setups following the trajectories generated
based on task input from the other robot.

Fig. 4 provides a number of snapshots for task configurations
that were not observed during training. On the top and bottom
rows, transfers from mobile robot to manipulator and from
manipulator to mobile robot are shown, respectively. On the
top left, the mobile robot is provided with a new movement



Fig. 6: The dimensionality analysis of the representations
constructed by the encoders when the model is trained using
binary and convex combination. While representations formed
using convex combination converge as the training progresses,
the representations formed using binary combination do not.

trajectory that was not seen during training. Our system uses
observations (position and orientation of the mobile robot)
from this trajectory at three different time steps and is able
to generate the desired movement trajectory (joint angles) for
the manipulator robot, whose corresponding motion is shown
on the right.

We analyzed the results by comparing the trajectories gener-
ated by the model and the desired trajectories. We applied this
process both to training trajectories and test trajectories. For
both cases, we obtained results with negligible error. Generated
trajectories of one of the test cases can be seen in the upper
part Fig. 5 with the desired trajectories.

We also compared our method with a baseline method [12]
where an additional loss function was realized as the mean
squared error between Lr values of different CNMP networks.
This loss function also needed to set the magnitude of this
value as a hyper-parameter. This value must be adjusted with
caution because while using a small magnitude is not enough
to force common representations to be formed, using a large
magnitude causes the additional loss to dominate the main
loss function used by the CNMPs. Hence, the magnitude
value has to be carefully optimized for this approach to work
properly while our approach does not require any additional
optimization. Furthermore, despite the optimization, our model
is more accurate and converges faster. The results for the same
test case can be seen in 5. The results are the best results we
could obtain for each model. Procuring these results took 200k
training steps with our model while it took 300k steps to train
the ACNMP model, with approximately the same number of
learnable parameters in each model. During testing, the total
mean squared trajectory error of ACNMP was almost twice of
the error of our model both for mobile (3.426 vs.6.430) and
joint (2.971 vs. 6.841) outputs. Finally, each training step of
ACNMP is more computationally heavy since it involves an
additional computation for the additional loss function.

As mentioned in the Method section, we also experimented
using binary combination instead of convex combination. Al-
though we did not observe any significant decrease in accuracy
between the two, analyzing the latent representations formed

Fig. 7: A number of sample demonstration paths collected for
cup retrieval tasks of the experiment in Section III-B. The blue
paths are for training and the red paths are for testing. Green
lines represent the action range of the manipulator.

by the encoders showed that the system was unable to find a
common latent space when binary combination is used. The
difference between them can be seen in Figure 6. We picked
a couple of novel points along one of the test trajectories
and constructed latent representations of each robot using their
encoders. We used Principal Component Analysis to decrease
the dimension of each latent representation to two and plotted
how the representations change as the training progresses. It
can be seen on the figure that when convex combination is
used as training progresses the latent representations of the two
robots converge to a common representation. However, this is
not the case when binary combination is used.

B. Correspondence learning when different Cartesian paths
are needed for task completion

The morphologies and the capabilities of different robots are
dissimilar, and therefore they can achieve the same task using
different means depending on the task and the involved objects.
In this section, we aim to test whether our system can learn the
correspondence between robots even if the means to achieve
the same task, i.e. the paths they follow, are different (Fig. 1
(B)). For this purpose, we used the mobile robot alongside
with UR-10 and KUKA LBR4+ to also show the scalability of
our model. We used UR-10 with 2 different grippers namely
Robotiq85 and BarrettHand while only using the latter with
the KUKA LBR4+. We discretized the gripper status as open
and closed while using it as input to the system. As a use
case, we selected a task that required the robots to retrieve a
cup to a desired location. In this setup, while the demonstrator
used one of the fingers of the Robotiq85 gripper of the UR-10
manipulator as a hook to pull the cup to itself, the mobile robot
is driven behind the cup to push it to the same location. The
ones with the BarrettHand performed the same action realized
by approaching the cup with the open gripper, grasping the



Fig. 8: The results of the cup retrieval tasks in the correspon-
dence learning when different Cartesian paths are needed for
task completion experiment in section III-B. Graphs show how
as training progresses and training loss decreases, the distance
of the cup from the desired position changes. Observations
from the same time steps are used in all runs (First, thirtieth,
sixtieth, and the last points of a sample with length 128).

object by closing the gripper, and pulling the cup towards the
robot respectively. The location of the cup is changed, while the
performed strategy remains the same. Note that the cup is only
chosen to represent the goal and no information about the cup
is used by either of the robots or by any part of our model.
To show the generalization capability of our system, during
testing, the cup is placed at a position that was not observed
during training. Seven demonstrations were collected for each
robot. In order to provide a clear picture, we presented only
three of them in Fig. 7. The generation process is similar to
the previous section.

This experiment was designed to retrieve the cup to a
goal position. Therefore the task success can be evaluated by
comparing the goal position and the final position of the object
after action execution (even though no information related to
the object is used during control). We measured the error
between the desired and actual positions for the transfer in
both directions at different time steps during training and
plot the error statistics along with the training loss in Fig. 8.
First of all, the results provide the mean and variance of
the final position errors obtained with 30 runs in the novel
task configurations. As shown, the final position error of the
object drops with training and consistently with the decrease
in the loss of our model. The results were similar regardless
of the robot chosen as input (the one with p = 1 during test
time), so we chose to average the values to show the results
more clearly. The fact that there was no notable difference
shows that our system achieved generalization in transfer in
the interpolation cases. Across all plots, it can be seen that
the positional error values drop as the training loss decreases,
hence as the system learns, the success rate increases. The
mean and the variance values of manipulators with BarrettHand
grippers decreased more slowly than the mobile robot’s because
in the early stages of training, the gripper mostly fails to grasp

Fig. 9: The dimensionality analysis of the representations
constructed by the encoders of different robots. It can be seen
from the figure that although all representations come closer
than the initial point, representations of morphologically less
different robots converge closer.

the cup, but after a while, it never misses it which resulted
in slightly less positional error values than the mobile robot’s
results. This is because the gripper does not allow the cup to
slide while the mobile robot lacks the capability to keep the
cup in place. Furthermore, we did not observe any significant
difference in results between the UR-10 and KUKA LBR4+
when they both use BarrettHand as gripper which shows that
the degree of freedom of the manipulator used does not affect
the model’s performance significantly. However, the mean and
the variance values of UR-10 with ROBOTIQ85 gripper were
higher than all others.Upon observing this behavior, we noticed
that minor deviations in the manipulator’s trajectory could lead
to failure to insert the finger into the cup, thereby making
it impossible to move the cup to the desired position. This
failure is not attributed to our correspondence learning system
because the same failure happens when the same robot is used
for observation and generation.

We compared our model with the ACNMP approach in

Fig. 10: (A) Training set used in cup retrieval tasks of ex-
periment in Section III-C. (B) One of the test results for the
manipulator in the same experiment. (C) A number of the paths
the system may choose to generalize in the same experiment.
(D) All trajectories used in training and testing of one of the
joints of the manipulator in the same experiment.



Fig. 11: Mobile robot test results of the experiment in Section
III-C. Dashed lines are expected ground truth values and solid
lines represent the generated values.

this experiment from the perspective of scalability. While our
model can be scaled to any number of robots by increasing the
number of encoder-decoder couples, this is not the case for the
ACNMP. For every additional robot, additional loss functions
that take the mean squared error between the new robot’s latent
representation and the rest of the representations have to be
added. For instance, for four, five, and six robots this number
becomes six, ten, and fifteen respectively. Consequently, as the
number of robots increases, the computation required to train
the model increases factorially. Additionally, each additional
loss introduces a new hyper-parameter to optimize separately.
In our attempts, after significant optimization effort, we were
able to obtain results similar to the ones we obtained in Figure
5 regarding accuracy with significantly higher training time.

We analyzed how the latent representations formed by the
encoders change over the course of training in this experiment
as well to show whether using different number of robots
with different morphology differences affect the latent space
formation. We used the same process we used in Section III-
A for dimensionality reduction. Analysis results can be seen
in Figure 9. It can be seen that despite the increase in the
number of robots, our model can still find a common latent
space between them. However, the difference in morphology
seems to affect this formation. While representations of all
robots become closer to each other than they were initially,
the robots with less morphology difference (manipulators)
converge closer. Nonetheless, the difference is not very large
and did not cause any notable decrease in accuracy.

C. Correspondence learning when task completion requires
different levels of complexity in the SM spaces

In the previous experiment, the robots needed to follow
different paths in order to achieve the same task, and gradual
changes in the sensorimotor spaces of both robots were re-
quired for the gradual change in the task space. In this section,
we aim to test our system when the trajectory of one robot
needs to change significantly in order to achieve gradually
changing task configurations (Fig.1 (C)). In order to address
this challenge, we updated the cup retrieval task by keeping
the cup in the same position and moving it to different goal
positions by pulling/pushing the cup in different directions
(Fig.10). This way, we managed to increase the level of
complexity of the actions of the mobile robot while decreasing

Fig. 12: Snapshots from mobile robot to manipulator (on top)
and from manipulator to mobile robot (on bottom) for the
experiment in Section III-C. Using three observations from the
given trajectory on a new task (on the left of the figure), the
system is able to generate the desired trajectories for the other
robot (on the right ).

it for the manipulator. This difference in complexity can be
seen in panels (A) and (D) of Fig.10. Panel (A) shows the paths
followed by the mobile robot to move the cup to the desired
position, and panel (D) shows the joint angle trajectories for
different desired positions. As shown while there is a gradual
change in the SM trajectory of the manipulator, the change in
the SM of the mobile robot is very complex. Additionally, only
the last parts of the joint angle trajectories are different for all
trajectories of all joints. The identical part represents when the
gripper is moving towards the cup and putting its finger in the
cup, and the rest represents pulling the cup to different angles.
We used seven trajectories for training and four trajectories for
testing for this section. Another objective of this experiment
was to present a proof-of-the-concept realization in the real
world. Therefore, we used a real manipulator, a real UR-10
with a 3-finger gripper.

We observed that the difference in complexity created un-
certainty in the trajectory level for different task configurations
between robots. The reason is that the trajectories used to
approach the cup until making contact with it are the same for
the manipulator independent of where the cup is being moved,
whereas the approach trajectory depends on the final goal
position for the mobile robot. We observed this affected the
way the system generalizes for the test cases. While the system
can generate the desired trajectories close to how we envisioned
them before testing (Fig. 10 (B)) for the manipulator, this was

TABLE I: Directional and positional error values of all test
cases of cup retrieval tasks of experiment in Section III-C for
the mobile robot. Dir. error is the difference between the angle
the mobile robot pushed the cup to and the desired angle for
that case. Pos. error is the difference between the desired and
actual final position of the cup.

Test Positional and Angular Error
Case Desired Angle Outcome Directional Error Pos. Error

1 30 26.739 3.261 0.0226
2 -60 -62.082 2.082 0.0587
3 -30 -29.646 0.354 0.0514
4 60 63.176 3.176 0.0514



not the case for the mobile robot (Fig. 11). However, while
there are significant shifts between the desired trajectories and
the generated ones in Fig. 11, it can be seen that the last parts
of the trajectories are close to the desired ones. This can be
explained by the uncertainty. While there is only one way for
the manipulator to achieve the task (with the same approach
trajectory), there are numerous ways for the mobile robot (with
slightly different approach trajectories). As seen in Fig. 10
(C), to push the cup to the desired location, the system can
generalize to any of the red paths shown and to many others.
It can be seen in Table I that although the system is unable to
generate the trajectories for the mobile robot as we predicted
them, it can successfully achieve the given task with small
errors.

IV. CONCLUSION

In this work, we proposed and realized a correspondence
learning framework that enables task-specific skill transfer
between robots with different morphologies and allows goal-
based imitation with different means and robots. Our system
was able to learn the task-level correspondence between the
pose space of a differential drive mobile robot and the joint
spaces of fixed-based manipulators. The robots have different
bodies and sensorimotor spaces and may need to follow differ-
ent paths to achieve the same task, yet, our system successfully
learned this correspondence. Even though our system was
shown to enable task-level skill transfer between manipulation
and mobile robots in cup retrieving tasks that require different
movement trajectories, the geometric or visual properties of
the interacted objects were not used by our system to make
generalizations across tasks. In the future, we plan to also focus
on using object features, such as object images or high-level
features, in order to transfer and generalize object affordances
[20] among different robots. We also plan to experiment with
different modalities of each robot such as the motor velocities
of mobile robots or joint velocities of manipulators. Although
the velocity alone cannot be used solely to prescribe a path
in space that can be used to accomplish a task, we believe
by using positional information from earlier steps the future
versions of our system can infer paths in space. In order to see
how our model deals with large sensorimotor dimension dif-
ferences, experiments with various agents such as humanoids,
musculoskeletal robots, and even humans can be conducted,
and we plan to investigate this in a future work. Finally, we
plan to investigate if skill transfer is possible using our model.

ACKNOWLEDGMENT

This research has been funded by the JST Moonshot
R&D, Japan (JPMJMS2292), by the JST CREST, Japan (JP-
MJCR21P4), by the JSPS KAKENHI, Japan (21H05053), by
the World Premier International Research Center Initiative
(WPI), MEXT, Japan, by Japan Society for the Promotion
of Science, Grant-in-Aid for Scientific Research – the project
(22H03670), the project JPNP16007 commissioned by the New
Energy and Industrial Technology Development Organization

(NEDO), and the Scientific and Technological Research Coun-
cil of Turkey (TUBITAK, 118E923). The authors would like
to thank Muhammet Hatipoglu for his help in the real robot
experiments.

REFERENCES

[1] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey.” JMLR, vol. 10, no. 7, 2009.

[2] M. E. Taylor, N. K. Jong, and P. Stone, “Transferring instances for model-
based reinforcement learning,” in ECML PKDD, 2008, pp. 488–505.

[3] H. B. Ammar and M. E. Taylor, “Reinforcement learning transfer via
common subspaces,” in Adaptive and Learning Agents: International
Workshop, AAMAS, 2012.

[4] H. B. Ammar, E. Eaton, P. Ruvolo, and M. Taylor, “Unsupervised cross-
domain transfer in policy gradient reinforcement learning via manifold
alignment,” in AAAI, vol. 29, no. 1, 2015.

[5] F. Liu, Z. Ling, T. Mu, and H. Su, “State alignment-based imitation
learning,” arXiv preprint arXiv:1911.10947, 2019.

[6] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, “Learning invariant
feature spaces to transfer skills with reinforcement learning,” arXiv
preprint arXiv:1703.02949, 2017.

[7] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learning
modular neural network policies for multi-task and multi-robot transfer,”
in 2017 ICRA. IEEE, 2017, pp. 2169–2176.

[8] D. Hejna, L. Pinto, and P. Abbeel, “Hierarchically decoupled imitation
for morphological transfer,” in ICML. PMLR, 2020, pp. 4159–4171.

[9] P. Sharma, D. Pathak, and A. Gupta, “Third-person visual imitation
learning via decoupled hierarchical controller,” in NeurIPS, 2019.

[10] Q. Zhang, T. Xiao, A. A. Efros, L. Pinto, and X. Wang, “Learning cross-
domain correspondence for control with dynamics cycle-consistency,”
arXiv preprint arXiv:2012.09811, 2020.

[11] K. Kim, Y. Gu, J. Song, S. Zhao, and S. Ermon, “Domain adaptive
imitation learning,” in ICML. PMLR, 2020, pp. 5286–5295.

[12] M. Akbulut, E. Oztop, M. Y. Seker, X. Hh, A. Tekden, and E. Ugur,
“Acnmp: Skill transfer and task extrapolation through learning from
demonstration and reinforcement learning via representation sharing,” in
CoRL. PMLR, 2021, pp. 1896–1907.

[13] A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan, A. Khaz-
atsky, A. Rai, A. Singh, A. Brohan et al., “Open x-embodiment: Robotic
learning datasets and rt-x models,” arXiv preprint arXiv:2310.08864,
2023.

[14] K. Bousmalis, G. Vezzani, D. Rao, C. Devin, A. X. Lee, M. Bauza,
T. Davchev, Y. Zhou, A. Gupta, A. Raju et al., “Robocat: A self-
improving foundation agent for robotic manipulation,” arXiv preprint
arXiv:2306.11706, 2023.

[15] M. Y. Seker, A. Ahmetoglu, Y. Nagai, M. Asada, E. Oztop, and E. Ugur,
“Imitation and mirror systems in robots through deep modality blending
networks,” Neural Networks, vol. 146, pp. 22–35, 2022.

[16] M. Y. Seker, M. Imre, J. H. Piater, and E. Ugur, “Conditional neural
movement primitives.” in RSS, vol. 10, 2019.

[17] T. et al., “World models and predictive coding for cognitive and develop-
mental robotics: frontiers and challenges,” Advanced Robotics, pp. 1–27,
2023.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: a simple way to prevent neural networks from overfitting,”
JMLR, vol. 15, no. 1, pp. 1929–1958, 2014.

[19] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and scalable
robot simulation framework,” in IROS, 2013, pp. 1321–1326.

[20] M. Cakmak, M. Dogar, E. Ugur, and E. Sahin, “Affordances as a
framework for robot control,” in EPIROB, 2007.

APPENDIX
For the deep encoders and decoders of the network fully

connected layers with ReLU activation functions are used. For
instance the sizes of layers used in section III-A are as follows:

• Mobile robot encoder : Input, 32, 64, 64 ,128, 256, 128
• Manipulator encoder : Input, 32, 64, 64 ,128, 256, 128
• Mobile robot decoder : 512, 216, 128, 32, Output
• Manipulator decoder : 512, 216, 128, 32, Output


	INTRODUCTION
	METHOD
	EXPERIMENTS
	Correspondence learning when the task requires the same Cartesian path
	Correspondence learning when different Cartesian paths are needed for task completion
	Correspondence learning when task completion requires different levels of complexity in the SM spaces

	CONCLUSION
	References

